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Beyond the obvious facts that he has at
sorie time done manual labour, that he
takes snuff, that he is a Freemason, that
he has been in China, and that he has
done a considerable amount of writing
lately, I can deduce nothing else.

Adventures of Sherlock Holmes
SIR ARTHUR CONAN DOYLE

It has become a truism that whatever else formal logic may be it is not
a model of how people make inferences. It perhaps provides a standard,
an ideal template, against which to assess the validity of inferences; and
this view has a considerable appeal until one considers just which particular
logic should play the role of the paragon. Logic is not a monolithic enter-
prise. There are many logics. Indeed, there are an infinite number of modal
logics, a mere branch of the discipline. Although the different branches
may be independent of one another, a choice of logic for, say, the temporal
expressions of natural language is quite likely to have implications for a
choice of logic for, say, such terms as “necessary” and “possible.” Many
of the different linguistic suburbs—tense markers, modal terms, connec-
tives, quantifiers, and so on—are, for a logician, independent areas of in-
terest; and, despite the surge of interest in them (e.g., Montague, 1970;
Parsons, 1972), there is as yet no single comprehensive logic of natural
language (just as there is as yet no complete grammar). It may even be
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supposed that no single coherent logic can suffice for all the ways in which
language is used (van Fraassen, 1971). Yet, in spite of this reservation,
a central question endures: are there any general ways of thinking that
human beings follow when they make deductions?

The tenor of much recent psychological work provides a decidedly nega-
tive answer. The content of a reasoning problem seems to matter just as
much as its logical structure, determining not only how a problem is repre-
sented but also the sorts of inferences that are made. Wason and
Johnson-Laird (1972) have found evidence of such effects in a variety
of tasks, ranging from the testing of hypotheses to reasoning with proposi-
tions. Such findings coincide with an increasingly popular conception of
inference within artificial intelligence (AI).

One of the original aims of trying to program computers to carry out
intelligent activities was to devise automatic methods of theorem proving.
The intention was to devise programs that would both translate natural
language into expressions of the predicate calculus and operate on these
expressions with general theorem-proving procedures. Because it had long
been established that there could be no algorithm for proof within the
predicate calculus, much of this work was of a heuristic nature. Very often,
however, methods devized in a heuristic spirit turned out to be more power-
ful. Some methods even guaranteed, if a theorem could be proved, to find
a proof sooner or later. [There was, alas, no guarantee that the method
would reveal, where appropriate, that it was impossible to derive a given
conclusion; and this deficiency was the heart of Church’s (1936) proof
that there could be no general decision procedure for the predicate cal-
culus.] It follows that general proof procedures have one glaring disadvan-
tage: no matter how long they grind away at a problem, there is no way
of knowing whether or not they will ultimately come up with a solution.
If there is proof they will sooner or later discover it; but if there is no
proof, they may never find out. Therefore, the impetus behind such sophis-
ticated methods as the resolution principle and the hyperresolution princi-
ple (Robinson, 1965, 1966) was to increase the efficiency of programs
so that they would find proofs, where they existed, within a reasonable
amount of computing time. However, there is another difficulty with gen-
eral proof procedures. Before they can go to work on a problem, it has
to be represented in the predicate calculus; and it turns out that the busi-
ness of translating natural language expressions into their appropriate
symbolic form is extremely taxing. Ordinary language does not wear its
logical beart on its sleeve, and there are often surprising divergences be-
tween the superficial form of an expression and its underlying logic. Once
again, there is no known general procedure for carrying out correct transla-
tions (see Johnson-Laird, 1970).
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One reaction to these difficulties has been to try a different tack. Instead
of representing putative theorems in the notation of the predicate calculus
and then grinding away at them with a general proof procedure, they are
represented as programs. When such programs are executed they control
the process of trying to discover the proof. This idea forms the basis of
Hewitt’s (1970) theorem-proving language PLANNER, which has been
exploited so successfully in Winograd’s (1972) program for understanding
natural language. One obvious advantage of the method is that it allows
information and deductive procedures, pertinent to the particular content
of a problem, to be taken into account in the theorem-proving process.
The system therefore gains greatly in efficiency; and, if the psychological
experiments are to be believed, it is also a better model of the human
deductive process. There is accordingly a general tendency in both psycho-
logical and AI circles to emphasize goal-oriented inferential procedures.
This tendency is also evident in recent work on uniform proof procedures,
especially in the development of predicate logic as a programming language
(Kowalski, 1973). The aim of this chapter, however, is to attempt to re-
dress the balance and to examine to what extent there may be general
principles of thought that are independent of any particular problem do-
main. In examining this topic, three main sorts of inference are discussed:
lexical reasoning, propositional reasoning, and reasoning with quantifiers.
A few new experimental results are presented but the emphasis is on de-
veloping models of deduction.

LEXICAL REASONING

Perhaps the most obvious sort of inference-——so obvious, in fact, that
it is hardly noticed in ordinary discourse—involves simple relations between
such lexical items as nouns, verbs, adjectives, etc. The meanings of words
are, of course, often interrelated, and a speaker’s knowledge of such inter-
relations acts very much as a smoothing oil to help the inferential ma-
chinery revolve. If, for example, a law states that all dog owners must pay
a tax, then from the statement “He owns a poodle,” it may readily be
inferred, “He must pay the tax.” From a formal point of view such an
inference is invalid: it lacks the premise, “All poodles are dogs.” In daily
life, however, human beings do not behave like logicians; they know that
poodles are dogs, and they exploit this knowledge without a thought to
the canons of formal logic. .

Logicians have tended to ignore this aspect of practical reasoning, al-
though the device of meaning postulates (see Carnap, 1956; Bar-Hillel,
1967) was developed to deal with the logical consequences of the semantic
relations between words. Psychologists, however, have recently been very
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active in investigating such relations under the guise of studying “semantic
memory.” A few salient points of these studies are perhaps worth delineat-
ing (for a more extensive review, see Johnson-Laird, 1974). The over-
whelming majority of studies have concerned nouns and, in particular, the
relation of class inclusion between them. They have shown that where there
is a hierarchy of class inclusion, such as poodle: dog: animal, it may take
time to grasp the transitivity of the relation. It may take time, in other
words, to recover the fact that a poodle is an animal. A variety of compet-
ing theories have been proposed to explain this phenomenon (e.g., Collins
& Quillian, 1969; Landauer & Meyer, 1972; Schaeffer & Wallace, 1970).
None of these theories is entirely satisfactory, if only because there are
occasions in which the transitive relation is easier to retrieve than its constit-
uents, e.g., “a poodle is a mammal” is harder to verify than “a poodle
is an animal” even though mammals are included in the class of animals
(Rips, Shoben, & Smith, 1973). Nevertheless, it remains true that not all
semantic relations are obtainable from the lexicon with the same ease. It
is necessary to work, albeit for a few hundredths of a second, to retrieve
more recondite relations. And such work, of course, has the logical form
of an inference. Indeed, when Graham Gibbs and I gave subjects an infer-
ential task, involving such material as

Flowers are killed by this chemical spray.
Therefore, roses are killed by this chemical spray.

We obtained results comparable to more conventional studies of semantic
memory. In certain cases (e.g., python: snake: reptile) a transitive infer-
ence took longer than inferences involving its constituents; in other cases
(e.g., pine: conifer: tree) a transitive inference took less time than the
inferences involving its constituents.

What sort of semantic relations are there between the meanings of
words? The simple relations include synonymy (e.g., automobile—car),
antonymy (e.g., man—-woman), and class inclusion (e.g., dog—animal); and
these relations give rise to corresponding relations between sentences in
which the words occur. It is no accident that studies of semantic memory
have concentrated on class inclusion: it is a potent relation because it leads
to transitive inferences. Similar transitive hierarchies can be generated by
the relation of spatial inclusion and sometimes by the relation part of. How-
ever, the obvious source of transitive relations is comparative adjectives,
e.g., “larger than,” “beiter than,” and expressions of the general form
“more x than.” 1t is a simple matter to infer that if aq is larger than b,
and b is larger than c, than a is larger than ¢. However, so much contro-
versy has arisen over various details of the process (see Huttenlocher &
Higgins, 1971; Clark, 1971) that certain broader issues have been ignored



MODELS OF DEDUCTION 11

in the quest to explain experimental findings. One such issue, the represen-

tation of the transitivity of a relational term, is considered below.
There are other patterns of lexical inference apart from transitivity. An

intransitive relation (R), for instance, permits an inference of the form

aRb and bRc .. not (aRc)

The relation “next in line to” is obviously intransitive because if a is next
in line to b, and b is next in line to ¢, then it follows that @ is not next .
in line to ¢. A nontransitive relation, however, permits neither the transitive
nor the intransitive inference; for example, if a is next to b, and b is next
to ¢, then nothing follows about whether g is next to c—the items may
be arranged in a circular fashion or in a line.

Another aspect of the logic of relations concerns symmetry. A relation
is symmetrical if it permits an inference of the form

aRb .. bRa

The relation next to is symmetrical because if a is next to b, then it follows
that b is next to a. A relation is asymmetrical if it permits an inference
of the form

aRb .. not (bRa)

The relation on the right of is clearly asymmetrical. A relation is nonsym-
metrical if it permits neither of these inferences; the relation nearest to
is clearly nonsymmetrical.

There are still other logical properties of relational terms, such as reflexi-
tivity and connectivity, but their role in ordinary language appears to be
. negligible. However, because transitivity and symmetry are independent
attributes, the lexicon already contains a variety of relations. They are
exemplified in Table 1 by a set of spatial expressions.

The semantic representation of relational terms must include information
about their transitivity and symmetry. For example, the representation of
“beyond” must permit a transitive inference, whereas the representation
of “nearest to” must prevent it. What has yet to be determined is precisely
how this representation is effected. It is possible that each relational term
has stored with it in the mental lexicon a simple tag indicating a transitivity
value and another tag indicating a symmetry value. Where a term R is
tagged as transitive, it permits an inference of the form

aRb and bRc ~.aRc

This conception evidently requires inference schemata to be separately speci-
fied as adjuncts to the lexicon. A more plausible system, however, renders
the transitivity of a relation self-evident from its semantic specification,
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TABLE 1
Spatial Expressions as Exemplars of the
Logical Sorts of Binary Relations in
Ordinary Language

Transitive Symmetric
In the same location as [as x as] + +
Beyond [more x than] + -
Not beyond [not more x than] + o
Next in line to - +
Directly on top of - -
Nearest to - o
Next to o +
On the right of o -
At o o

+transitive = transitive; —transitive = intransitive; o transitive
= nontransitive;

+ symmetric = symmetric; — symmetric = asymmetric; o sym-
metric = nonsymmetric.

i.e., the conclusion aRc would be self-evident from the joint represen-
tation of aRb and bRc. A way of representing quantified statements (e.g.,
“All bankers are prudent men”) with just this property is described below.
The best evidence for this sort of representation for simple relational terms
is provided by inference about spatial relations. Consider the following
inference:

The box is on the right of the chair.
The ball is between the box and the chair.

Therefore, the ball is on the right of the chair.

The most likely way in which such an inference is made involves setting
up an internal representation of the scene depicted by the premises. This
representation may be a vivid image or a fleeting abstract delineation—its
substance is of no concern. The crucial point is that its formal properties
mirror the spatial relations of the scene so that the conclusion can be read
off in almost as direct a fashion as from an actual array of objects. It may
be objected, however, that such a depiction of the premises is unnecessary,
that the inference can be made by an appeal to general principles,
or rules of inference, which indicate that items related by between must
be collinear, etc. However, this view—that relational terms are tagged
according to the inference schemata they permit—founders on more
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complex inferences. An inference of the following sort, for instance, seems
to be far too complicated to be handled without constructing an internal
representation of the scene

The black ball is directly beyond the cue ball. The green ball is on
the right of the cue ball, and there is a red ball between them.

Therefore, if I move so that the red ball is between me and the black
ball, then the cue ball is on my left.

Even if it is possible to frame inference schemata that permit such an infer-
ence to be made without the construction of an internal representation,
it is most unlikely that this approach is actually adopted in making the
inference. The only rules of inference that are needed are a procedure for
setting up a joint representation of separate assertions and a procedure
for interrogating the joint representation. Much of the work can be done
by the semantic information in the lexicon; and the same principle of allow-
ing lexical information to specify directly the logic of a relation can apply
equally well to abstract terms with meanings that are difficult or impossible
to visualize directly. With concrete or abstract terms, the structure of a
joint representation is isomorphic to its logic in a way that is exemplified
below in the analysis of quantified inference.

Perhaps the most potent source of lexical inferences is the set of verbs of
a language. The same sorts of relation obtain between them as between other
lexical items——relations such as antonymy (e.g., open—shut), and class in-
clusion (e.g., assassinate—murder—kill). However, verbs can often be used
to express relations between several arguments, rendering even the simple
analysis of a relation and its converse (e.g., buy-sell) a complicated matter.
The additional complexity of verbs does, indeed, lead to some interesting
problems. Consider the following typical sorts of inference that depend
on the meanings of verbs:

Pat forced Dick to refrain from swearing.
.. Dick refrained from swearing.
.. Dick did not swear.

Sam managed to prevent Dean from pretending to be naive.
.. Sam prevented Dean from pretending to be naive.

.. Dean did not pretend to be naive.

.. Dean was not naive.

John regretted that he had no chance to lie.
.. John had no chance to lie.
.. John did not lie.
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These examples illustrate ways in which inferences may be drawn about -
the truth or falsity of a clause occurring as the complement of a verb.
For example, if someone forces x to do z, then it may be inferred that
x did z, whereas if someone prevents x from doing z, then it may be in-
ferred that x did not do z. The validity of these inferences depends on
the meaning of the verbs and, in particular, on the fact that their semantic
representation contains a conjunction of separate elements of meaning. The
essentially conjunctive nature of many verbs is perhaps more evident in
the semantics of causal verbs:

He moved the table.
.. He did something and consequently the table moved.

He showed us the picture.
.. He did something and consequently we could see the picture.

He gave her the book.
He had the book and he did something and consequently she
had the book.

The logic of these inferences can largely be captured by treating the con-
cept of cause as a special sort of conjunction (see Miller & Johnson-Laird,
1975). Of course, it is very much more than a simple conjunction and
seems to involve the following conditions in ordinary language (pace
Dowty, 1972):

a caused b if and only if: (i) a happened;
(ii) b happened;
(iii) it is not possible for a to hap-
pen and b not to happen after-
ward.

The important point, however, is that it is seldom necessary to take the
analysis so far in order to explain the inferential properties of causal verbs.
A conjunctive analysis usually suffices.

In short, lexical reasoning is noteworthy not for the novelty of its pat-
terns of inference but for the speed and smoothness with which its infer-
ences occur. They are sometimes so immediate as to pass unnoticed. Their
patterns include simple relational schemata and, especially in the case of
verbs, simple propositional inferences.

PROPOSITIONAL REASONING

It has been realized since antiquity that one source of inferential rela-
tions is the manner in which sentences, or clauses, are combined. Language
provides a variety of connectives, such as “and,” “or,” and “if,” that can
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be used to combine clauses expressing propositions, e.g., “The boat has
gone, or else it has been sunk and no trace of it can be found.” To know
what these connectives mean is tantamount to knowing how to draw certain
inferences on the basis of the formal patterns in which they occur. For
example, a speaker can hardly be said to have fully grasped the meaning
of “or” unless he appreciates the validity of an inference such as

The boat has gone or else it has been sunk.
It has not been sunk.
Therefore, it has gone.

The logic of connectives has been most fully explored in the development
of the propositional calculus. There are, in fact, a variety of different calculi
and a variety of different ways of formulating them. However, a brief and
informal exposition of the standard calculus will suffice here. If lower case
letters are allowed to range over propositions, then the calculus can be
formalized by specifying what counts as a well-formed formula, and by
stating a set of axioms such as

1. (porp)->p

2.p—>(porgq)

3. (porq)—(qorp)

4. (p—>q) > [(r or p) > (r or q)]

where the arrow is a sign for material implication. In addition to the
axioms, two rules of inference are necessary. The first rule of inference
allows new formulas to be generated by substituting any well-formed for-
mula for a propositional variable in an expression, and the second rule
of inference, the so-called law of modus ponens, may be stated as follows:

From a formula A4 together with a formula if A then B, the formula
B may be deduced.

It is fairly simple to show that these axioms and rules suffice to derive
all the formulas that are true on the logical interpretations of the
connectives. .

What does such a system state about the reasoning of intelligent but logi-
cally naive persons? The answer must surely be: very little. However, it
is worth dwelling on the system for a moment because at least one influen-
tial psychologist, Piaget, has used it as the basis of a model of reasoning
(Beth & Piaget, 1966) and because the contrast between it and ordinary
deduction is instructive.

Among the more obvious difficulties of using the propositional calculus
as a model of ordinary deduction is the fact that its connectives can stand
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or_lly between fully fledged propositions. In ordinary language simple con-
stituents, such as noun phrases, may be linked by a connective. A sentence
such as

Mark and Anne are excellent riders
is easily translated into a form suitable for the calculus:
Mark is an excellent rider and Anne is an excellent rider.

However, there is no comparable procedure for dealing with such sentences
as:

Mark and Anne make a splendid couple.

This sentence must be treated as a single proposition. Another difficulty,
of course, is that the calculus is truth functional: the meaning of its connec-
tives is defined purely in terms of the truth value they give to a complex
proposition as a function of the truth values of its constituents. The multi-
farious connectives of ordinary language (e.g., because, before, although)
cannot be completely captured in a purely truth-functional calculus. Nor,
indeed, can the logic of commands or questions be immediately accommo-
dated within its essentially assertive framework.

A further divergence between logical calculi and the inferential ma-
chinery of everyday life concerns their respective functions. Calculi are
devised primarily for deriving logical truths. The aim of practical inference,
however, is not to prove theorems but to pass from one contingent state-
ment to another. Therefore, practical inference is likely to involve few,
if any, axioms but a relatively large number of rules of inference. A formu-
lation of the calculus that is therefore more appropriate abandons axioms
in favor of a system of rules analogous to Gentzen’s method of “natural”
deduction, an approach that has had some influence in the development
of theorem-proving programs (e.g., Amarel, 1967; Reiter, 1973). A system
of natural deduction involves the specification of rules of inference in a
schematic form. The rule of modus ponens, for example, is stated in the
following schema:

A If A then B

S B!

where the premises appear above the line and the conclusion appears below
it. A parsimonious system, of course, stipulates the minimum number of
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such schemata from which all the others can be derived. For instance, nega-
tion and disjunction may be taken as primitive, inference rules stipulated
for them, and the remaining connectives simply defined in terms of negation
and disjunction. From a psychological point of view, however, it would
be foolish to seek parsimony at the expense of plausibility. What is needed
is a set of psychologically basic patterns of inference.

Any decision about whether a pattern of inference is psychologically
basic is ultimately an empirical matter. It is necessary to find out whether
the inference is in the immediate repertoire of mature but logically naive
persons. An inference schema can hardly be considered as basic if most
people are incapable of carrying it out or can only do so in a matter of
minutes, subsequently giving a detailed resumé of a whole chain of deduc-
tions they have carried out to make the inference. Unfortunately, there
is not enough evidence to determine the definitive set of basic patterns
of inference. What can be done, however, is to build up a plausible first
approximation to it, taking care not to include any inferential schema
known to cause difficulty to logically naive subjects. The fact that an infer-
ence is feasible for the majority of people suggests that it is basic but is
hardly a decisive proof: the inference may be the result of combining sev-
eral other inferences. Only those inferences that seem prima facie to be
basic are therefore included in the following set, but in many cases the
final decision must depend on further investigations.

Some extremely simple inferences are considered first. It is obvious that
from a clause expressing the meaning 4 one can immediately deduce a
clause expressing the same meaning, 4. (This way of writing in terms of
clauses expressing meanings is excessively cumbersome; from now on I
shall write simply of propositions, although it must not be forgotten that
I am dealing with inferences expressed in natural language.) Simi-
larly, the conclusion 4 can be immediately deduced from a proposition
of the form 4 or A. These inferences are summarized in the following
schemata:

A (1)
LA

Aord
LA (2)

Although inferences of this sort may sometimes rely on complex lexical
inferences, their structure is very simple and can hardly be derived
from anything more basic. The question is whether these inferences
may not be too trivial to be useful. In fact, they do have a role
to play, and a model of propositional inference is defective without them.
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The same may be said about some further schemata. The first pair permit
a proposition to be inferred from its occurrence in a conjunction:

A and B

e G

Aand B (3b)
B

The second pair permit a disjunction to be inferred from either one of
its constituents:

A
. AorB (42)
4
S Bord (4b)

The third pair permit a conjunction to be inferred from the independent
occurrence of its constituents:

A B
—_— S5a
.. Aand B 2)
_A—E 5b)
S Band A (
And the final pair permit negated conjunctions to be deduced:
A and not —B . (62)
.. not both Aand B
not —A and B (6b)

.. notboth Aand B

A real problem with these simple patterns of inference is to find a suit-
able way to curb their productivity. As a number of authors have recently
pointed out, there are constraints on what can reasonably be expressed
in the form of a conjunction or a disjunction. It may be true, for example,
that boys eat apples, and that Mary threw a stone at the frog, but the
conjunction

Boys eat apples and Mary threw a stone at the frog

is, as Lakoff (1971) argues, barely acceptable. It is customary to suit an
utterance to its context, and this principle applies to the relations between
clauses as well as to the relations between sentences. Hence, if a speaker
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follows one clause with another explicitly specifying what seems to have
been taken for granted, then he creates an extremely odd conjunction, e.g.,

John ran out of the house and he got out of bed (Johnson-Laird,
1969a).

All of John’s children are bald and John has children (Karttunen,
1973).

The existence of constraints on the topics of conjunctions and disjunctions
can hardly be doubted. Indeed, the constraints on “but” proved sufficient
for that conjunction to be used by Bendix (1966) as the basis of a semantic
test. However, there is no adequate explication of a complete set of con-
straints. One solution is therefore to do away with the simple inference
schemata that give rise to the free combination of propositions in conjunc-
tions and disjunctions. Unfortunately, it is impossible to do without these
rules of inference. They are needed in order to make such deductions as

It is frosty.
If it is foggy or frosty, then the game will be canceled.

Therefore, the game will be canceled.

For the time being, schemata (1) to (6) shall be called “auxiliary infer-
ences,” for reasons that will become clear when the method of curbing
their power is described.

In contrast to the auxiliary inferences, there are a number of primary
patterns of inference that have no restrictions placed on them. There is
among them the familiar pattern exemplified in the following inference:

John is intelligent or he is rich.
He is not rich.

Therefore, he is intelligent.

There is good reason to suppose that its underlying schema
AorB not —A4

B
AorB not —B

(7a)
(7v)

LA

is basic. A study by Hill (cited in Suppes, 1965) found that 82% of a
sample of 6-year-old children were able to make the inference correctly.
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Johnson-Laird and Tridgell (1972) found that it led to errors only when
the negative occurred in the disjunctive premise, e.g.,

John is intelligent or he is not rich.
He is rich.

With premises of this sort, some of their adult subjects inferred that John
was not intelligent, whereas other subjects considered that no conclusion
followed from the premises. Such a finding suggests, however, not that the
schema is intrinsically difficult but that an unusual placement of negative
information can disturb its smooth execution.

The patterns of inference in (7) are valid both for an inclusive disjunc-
tion, where both constituent propositions can be true, and for an exclusive
disjunction, where this possibility is ruled out. There is a further rule of
inference that applies only to exclusive disjunctions, e.g.,

Either Mary is a plagiarist or else she is a genius (but not both).
She is a genius.

Therefore, she is not a plagiarist.

The real force of this inference derives from the exclusivity of the two
propositions in the disjunction. It is therefore plausible that the basic infer-
ential schema should be formulated in the following way:
Not both A and B A
. not -B

(82)

Not both A and B B
.. not —A

(8b)
The main candidate for a basic pattern of inference involving the condi-
tional is modus ponens:

A If A then B
LB

©)

There is considerable evidence to suggest that this schema is basic, whereas
a closely related pattern, known as modus tollendo tollens, is not (see
Wason & Johnson-Laird, 1972). The latter inference has the following
form:

Not —B If A then B
S not —A

Intelligent subjects can make inferences of this sort but they tend to do
so with a greater difficulty than with modus ponens and it is natural to
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suppose that they are carrying out a sequence of inferential steps rather
than a single inference. They may, in fact, be arguing in the following way:

If the safe is locked, then this light is on.
This light is not on.

Suppose the safe is locked.

It follows then that the light is on (by modus ponens).

But the light is not on (from the premise).

Therefore, the assumption leads to an impossible, contradictory state
of affairs.

Therefore, the assumption is false: the safe is not locked.

This sort of argument is, of course, a reductio ad absurdum and requires
an inferential schema of the form

A implies (B and not —B)
: (10
onot—A

It is certainly true that logically naive persons can argue by a reductio
(Evans, 1972); and it can be accepted as basic instead of modus tollendo
tollens, although a completely convincing justification for this choice cannot
be established at present.

There are two subsidiary points about the reductio schema in (10).
First, a conditional may equally well have been used in place of the impli-
cation, because if one proposition can be derived from another, then this
fact can be expressed by a conditional

A implies B
EPa— (11)
S If A then B

Second, where a reductio is used to establish the falsity of a negative propo-
sition, it is necessary to be able to eliminate the resulting double negation,
e.g., “It isn’t the case that 5 is not odd” becomes “5 is odd.” A simple
schema makes this elimination possible:

not not —4

LA (2
Its seeming simplicity, however, may be deceptive. At least one school
of logicians, the intuitionists, have excluded this rule from their canon.
These logicians, represented by Heyting (1956), are primarily worried
about certain sorts of mathematical reasoning. In particular, they are con-
cerned with inferences involving infinite sets and argue that such inferences
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must involve constructive and intuitive principles. They claim that it is
not sufficient, in order to demonstrate the existence of a mathematical
property, to show that its universal denial leads to a contradiction. Hence,
the intuitionists reject the law of the excluded middle, i.e., the principle
that either a proposition or its negation is true. They consequently reject
the related principle for eliminating double negations. The relation between
the intuitionist and the classical calculus of propositions is not so straight-
forward as might be imagined; Godel (1933) has shown that the classical
calculus can nevertheless be treated as contained within the intuitionistic
calculus! It shall be assumed here, however, that the elimination of double
negations is a feature of ordinary reasoning.

The dozen inference schemata that have now been stated constitute a
plausible set of psychologically basic patterns of deduction. There are other
forms of inference that, although probably not basic, are well within the
competence of most people, and a way must certainly be found for incorpo-
rating them into the model. One example of such an inference is the simple
dilemma, e.g.,

The President is dishonest or he is incompetent.
If the President is dishonest, then he will be forced to resign.
If the President is incompetent, then he will be forced to resign.

Therefore, the President will be forced to resign.

Such an argument places an adversary literally on the horns of a dilemma,
because no matter which of the alternatives he chooses from the initial
disjunction, he is forced to accept the same conclusion. The rhetorical force
of such arguments was, indeed, recognized by Cicero (see Kneale & Kneale,
1962; p. 178). However, the argument can be considered, for psychological
purposes, as merely a special case of a more general pattern of inference:

AorB If A then C If Bthen D
L CorD

If C is substituted for D in this schema, then the derived conclusion be-
comes C or C, and this conclusion, in turn, is immediately reducible to
C by an auxiliary inference. It is feasible that the simple dilemma is derived
in this way from the more general argument. A comparable chain of infer-
ence, which indeed is not logically independent of the general dilemma,
is the so-called hypothetical syllogism. This pattern of inference makes
explicit the transitivity of conditional propositions

If A then B If B then C
< If A then C
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Obviously, a way must be found to insure that the model permits such
inferences to be drawn.

There are a number of simple equivalences that cannot be established
by the present rules of inference, e.g., “Neither John can come nor Mary
can leave” is equivalent to “John can’t come and Mary can’t leave.” It
would be a simple matter to introduce schemata for them, but it would
be slightly odd to treat such relations by way of rules of propositional
inference. A more sensible solution is to assume that inferences based on
synonymy are just special cases of the schema A4/ .. 4, and that synonymy
is established on linguistic grounds. In other words, the complete mecha-
nism of lexical inference is at the disposal of the propositional machinery.
Indeed, it may be said that reasoning with propositions is simply a matter
of grasping the meaning of those lexical items that happen to be connec-
tives. This view is certainly suggested by considering the question of how
patterns of inference are acquired in the first place. Where, indeed, do
they come from? And how are they fitted together into a coherent system?
One plausible conjecture is that the basis of the whole process is the acqui-
sition of the truth conditions of the various connectives. Perhaps this notion
should be broadened to include the extensional conditions for commands
and questions, etc.; however, for the sake of simplicity only the truth con-
ditions of assertions shall be considered here.

In the standard formalizations of the propositional calculus, including
the method of natural deduction, nothing explicit is said about the truth
conditions of the various connectives. When the calculus has been axioma-
tized, a theorem is defined as a formula that can be derived from the
axioms by the rules of inference. This sort of definition, and the equivalent
sort for the method of natural deduction, is essentially formal: it provides
purely syntactic criteria, pertaining solely to the manipulation of symbols,
for what counts as a theorem. It is also possible, however, to define a valid
formula—a formula that is a logical truth. The usual way of carrying out
such a definition, as demonstrated below, is to set up a semantical model
in the spirit of Tarski (1956). This model may be treated as a mathemati-
cal entity involving certain marks on paper, such as “T” and “F,” or alter-
natively it may be interpreted so as to involve certain concepts, such as
truth and falsity. Logically speaking, a crucial issue is whether the calculus
is complete. A proof of its completeness amounts to showing that the set
of formulas derivable from the axioms is one and the same as the set of
valid formulas defined by the semantical model. It is a fairly simple matter
to show that the standard formalizations of the propositional calculus are,
indeed, complete.

The issue of completeness has no obvious counterpart in the psychologi-
cal modeling of inference. The reason it disappears is, in my view, simply
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that the whole system is semantically based. The conditions in which con-
junctions, disjunctions, etc., are true and false are learned and, from these
conditions, the basic patterns of inference are derived. A competent adult
therefore has at his disposal both the inference schemata and their under-
lying semantic basis.

The development of a semantical model for the propositional calculus
typically involves the following sorts of conditions:

1. A negative proposition, not A4, is true if and only if A4 is false.

2. A conjunction, A and B, is true if and only if A is true and B is
true.

3. A disjunction, 4 or B, is true if and only if A is true or B is true.

There are two difficulties, however, one linguistic and the other metalin-
guistic, in regarding such principles as part of a psychological basis for
the semantics of connectives.

The metalinguistic difficulty is caused simply by the lack of any obvious
psychological correlate of the logician’s distinction between an object lan-
guage and a metalanguage. In the truth conditions above, the reader will
have noticed that the connectives themselves actually occur as part of their
own definitions. Logically, there is nothing objectionable in this practice be-
cause the conditions for the object language connectives are being stated in
a quite separate language, the metalanguage. However, it is rather unfortu-
nate that this metalanguage turns out to be ordinary English. If it is claimed
that learning the truth conditions of ordinary connectives amounts to learn-
ing rules of the sort illustrated above, then a vicious circle is created be-
cause these rules presuppose a knowledge of the meaning of ordinary
connectives. This problem seems to have been overlooked by many of the
linguists engaged in setting up semantical bases for natural language (e.g.,
Keenan, 1970). Its solution presumably involves some more abstract form
of mental representation for metalinguistic information about natural
language.

"~ The linguistic difficulty with the semantical rules concerns the interpreta-
tion of conditional statements and it goes to the heart of the problem of
using the propositional calculus as the basis of a psychological model. Con-
ditionals in ordinary language are, of course, capable of a great many

_different sorts of interpretation. They may be used to state temporal,
causal, or logical relations between propositions. It is only relatively rarely
that they fit the requirements of the calculus, for example, in conveying
a material implication. Such an implication is true provided its antecedent
is false or provided its consequent is true, e.g., “If this picture isn’t by
Picasso, then it’s by Braque.” The majority of everyday conditionals, how-
ever, are not rendered true merely by establishing that their antecedents
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are false. A statement such as “If this picture is by Picasso, then it was
painted in 19107 is simply irrelevant—neither true nor false—if the picture
in question turns out not to be by Picasso. It is one of the fictions of the
propositional calculus as a model of ordinary deduction that propositions
always have a truth value. The calculus does not permit truth-value gaps.

The distinction between a material implication and a conditional with
a truth-value gap may be considered trivial. In fact, however, it leads to
a clear divergence between the logical calculus and ordinary inference. The
following bizarre inference for instance, counts as valid if conditional state-
ments are treated as material implications:

You can’t both hate Mailer and admire him.
If you hate Mailer, then you will soon give up reading his work.
If you admire Mailer, then you will read his entire works.

Therefore, if you hate Mailer you will read his entire works, or if
you admire Mailer you will soon give up reading his work.

The validity of the argument turns simply on the fact that a material impli-
cation is true whenever its antecedent is false, and one of the two condi-
tional antecedents in the conclusion must be false according to the first
premise.

A more plausible account of conditionals should permit them to lack
a truth value. The semantical rule for the conditional connective might then
be stated as

A conditional if A then B has a truth value if and only if A4 is true;
and it is true if and only if B is true.

'

The trouble with this analysis, however, is that it leaves out of account
the strong intuition that there should usually be some sort of connection
between 4 and B in order for a conditional of the form If A then B to
be true. It also, of course, runs entirely counter to the evaluation of many
conditionals that, ex hypothesi, have antecedents that are false or as yet
unfulfilled, e.g., such counterfactual conditionals as “If Hitler had been
a successful painter, then World War II would not have occurred,” and
such conjectural conditionals as “If the Russians invade West Germany,
then World War III will occur.” Evidently, these conditionals are not truth
functional.

What happens when you evaluate a conditional appears to depend on
whether or not you already assent to its antecedent, and whether or not
you already assent to its consequent. As Ramsey (1950) pointed out long
ago, if you have no view about the antecedent, then for the sake of argu-
ment you add it to your set of beliefs and then consider whether or not
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the consequent is true. This judgment is in turn reflected back to your
evaluation of the conditional as a whole. In contrast, if you happen already
to believe that the antecedent is true, then your task is simply to evaluate
the consequent. A problem arises, however, if you happen already to be-
lieve that the antecedent is false. Its solution, as Stalnaker (1968) has
shown, is simply to add the antecedent to your beliefs for the sake of argu-
ment and then to make minimal changes in your other beliefs in order
to maintain consistency. The way is then clear for you to evaluate the con-
sequent in the light of these hypothetical assumptions. Your decision about
the consequent must obviously take into account any views you have about
a causal connection, or any other sort of connection, between the antece-
dent and consequent.

Your prior attitude to the consequent of the conditional obviously plays
a part in these proceedings. If you happen already to believe that it is
true and can continue to do so in the light of your treatment of the antece-
dent, then you may very well assent to the conditional even if there appears
to be little connection between its antecedent and consequent. In contrast,
if you happen already to believe that the consequent is false and continue
to do so in the light of your treatment of the antecedent, then you must
evaluate the conditional as false. Finally, if you have no prior views about
the consequent, your evaluation of it must depend on what connections,
if any, you establish between it and the antecedent.

This unified approach to the evaluation of conditionals can be precisely
formulated in terms of a semantical model resting on the notion of a “posi-
ble state of affairs” (see Stalnaker, 1968). Its details are not of concern
here because their psychological realization is more plausibly thought of
as a set of procedures for making assumptions, eliminating inconsistencies,
and so on. The crux of the matter is simply that although such connectives
as the conditional are not truth functional, their role in deductions can
nevertheless be modeled by inference schemata. Rules of inference may,
indeed, be learned by considering truth conditions but they can be applied
without reference to them. _

The present set of inference schemata are still deficient as a psychologi-
cal model, because the power of the auxiliary rules of inference has yet
to be curbed. The method that shall be adopted here depends on the idea
of modeling the machinery of ordinary deductive inference by a set of
computer-like procedures, an idea that goes back to the work of Miller,
Galanter, and Pribram (1960), and Newell, Shaw, and Simon (see Newpll
& Simon, 1972). This conception“of a program of interrelated dgductlve
procedures has many advantages, not least that it provic!es a s.tralghtfor-
ward way of making auxiliary inferences dependent on primary inferences.
The basic idea is simply that an auxiliary inference can be made only as
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TABLE 2
The Set of Auxiliary Inferences
Premises Conclusions
1. A A
2. Aord4 A
3. A and B A
A and B B
4. A AorB
A Bor4
5. A B A and B
A B Band 4
6. A4 and not B Not both 4 and B
Not 4 and B Not both 4 and B
11. A implies B If A then B
12. Not not 4 A

a necessary precursor to a primary inference: it is an auxiliary aid that
prepares the way for a primary inference. An example of the process may
clarify the relation between the two sorts of inference.

Suppose that the deductive program is given the goal to make an infer-
ence from two premises of the form:

Aand C
If A then B

It is obvious that no initial conclusion can be derived using a primary infer-
ence because instead of a simple categorical premise A4, required by modus
ponens, there is only the conjunction 4 and C. However, because this con-
junction is linked to a constituent of the conditional, i.e., they contain the
proposition A in common, a subgoal can be set up to derive A4 from the
first premise, 4 and C. The primary inferences are no help here but an
auxiliary inference allows the inference to be made. Once the auxiliary
inference is made, the way is clear to deduce the conclusion B using a
primary inference.

It may be helpful at this point to summarize the two sorts of inference
schemata. The auxiliary inferences are stated in Table 2. The primary infer-
ence schemata, however, are more conveniently summarized in the form
of Table 3. This format enables procedures to be devised that allow access
to the table by way of a premise or by way of a conclusion.



28 P. N. JOHNSON-LAIRD

TABLE 3
The Set of Primary Inferences

Categorical premise

Complex premise A Not 4 B Not B
7. AorB B A
8. Notboth 4 and B Not B Not 4
9. IfAthenB B ? (Not 4)

The cell entries give the form of the conclusion deduced from that par-
ticular combination of complex and categorical premise. The “?” refers to
the modus rollendo tollens inference, which may be made directly but, as
was argued in the text, is likely to involve a more complex procedure.

A more general statement of the relation between primary and auxiliary
inferences is given in Fig. 1. This flow diagram is a simplified model of
informal propositional inference. Its power is limited because the program
terminates as soon as it succeeds in making a primary inference. However,
its general principle is instructive. When a primary inference fails, a test
is made to see whether it has failed because there has been a mismatch
between the categorical premise and the relevant constituent of the complex

!

Makea Yes EXIT:
———— 3 PRIMARY — with
INFERENCE conclusions,
ifany
No No
Isthere an Isinferential failure

caused by mismatch

- ”
auxiliary goal’ No = bety 1 linked premise
and constituent?
Yes . Yes
Make an Setup an auxiliary goal
#&_AUXILIARY ——L EXIT to deduce constituent of
INFERENCE the complex proposition

|

Fic. 1. A simplified model of propositional inference.
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premise. If there is such a mismatch, an auxiliary goal is set up to infer
the constituent from the categorical premise. If there is no such mismatch,
the program can go no further. It is only when an auxiliary goal is set
up that it becomes possible to try an auxiliary inference; and an auxiliary
goal is only set up in order to try to make a primary inference. An everyday
corollary of this relation is that auxiliary deductions do not normally occur
in isolation, e.g., it is odd to argue “John’s children are grown up,” there-
fore, “John’s children are grown up or it is raining in Manchester.”

The model described in Fig. 1 is, of course, much less flexible than a
human reasoner. Even if it were equipped to deal systematically with sev-
eral premises, it would be unable to make certain complex deductions in
more than one way. For example, faced with premises of the following
form:

not D

CorD

A

IfA and C then B

the program could deduce the conclusion B by proceeding in this fashion:

Make a primary inference from not D, and C or D, to C.

Attempt a primary inference from C, and If A and C, then B.

Set up an auxiliary goal to infer 4 and C.

Make an auxiliary inference from 4, and C, to 4 and C.

Make a primary inference from A and C, and the conditional premise,
to B.

However, if it attempts to proceed in this fashion,

Attempt a primary inference from A, and If A and C, then B.
Set up an auxiliary goal to infer 4 and C.

its failure is abrupt because in this case the auxiliary goal cannot be
achieved by either a primary or an auxiliary inference. A human reasoner
is unlikely to have too much difficulty in completing the chain of inference.
What defeats the program is its lack of ability to set itself complex auxiliary
goals requiring several inferences for their satisfaction. It cannot, in at-
tempting to deduce 4 and C,set about trying to derive first 4, and then C.
Because this procedure is likely to place a considerable load on working
memory, it will be interesting to know whether children are capable of
it. Indeed, once a suitable modification to the program is made, a danger
of the opposite sort is encountered. The program has no limit on the degree
of recursion that can occur, whereas a human reasoner can presumably
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EXECUTIVE =& — INFERENCE
HYPOTHETICAL CONTRADICTION
ASSUMPTION

Fic. 2. The interrelations between the four components of the complete model
of propositional inference.

tolerate only a certain degree. Such a limit can easily be introduced into
the program, but what is humanly tolerable is an empirical matter that
has yet to be determined.

A further severe limitation of the model is that it is totally incap-
able of making certain sorts of inference. It cannot make a deduc-
tion by a reductio ad absurdum; it cannot construct a hypothetical
syllogism; and it cannot resolve a dilemma. These inferences require, first,
a procedure that makes hypothetical assumptions and, second, a procedure
that is sensitive to contradictions. In order to incorporate these procedures,
however, it is necessary to consider the organization of a more complete
model of deduction.

The complete model consists of four main components: an executive
that controls the various attempts to make inferences, an inferential compo-
nent that carries out primary and auxiliary inferences, a component for
making hypothetical assumptions, and a component for detecting contra-
dictions. The interrelations between these components are summarized in
Fig. 2. The executive component, which is shown in Fig. 3, organizes the
process of inference. When there are premises but no particular inferential
goal, then the executive sets up a goal to make a deduction from the prem-
ises and then passes control to the inferential component. If an inference
is made, then generally a new goal is created to try to deduce something
from its conclusion. However, if no inference can be made, the executive
passes control to the procedure that makes hypothetical assumptions. Only
when the executive component runs out of premises to try does it cease
to make any further attempts at inference.

The inferential component closely resembles the simplified model of in-
ference. It has, as Fig. 4 shows, two main modifications. First, whenever
a primary inference is made, control passes to the procedure for detecting
contradictions. Second, a routine has been introduced for setting up com-
plex auxiliary goals, thus remedying a major defect of the simplified model.

The procedure for making hypothetical assumptions will be grossly ineffi-
cient if it selects them at random, because it may take a long time to discover
a fruitful assumption. The obvious heuristic is to find a proposition,
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Any premises still
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Yes No
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FiG. 3. The executive component of the complete model.

either a premise or a conclusion previously inferred, with an overall
form that corresponds to one of the complex propositions of a primary
inference, and then to assume an appropriate categorical premise (see
Osherson, this volume). The form of this categorical premise can easily
be ascertained by examining the primary inference decision table. For ex-
ample, suppose that there is a premise of the form If A or C, then B,
then it is clear from Table 3 that a conclusion can be drawn from this
premise provided there is a categorical assertion of its antecedent. There-
fore, it is this antecedent, A or C, that must be assumed. When one returns
with this assumption to the inferential program, a primary inference yields
the conclusion B.

It is important to keep track of an assumption because, unless it can
be independently inferred, any conclusion based on it cannot be asserted
categorically: all that can be asserted is that the assumption implies the
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Fic. 4. The inferential component of the complete model.

conclusion. Where an assumption 4 implies a conclusion B, the program
concludes, by an auxiliary inference, If A then B, One obvious moral is
that it is no use making an assumption if it leads to no more than this
initial deduction. For example, with a premise of the form. If A then B,
the assumption of 4 can be used to deduce B, but if nothing else follows,
the auxiliary inference leads merely to If A then B, a conclusion that is
no more than what was known from the start. The hypothetical procedure
has accordingly the capability of setting up a series of goals once an as-
sumption has been made. The first goal is both to deduce a conclusion
from the hypothetical assumption and to make a further inference from
this conclusion. A failure to achieve this goal is made manifest if the hypo-
thetical procedure is reentered with it, for such an event can only occur
if the program has failed to make a primary inference. However, if at least
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an initial conclusion has been drawn, then a second goal can be set up
to deduce a contradiction to it. In other words, the first goal may lead
to a hypothetical syllogism, and the second goal to a reductio ad absurdum.

If the hypothetical procedure is reentered with the second goal, then
it too must be abandoned in favor of a third goal. This situation may arise,
for example, in the case of premises with the form of a dilemma:

AorB
If A then C
If B then D

The program may have proceeded as follows:

Assume A.

Make the primary inference A4, if A then C, therefore C.
Attempt to deduce something from C (first hypothetical goal).
Attempt to deduce not C (second hypothetical goal).

Evidently, what is needed at this point is another assumption, but not just
any assumption will do. A useful heuristic is to find another premise in
which the original assumption also occurs and then to make a hypothetical
assumption of its remaining major constituents:

Find A or B
Assume B

The third hypothetical goal is to deduce something from this assumption.
This goal is fulfilled in the example:

Make the primary inference B, If B then D, therefore D.

Subsequently, the conclusion based on the assumption of B will be com-
bined with the conclusion based on the assumption of 4, and the combina-
tion will have the same logic as the premise in which both 4 and B
occurred. Because this premise was 4 or B, the final conclusion will be C
or D. The machinery for generating this conclusion, and the other sorts
of hypothetical conclusion, is more conveniently located in the procedure
for detecting contradictions. The procedure for making hypothetical as-
sumptions is summarized in Fig. 5.

Whenever a primary inference is made, control passes to the procedure
for dealing with contradictions that is summarized in Fig. 6. Contradictions
that stem from an assumption are taken to imply the negation of that as-
sumption, according to the reductio schema. If no assumption has been
made, however, it follows that the premises are inconsistent. A conclusion
cannot be categorically asserted unless it is established that it is not based
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Fic. 5. The procedure for making hypothetical assumptions.

on an assumption. Where an assumption has been made, a conditional
conclusion is drawn only if more than an initial consequence has been de-
rived from it. Alternatively, if separate conclusions have been drawn from
separate assumptions, then the conclusions may be combined accprding
to the logical relations that originally obtained between the respective as-
sumptions. This routine insures in the case of our previous example that

the conclusion to the general dilemma is C or D.
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The description of the model is complete, but how is it to be tested
empirically? There are three potential methods. First, a correspondence
between the model and intelligent but logically naive subjects can be
sought. It should be capable of inferences within their competence and
it should be incapable of inferences outside their competence. This test
may not be particularly stringent because what little evidence there is about
human competence in propositional inference has been taken into account
in the formulation of the model. Second, a detailed correspondence be-
tween the performance of the model and the performance of human reason-
ers can be sought. Do they go about the business of inference in the same
way? Do they, for example, check each time they make a primary deduc-
tion to see whether it has yielded a contradiction? The methodology of
making such tests of the model is not obvious, although human retrospec-
tions are likely to provide some useful evidence. Indeed, they already sug-
gest one weakness of the model. Human reasoners seem to have the ability
to gather a rapid global impression of premises and to use it to control
their initial attempt at deduction. They do not appear to find it necessary,
for example, to attempt a reductio ad absurdum before attempting a di-
lemma. The model’s serial ordering of hypothetical goals may therefore
be too strong an assumption.

If it proves possible to modify the model so as to increase its power
of simulation, then a third method of testing may become feasible. This
method involves using a model to make predictions about the relative diffi-
culties of different sorts of inference. Such an approach is, unfortunately,
some way off.

REASONING WITH QUANTIFIERS

The valid patterns of relational and propositional deduction do not ex-
haust the set of general structural rules of inference that human reasoners
customarily follow. A new set of principles is required for inference with
quantifiers. These terms include the familiar items “all,” “some,” “none,”
“many,” “few,” etc., and a wide range of implicit quantifiers, e.g., “usu-
ally,” “often,” “certain,” “possible,” and “permissible.” Logically speaking,
it is possible to develop the usual apparatus of axioms and rules of inference
for quantifiers and to raise the customary question of completeness with
respect to an appropriate semantical model. Psychologically speaking, how-
ever, matters are less clear-cut. Despite the many experimental studies of
the syllogism, going back at least 70 years (see the work of Storring, cited
in Woodworth, 1938), it is only very recently that actual models of syllo-
gistic inference have been proposed (Erickson, 1973; Revlis, this volume).
The majority of theories are about factors that create difficulty in dealing
with syllogisms (e.g., Woodworth & Sells, 1935; Chapman & Chapman,
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1959; Ceraso & Provitera, 1971). Indeed, the concentration of interest
on the syllogism, that traditional but minor province of quantified infer-
ence, is symptomatic of the backward state of knowledge in this area.

The model of propositional inference incorporated the mechanism for
lexical inference, and they must both in turn be contained within any model
of quantified inference. Inferences based on synonymity are a very salient
feature because the disposition of quantifiers allows the same basic fact
to be expressed in a variety of ways, e.g.,

Not all the critics admired all of his films.

Some of the critics did not admire all of his films.
Some of the critics did not admire some of his films.
All the critics did not like all of his films.

A similar flexibility extends to terms that are implicit quantifiers, e.g.,

You are not compelled to vote.
You are allowed not to vote.

It is not necessary for you to vote.
It is possible for you not to vote.

There are at least two alternative ways in which these sorts of semantic
relation may be handled. The first alternative is parasitic on a speaker’s
knowledge of how to give a surface form to an underlying semantic content.
I have elsewhere specified a set of grammatical transformations that derive
such synonymous sentences from a common underlying form (Johnson-
Laird, 1970); and a number of other linguistic accounts of the synonymi-
ties involving quantifiers have been proposed (cf. Leech, 1969; Seuren,
1969; Lakoff, 1970; Jackendoff, 1972). Here is not the place to try to
weigh up the respective merits of these accounts; what they appear to have
in common is the realization that the behavior of quantifiers with negation
conforms only in a covert and complicated way to the behavior of these
items in a logical calculus. As in logic, one quantifier within the scope
of a negation, e.g., “Not all of his films were admired,” is equivalent to
the alternative quantifier outside the scope of the negation, e.g., “Some
of his films were not admired.” The complexities arise because of the lack
of clear devices in natural language for marking the scope of operators.
Sometimes, for example, the scope of negation is indicated by the choice
of quantifier, as in the contrast between the following sentences:

I did not like any of his films.
I did not like some of his films.

And sometimes scope is indicated by word order—although rarely defini-
tively, because in a sentence such as “None of the critics like some of
his films” the first quantifier is within the scope of the second.
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The second approach to the problem of synonymity is to provide a direct
semantic representation or model for each sentence. The equivalence be-
tween sentences is then established by noting that they give rise to the
same representation rather than by first reducing the sentences to a common
underlying linguistic structure, and then providing a semantic interpretation
for it. The direct approach is relatively unexplored for natural language,
although Julian Davies at Edinburgh (personal communication) has writ-
ten a computer program with this sort of facility for quantifiers. The con-
trast between the two alternative approaches resembles, in many ways, the
contrast between an intensional and an extensional semantics. For example,
the linguistic approach is well suited to accounting for relations between
sentences, whereas the direct approach is well suited to accounting for the
relations between sentences and what they describe in the real world. It
is too soon either to determine which approach makes the better psycho-
logical sense or to grasp the extent to which they are empirically
distinguishable.

A more important question is whether it is possible to devise a general
model of inference with quantifiers along the lines of the model for proposi-
tional inference. In fact, can that model be extended to take into account
the internal structure of clauses and their quantifiers? The remainder of
this paper is devoted to this problem, but because there is virtually no
empirical data apart from the results of experiments on syllogisms, the
main aim is to develop a model of how people cope with such syllogisms
as the following typical example (from Lewis Carroll):

All prudent men shun hyenas
All bankers are prudent men

-+ All bankers shun hyenas

Psychological studies of the syllogism have been dogged by the baleful
tradition of scholastic logic. Not that this logic is necessarily bad—it has
simply been bad for psychologists, blinding them to some rather obvious
points. Most introductory texts give a standard account of the syllogism,
describing its four figures and its 64 moods, and concluding that there are
256 syllogisms. A psychologist, however, should recognize that there are
exactly twice this number, because there is nothing God-given about the
assumption, underlying the four traditional figures, that the predicate of
the conclusion occurs in the first premise. A psychologist might be inter-
ested, for example, in the evaluation of a syllogism of the form

All bankers are prudent men
All prudent men shun hyenas
.. All bankers shun hyenas
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This syllogism, of course, is in a figure that does not correspond to any
of the traditional four,

The early experimenters (e.g., Wilkins, 1928; Woodworth & Sells, 1935;
Sells, 1936) relied on tasks that required given syllogisms to be evaluated
rather than on tasks that insured a syllogistic inference was made. They
selected the syllogisms from what they thought was a population of 256
in an arbitrary way. (More recent studies have sometimes added the further
vice of presenting pooled data from syllogisms of the same mood but differ-
ent figures, a habit that unfortunately has made it difficult to use the results
in constructing a model of inference.) Nevertheless, the pioneering studies
led to the important idea of an “atmosphere” effect in which negatives
and the quantifier “some” exert a potent bias on the form of an acceptable
conclusion to a syllogism—or so, at least, the protagonists of the theory
believed.

In order to test the theory and, more importantly, to develop a theory
of syllogistic reasoning a systematic study of syllogisms is required. There
are 512 possible syllogisms but there are only 64 different combinations
of premises (of which 27 yield valid inferences). If experimental subjects
are asked to state what follows from each different premise combination,
there is a strong presumption that they will be forced to make an inference;
and, of course, the population of premise combinations is of a manageable
size. Two recent studies, one of which is reported here have tested the
ability of intelligent subjects to perform this task. The first study investi-
gated only the 27 valid premise combinations. The second study, carried
out in collaboration with Huttenlocher, investigated all 64 pairs of prem-
ises. In both these studies, the syllogisms were presented with a sensible
everyday content but a content that lacked any perceptible bias toward par-
ticular forms of conclusion, e.g.,

Some of the parents are scientists.
None of the drivers are parents.

The patterns of inference that were made in both experiments were very
similar, even though the experiments were carried out with different mate-
rials on opposite sides of the Atlantic. This discussion shall therefore con-
centrate on the second and more comprehensive study.

The most salient feature of the results is that there is a very wide diver-
gence in the relative difficulty of syllogisms. To take two extreme examples,
all 20 subjects presented with premises of the form

Some Bare A
AllBare C
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correctly deduced a conclusion of the form Some A are C or its equivalent

Some C are A. However, when these same subjects were presented with
premises of the form

All Bare A
No Care B

none of them gave the correct response, Some A are not C. Perhaps
part of the fascination of syllogisms to psychologists is that the manip-
ulation of a handful of variables can yield such very large differences
in performance.

The results also demonstrated the inadequacy of the atmosphere hy-
pothesis as a complete account of what goes on in syllogistic reasoning. As
there is no point in belaboring this point, amply confirmed in another recent
study (Mazzocco, Legrenzi, & Roncato, 1974), it can simply be stated that
40% of the conclusions drawn by the subjects are in accordance with the
hypothesis, 8% of their conclusions are incompatible with the hypothesis,
and the remaining 52% of their responses are neither compatible nor in-
compatible with the hypothesis because they consisted almost entirely
of the response that no conclusion could be drawn from the premises. It
may be objected that the atmosphere hypothesis, in fact, accounts for most
of the results if one ignores those syllogisms for which no conclusion was
drawn from the premises. However, this objection merely begs the
question: how is it that subjects realize that no conclusion follows? The
atmosphere hypothesis cannot explain this phenomenon.

There was one striking and unexpected aspect of the results. Certain
figures of the syllogism exerted a strong influence on the form of the con-
clusion that subjects inferred, and this influence did not depend on the
logic of particular syllogisms. Where the premises were of the form below
where A-B designates the order in which terms A and B were mentioned,
regardless of the quantifiers used),

A-B
B—C

85% of the conclusions that were drawn had the form A—C. Where the
premises were of the form

B-A

Cc-B

86% of the conclusions that were drawn had the form C-A. In the case
of the other two sorts of syllogisms, however, there were only slight biases,
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as the following percentages show:

B-A A-B
B—C c-8
A—C(54%)  C—A (67%)

Although the “figural” effect provides an important clue to how people
make syllogistic inferences, it is not the whole story. There is an interaction
between the figure and the mood of the premises; and the main goal of
a model of syllogistic inference must be to account for this interaction.

Why has this figural effect never been noticed before? The answer is
simply because of the neglect of half the possible syllogisms, a neglect fos-
tered by relying on a traditional account of the logic of syllogisms. Indeed,
it is a pity that psychologists have not gone back to Aristotle, because
the first of his figures has the form

All Aare B
AllBare C

. All Aare C

This form of syllogism is the only one that Aristotle considered to be per-
fect, perhaps because the transitivity of the connection between its terms
is obvious at a glance (see Kneale & Kneale, 1962, p. 73).

Aristotle’s method of validating syllogisms involved their “reduction,”
by way of a variety of transformations, to the pattern of his perfect syl-
logism. Subsequent recipes for syllogistic inference have tended to be more
mysterious. They are mechanical procedures that work, but their workings
are in no way intuitive. It is natural to wonder how such procedures have
been established as infallible. One possibility is that they have been tested
by exhaustive searches for counterexamples. Another possibility, however,
is simply that people, even logically naive people, are capable of syllogistic
inference and, with sufficient care, can elucidate a syllogism of any form.
This possibility obviously demands that a model of syllogistic inference
be able to account for both valid and invalid deductions.

The essence of the model to be developed here is that an initial repre-
sentation of the premises is set up, from which a conclusion may be read
off. This initial representation, however, may be subjected to a series of
tests. Where it is submitted to all of these tests, any ultimate conclusion
corresponds in all cases to a valid inference. Where some of the tests are
omitted, the conclusion may or may not be valid. The syllogisms that are
easy to solve turn out either not to permit tests of the initial representation
or else not to require their initial conclusions to be modified. The syllogisms
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that are difficult to solve do permit tests of the initial representation and
invariably these tests call for a modified conclusion.

It is impossible from mere introspection to determine how the different
sorts of syllogistic premises are mentally represented. They may be repre-
sented in a format resembling Euler’s diagrams (see Erickson, 1973;
Revlis, this volume; Neimark & Chapman, this volume). However, one
difficulty with this representation is that it cannot account for the “figural”
effect because, for example, the representation of Some A are B is identical
to the representation of Some B are A. It is unfortunate that, in developing
his interesting set-theoretic model of syllogistic inference, Erickson (1973)
has overlooked the possibility of a “figural” effect by neglecting half the
possible syllogisms. The fact that human reasoners often show a pro-
nounced “figural” bias in stating their conclusions, even where such a bias
is logically unwarranted, demonstrates the need to modify any simple repre-
sentation of premises in the form of Euler’s circles. However, instead of
attempting such a modification, an entirely different format has been
chosen for the present model. The model assumes that human reasoners
represent a class by imagining an arbitrary number of its members. For
example, a class of artists is represented by a set of elements that are tagged
in some way as artists. The nature of the elements and their tags is immate-
rial—they may be vivid visual images or ghostlike verbal tags. The crucial
point is simply that they are discrete elements. A statement such as “All
the artists are beekeepers” relates two separate classes and it is represented
in the following way:

artist artist

! !

beekeeper beekeeper (beekeeper)

where representatives of one class are mapped onto representatives of the
other class, and the parenthetical item indicates that there may be beekeep-
ers who are not artists. This representation is similar, but not isomorphic,
to an Euler diagram. The discrepancy arises from the function of the
arrows, which may be interpreted as pointers within a list-processing lan-
guage. In other words, although the mapping represented by a single arrow
is logically symmetrical, i.e., @ —> b is equivalent to a « b, the two expres-
sions are not psychologically equivalent. Intuitively, the item at the tail
of the arrow can be thought of as having stored with it the address in
memory of the item at the head of the arrow. Therefore, a fundamental
assumption of the model is that it is easier to read off information from
such representations proceeding in the direction of the arrows. It is possible
to proceed in the opposite direction, but it is harder because it will be
necessary to search memory for the item at the tail of the arrow. The model
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is accordingly very far from making the assumption that subjects tend
readily to convert statements (pace, Chapman & Chapman, 1959). It does
not even assume that they make valid conversions spontaneously during
syllogistic reasoning, e.g., from “Some artists are bricklayers” to “Some
bricklayers are artists.” There is good reason to suppose that such pairs
of statements are not always equivalent in ordinary discourse. The former
statement, as Hintikka (1973, p. 69) has emphasized, presupposes that
the field of search includes all artists, whereas the latter statement presup-
poses that the field of search includes all bricklayers. This divergence may
even lead to a rather special interpretation of the predicate term, suggesting
in the second example above, for instance, that some bricklayers are artists
in their manner of laying bricks.

In general, a universal affirmative statement, Al A are B, is represented
in the following way:

a a
U
b b

where the parenthetical item (b) indicates that there may be a b that is not
a. The number of a’s and b’s in the representation is, of course, entirely ar-
bitrary—we may just as well have linked 15 a’s to 15 b’s and included 30
parenthetical b’s; for convenience, we have chosen two a’s in representing
each of the different sorts of premise. A particular affirmative statement,
Some A are B, is represented in the following way:

a (a)
l
b (b)

where (a) indicates that there may be an a that is not b, and (b) indicates
that there may be a b that is not a.

The representation of a negative statement involves a negative link:
there is no mapping of the sort defined above and, moreover, none can
be established by any subsequent manipulations of the representation. The
representation of a universal negative statement No A are B requires an

arbitrary number of negative mappings, which are here indicated by
stopped arrows:

S e— R
S le— Q

If there is a negative link beetween a and b, neither of them may be
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involved in any positive links from a to b, or from b to a. A particular
negative statement, Some A are not B, is represented by

a (a)
Lol
b b

where the positive mapping, (a) — b indicates that some a may be b.
The logic of these representations is as follows, where a € A, b © B,
and R stands for the relation of identity

All A are B: (@) @b) (aRd)

Some A are B: (Qa) @b) (eRb)

No A are B: (@) () 1 (@Rb) .
Some A are not B: (3a) (b) 1 (aRb)

On the plausible assumption that A and B are never empty classes in or-
dinary language, these expressions seem to capture the obvious inferential
properties of quantifiers. The logic of sentences in which the copula is
replaced by some other relation (e.g., “All the artists married beekeep-
ers”) is easily accommodated by this notation.

It is a simple matter to write a program that sets up a representation
for the first premise of a syllogism. The representation of the second prem-
ise is a more complicated matter because one term — the middle term
of the syllogism — will have already been represented. The logical work,
in fact, commences with the representation of the second premise because
it is grafted onto the representation of the first premise. The process is
perhaps best described by way of an example.

Suppose that the first premise of a syllogism is of the form Some A are
B, and can accordingly be represented as

a (a)
!
b ()

A crucial distinction is whether or not the middle term is the quantified
item in the second premise. The representation of the premise Al B are C
simply involves mapping the existing members of B onto representative
elements of C:

a (a)

{

b (b)
[

¢c ¢ (o)

The valid conclusion Some A are C may be read off from this representa-
tion, proceeding in the direction of the arrows. However, if the second
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premise is All C are B then it is necessary to set up some representative
elements of C and to map them onto B. It is also necessary to allow that
there may be other b’s that are not c’s; therefore, an initial representation
of this syllogism is

a (a)

1

b () O
T 1

c ¢

Because the mappings do not proceed in a uniform direction, there is no
firm anchor on which to base the inference; and the model predicts that
subjects will tend to be divided between concluding (invalidly) Some
A are C and concluding (invalidly) Some C are A.

Both the representations that have been described reﬂe‘ct an initial bias
of the model toward establishing transitive mappings. This feature has been
introduced in order to account for the subjects’ bias toward drawing con-
clusions where, in fact, none are warranted. Because many subjects are
capable of a more sophisticated syllogistic performance, the model assumes
that once an initial representation of the premises has been created, it may
be submitted to tests before any attempt is made to read off a conclusion.
These tests can be characterized as efforts to test to destruction any initial
transitive mappings. The initial phase is analogous to a process of verifica-
tion; the testing phase is analogous to a process of falsification and, as
with falsification, it is often overlooked by subjects (see Johnson-Laird
& Wason, 1970).

The procedure for falsifying a mapping involves trying to modify the
representation of the second premise so that it is no longer connected to
items that are themselves involved in a mapping relation. The procedure
has no effect on the first illustrative syllogism but it is possible to modify
the initial representation of the second illustrative syllogism from

a (a)

!

b () ®)

T 1

Cc c

to

a (a)

l

b (b)) ()
T

c Cc
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The critical link has been broken; and because both its presence and its
absence are consistent with the interpretation of the premises, it follows
that no valid conclusion can be deduced from them.

The predictions of the model for the two illustrative syllogisms are sum-
marized below, together with the numbers of experimental subjects (out
of 20) deducing the predicted conclusions:

Some Aare B Some A are B
AllBare C AllCare B
.Some Aare C: 16 ..Some Aare C: 5
.. Some Care A: 5
No conclusion follows: 9

A simple set-theoretic model does not account for the results with the first
of these syllogisms because it predicts a response of Some A are C as
often as a response of Some C are A.

Certain features of the present model can only be illustrated by consider-
ing the representation and testing of negative premises. Consider premises
of the form

No Bare A
AllCare B

The first premise is represented as

>N = Q
o = Q

The second premise, of course, requires an additional b to be introduced
and, when such an introduction occurs, the model bears in mind the univer-
sal nature of the first premise:

T
(®)

e — o= a8
o — O -8

It is a straightforward matter to read off the conclusion, No C are A, but
a more difficult matter to read off the conclusion No A are C.
The initial representation of the premises

No Bare A
AllBareC



MODELS OF DEDUCTION 47

is set up in a similar way:

& — o> a
A — e

(c)

However, the mappings do not proceed in a uniform direction and the
model predicts that subjects will be divided between the (invalid) con-
clusions No A are C and No Care A.

The falsification tests of a negative mapping consist in trying to establish
that a transitive link can be set up between the elements in the representa-
tion. The only constraint on this maneuvre is that elements cannot be
linked in inconsistent ways such as these in the following example:

o — O > K
> Q

because these links imply inconsistencies, such as that ¢ both is and is
not an a. The first syllogism survives the falsification tests unmodified. The
second syllogism does not. Its initial representation

O — O .

a
T
b
!
¢ (o)

allows the following links to be established:

O — O

a
T
b
!
c

(e ()

It is always possible to add new parenthetical items provided there are
existing ones; it is never possible to add any items to a set that contains
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no parenthetical items. The distinction, in fact, corresponds to the tradi-
tional notion of a distributed term (no parenthetical items) and an undis-
tributed term (parenthetical items). The new links in the representation
are, of course, consistent. Yet subjects initially predisposed to conclude No
A are C may find this second representation, which suggests All A are
C, such a contrast that they may judge that no conclusion follows from
the premises. More astute subjects, however, can appreciate that it is im-
possible to add further a’s to the representation and therefore that Some
C are not A.

The predictions of the model for the two negative syllogisms are sum-
marized below, together with the number of experimental subjects (out
of 20) deducing the predicted conclusions:

NoBare A No Bare A
All Care B AllBare C
S No Care A: 13 .. No Care A:
~NoAareC: 3 W No AareC:
No conclusion follows:
..Some Care not A:

~N A We

The main features of the model of syllogistic inference have now been
illustrated, and it should be obvious that it has the sort of flexibility needed
to match the diversity of subjects’ deductions. To generate quantitative
predictions, however, would require the specification of various parameters
and the estimation of their values from the experimental results. The exer-
cise would not be very rewarding. A more appealing possibility is to try
to derive assumptions about the relative value of these parameters from
the processing properties of the model itself. The point can be illustrated
by considering the figural effect in terms of the processing of lists. When
the arrows in a representation lie in a uniform direction, they largely deter-
mine the direction in which conclusions are read off from it. It is possible
to proceed in the opposite direction but at the cost of having to search
memory for the items that are the tails of arrows. This asymmetry, which
is reflected in human performance, is a simple consequence of the structure
of lists. At a later stage of development of the model, it may be possible
to derive some of fine-grain aspects of performance from similar sorts of
information-processing considerations.

The reader familiar with the problems of manipulating Euler’s circles
can appreciate the computational advantage of the present style of repre-
sentation. An Eulerian representation of, for example, Some A are B re-
quires four separate diagrams to be created. When such representations
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are combined, the combinatorial consequences can become psychologically
embarassing, particularly where several premises are involved, e.g.,

Some Aare B
All Bare C
All Care D

An Eulerian deduction from these premises involves considering at least
4 X 2 X 2 = 16 different combinations of diagram, whereas the list repre-
sentation is simply

a (a)

!

b ()

I

c ¢ (o
1l

d d d (d)

from which it is easy to infer Some A are D. It may be that in making
such inferences human reasoners break the problem down into a series
of syllogisms; but it is also feasible that they set up a complete representa-
tion of several premises in this way.

There are, of course, alternative models of syllogistic inference that can
be couched in the list format. Mark Steedman (personal communication)
has devised a model, involving a more elegant representation, in which
invalid inferences arise not from a failure to test initial and improper repre-
sentations of the combined premises but from actual errors in the rep-
resentations of single premises. In particular, the model assumes that
parenthetical items are often neglected so that universal premises come to
be interpreted as All and only A are B. The list representations may also
be extended in order to deal with quasi-numerical quantifiers (e.g., “many,”
“most,” “few”) and with statements involving several quantifiers. A state-
ment such as “Some of the tenants will not vote for all the representatives”
may be represented in the following way:

tenant tenant
e ] T}

— b b

representative representative representative

where the mapping represents the relation votes for. The combination of
these diagrams is a complicated affair, but from the few studies of inference
with such statements (Johnson-Laird, 1969b) it seems that untrained
human reasoners have fairly restricted powers with them, too. It is likely
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that the list representation is sufficiently flexible to form part of a general
model of quantified inference.

CONCLUSIONS

In an attempt to formulate models of deduction that operate on different
aspects of the structure of statements, two essential inferential processes
have been discerned: the transformation of information and the combina-
tion of information from separate sources. The transformation of informa-
tion occurs primarily in lexical inferences and in the majority of auxiliary
inferences. The combination of information occurs in three-term series
problems, in inferences about complex spatial relations, in primary proposi-
tional inferences, and in syllogisms. When information is transformed, the
process is usually governed by essentially linguistic rules. When information
is combined, however, the process often seems to involve the creation of
an internal “model” of the world. This procedure seems to be necessary
for syllogistic inference; and it has the great advantage that the transitivity
of relational terms can be made a direct consequence of their representation
rather than an indirect consequence of an additional rule of inference. In-
deed, it is seldom that it can be conclusively demonstrated that the transfor-
mation of information does not proceed by the construction of internal
models.

What of the role of content? Do different contents introduce perhaps
difference principles of inference? It is certainly noticeable that a listener
is able to draw on general knowledge to allow a speaker to leave many
things unsaid. The sorts of inference that a listener can make are illustrated
in the following examples culled from current work in a variety of
disciplines:

He went to three drugstores.

Therefore, the first two drugstores didn’t have what he wanted.
(Abelson & Reich, 1969)

The mirror shattered because the child grabbed the broom.
Therefore, the child hit the mirror with the broom and broke it.
(Bransford & McCarrell, 1972)

The policeman held up his hand and the cars stopped.
Therefore, the policeman was directing the traffic. (Collins & Quil-
lian, 1972)

Harry is enjoying his new job at the bank, and he hasn’t been to
prison yet.

Therefore, Harry may be tempted to steal some of the money in the
bank. (Wilson, 1972)
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John gave Mary a beating with a stick.

Therefore, John wanted to hurt Mary. (Schank, Goldman, Rieger,
& Riesbeck, 1973)

Janet needed some money. She got her piggybank and started to shake
it.

Therefore, Janet got her‘ piggybank and shook it in order to get some
money from it. (Charniak, 1973)

Of course, the man may have visited three drugstores in order to enforce
a protection racket; and the mirror may have shattered because it was bal-

‘anced on top of the broom; and so on. The inferences are therefore plausi-

ble rather than valid. What appears to happen, however, is that people
exploit a communal base of knowledge that includes such assumptions as:

Drugstores are shops that have certain sorts of goods.

People visit shops in order to buy goods.

If one shop does not have an item that it normally stocks, then an-
other shop of the same sort may have it.

This knowledge will be automatically elicited by any utterance with a rele-
vant topic, and it can be used by the inferential machinery in order to

-make good any gaps in the explicit discourse. The procedure relies on a

convention that a speaker will draw attention to any special circumstances
that render communal assumptions inappropriate.

- If discourse is supplemented by common sense assumptions, it is un-
necessary to postulate special rules of inference to deal with specific topics,
although the content of statements may exert a selective bias on the avail-
ability of different rules of inference (see Wason & Johnson-Laird, 1972).
The simple answer is to revert to Sherlock Holmes, who was himself a
model of deduction. What he exploited, very much in the manner of
PLANNER, were two special sources of information: an acute perceptual
attention to detail, and an extensive specialized knowledge—the sort of
knowledge to be expected in an individual who contributed to the literature
on both cigar ash and tattoos. It was knowledge that was the foundation
of his exceptional ability. The structure of his inferences was, indeed,
elementary.
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