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Human experts and expert systems

P. N. Johnson-Laird

What are expert systems? A brief introduction

Expert systems are computer programs that embody human expertise and
that are used as consultants in making decisions about problematical cases.
Existing systems identify organic compounds on the basis of spectrographic
data (DENDRAL developed by Feigenbaum et al. 1971), diagnose infectious
diseases (MYCIN developed by Shortliffe 1976), advise geologists where to
prospect for minerals (PROSPECTOR developed by Duda et al. 1979), and
carry out many other such tasks that call for expert knowledge (see Michie
1979). There are even expert systems for setting up expert systems.

Most current systems consist of a large body of conditional rules of
heuristic value (extracted by reaping a human expert’s knowledge), and an
inferential system which, by interrogating a user about a particular problem
case, navigates its way through the rules to yield a conclusion. The conditional
rules may be definitive or have probabilities attached to them. The inferential
system may depend on working backwards from the consequents of the rules,
for example given a rule of the form:

if A & Bthen C

the system in trying to establish C attempts to satisfy A and B (for example
MYCIN.) It may work forwards from the antecedents of rules, for example
given the data A and B, it deduces C (for example METADENDRAL which
discovers rules to be used by DENDRAL). Or it may use both methods,
which are indeed familiar from the development of the PLANNER language
and its descendants (see, for example, Winograd 1972). The choice of strategy
often depends on whether the system is to work ‘top down’ from hypotheses
or ‘bottom up’ from data. The inferential system may have an estimate of
the a priori probability of a hypothesis, and estimates of the conditional
probabilities of the evidence, both given the truth of the hypothesis and given
its falsity, in order to use Bayes’s law to compute the probability of the
hypothesis in relation to the given evidence (for example PROSPECTOR).
It may involve in effect a many-valued or ‘fuzzy’ logic, for example the
assignment of probabilities to each rule and the use of some system of
allowing these probabilities and the probability values of data to be jointly
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computed and propagated along the chain of inference (for example PROS-
PECTOR, MYCIN). Some expert systems allow the user to ask why a
particular datum is required, or how a particular diagnosis was arrived at,
and allow an expert user to change the rules in the knowledge base (for
example DENDRAL). Finally, expert systems are often programmed using
‘production systems’ (see Young 1979} or related implementations. They
have also been developed in PROLOG; this language is closely related to the
predicate calculus (see Warren 1979) and allows programs to be written that
simulate non-deterministic search by backtracking (for the computational
notion of non-determinism, see Hopcroft and Ullman 1979).

What are human experts?

There are gross differences between human experts and expert systems that
are obvious to the cognitive scientist if not to the ‘knowledge engineer’. It is
easy to draw these contrasts, but rather harder to formulate a working
definition of what constitutes human expertise. I am happy with the following
tendentious definition: an expert is someone who can make good excuses for
being wrong. This definition is at least extensionally correct: it applies to
human experts but to no current expert system. In fact, however, there are
five major distinctions between human and computer expertise.

First, and most obvious, humans can treat errors not merely as cause for
excuse but also as the occasion for a revision in their knowledge or theories.
Expert systems are not normally confronted with their errors.

Second, humans can do much more with their knowledge than can systems.
They can use their knowiedge in a flexible way to answer many different sorts
of problem.

Third, human experts have a large amount of tacit knowledge that they
cannot readily articulate in words. This knowledge is important in science
(Polyani 1958), and it is crucial in those areas where science has yet to tread.
Try asking a poet how to write a poem, and you will discover that poets have
different working methods—though most of them still rely on the ‘muse’. Try
asking a wine taster how to distinguish one claret from another, and you are
likely to be given a rule that is impossible to objectify, for example one tastes
like pencil shavings, the other like wet slate. Try asking anyone for the
grammatical rules of natural language, and you will learn hardly anything of
value. Linguists have been working on this problem for two thousand years
or more, and they have yet to formulate a complete grammar for any natural
language or even to decide how powerful, computationally speaking, such
grammars should be.

Fourth, there is an important but subtle difference in semantics. Humans
have knowledge about things, whereas expert systems merely have sets of
conditional rules which are denotationally interpretable by the human user,



Human experts and expert systems 37

but not by the program. Indeed, the program has generally no way of relating
its representations to the world; it has no way of determining the truth or
falsity of the contingent assertions with which it deals. Since nearly all
computer programs are in this predicament—as to reality, one might say,
they leave that to the programmer—it is seldom commented upon. Certain
‘knowledge enginers’ may be inclined to regard this point as a philosophical
scruple comparable to the objection that thermostats do not have intentions,
but the lack of a semantics relating expressions to representations of the
world is, as we shall see, an important obstacle to the solution of certain
problems.

Fifth, humans and systems make inferences using rather different mech-
anisms. This point will emerge more clearly later in the chapter.

If you grasp these five points, you may well wonder how it is that some
expert systems function so well. The answer is evident if you consider how
you would develop a new expert system that, say, helped taxonomists in the
identification of different species of coelenterates. Human experts have a
coherent body of knowledge about the members of this phyllum: they have
mental models that integrate information about their anatomy, physiology,
ecology, and behaviour (for the notion of mental models, see Gentner and
Stevens 1982; Johnson-Laird 1980, 1983a). With the assistance of a knowledge
engineer, the expert may be able to translate certain features of these models
into a set of recognition procedures couched in the form of conditional rules.
These rules may suffice for recognition, but they will be useless for other
tasks calling for expertise, for example how to cope with a plague of jellyfish.
In short, the knowledge engineer reaps the fruit of the expert’s knowledge,
not the knowledge itself. Fruit make an excellent dessert, but experts do not
live by fruit alone. )

How are we to improve existing systems and to make them more expert?
There are two obvious methods. The first is to devise some new and cunning
techniques in artificial intelligence. The second is to try to close the gap
between human and programmed expertise. Both methods have a con-
tribution to make. Yet, a truly expert ‘expert system’ will surely have the
following capabilities: it will be able to evaluate evidence without the
mediation of a human user since it will contain its own semantics; it will be
able to direct its expertise to a variety of sorts of problem in a flexible way;
and, of course, it will make good excuses for its mistakes and learn from
them. My aim in what follows is to offer some suggestions about how we
might advance towards this goal. These suggestions will be motivated by
considering one crucial problem: the maintenance of consistency.
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How to maintain the consistency of a knowledge base

An expert system has a knowledge base of rules, and obviously its improve-
ment may depend on modifying or replacing some of them. There are several
possible approaches to such changes. The standard approach finesses the real
problem—the maintenance of consistency—since the knowledge engincers
themselves are responsible for any modifications to the system. Users can
interrogate the knowledge base but they cannot alter what is there. This
procedure may work well, but obviously it is more efficient if the maintenance
of the knowledge base can be mechanized (cf. METADENDRAL). Of course,
one can make an heroic denial of the problem of consistency. To paraphrase
Walt Whitman, one can say: ‘Dees my knowledge base contain con-
tradictions? Very well, it is big, it contains multitudes.” No one, perhaps,
deliberately adopts this attitude, but if rules are to be routinely added to the
knowledge base, then the possibility of inconsistencies is an ever-present
danger. A much more sensible approach is to rely on logic. The knowledge
base is, in effect, treated as a set of expressions in the first-order predicate
calculus, and whenever a new rule is to be added, a theorem-prover is used
to check the consistency of the modified system. The promise of PROLOG
rests in part on the attraction of this approach. There are, however, at least
three problems with it.

The first difficulty is well known: there are algorithms, such as resolution
theorem-provers, that will determine in a finite number of steps that an
assertion p is inconsistent with a set of assertions D (equivalently, the negation
of p follows logically from D), but there can be no such general algorithms
that determine that p is consistent with D. For any system with the power
of the first-order predicate calculus (i.e. with quantification ranging over
individuals), we can therefore have only half of a decision procedure, and so
there will be no way of telling whether a program for testing the proposition
is going to yield an inconsistency or continue to run ad infinitum. Although
this problem is unsolvable, there are occasions, as we shall see, where it can
be avoided in the maintenance of data bases.

The second difficulty arises from the meaning of conditionals, or rather
from the lack of a semantic theory for them. Conditionals in computer
programs have a simple semantics, but conditionals in daily life have a
meaning that is so complicated that no one has yet succeeded in formulating
a satisfactory theory of their semantics (see Johnson-Laird 1983b). Suppose,
for example, an expert formulates a rule of the form:

If p, then r

then in all orthodox systems of logic no matter what is conjoined to the
antecedent the resulting rule will still be true:
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If p & g, then r

In reality, however, this ‘strengthening’ of the antecedent may be unaccept-
able. For instance, one might accept the rule:

If infection 1 is cystitis and infection 2 is bacteremia, then admin-
ister penicillin.

but totally reject the rule:

If infection 1 is cystitis and infection 2 is bacteremia and the
patient is allergic to penicillin, then administer penicillin.

The trouble is that in orthodox systems of logic the two rules are not merely
consistent with one another, but whenever the first rule is true, the second
rule is true, too. The second rule follows logically from the first!

This problem is a special case of a general phenomenon. Orthodox logics
are monotonic; that is, given a set of premises D that validly imply a prop-
osition p, then the addition of any further premise ¢ to D cannot affect the
validity of the inference to p:

IfD+—p,then D & g +p.

Various attempts have been made to formalize rules of inference that are
non-monotonic (for example McDermott and Doyle 1980), but they have
not yet succeeded (Davis 1980). The nature of the difficulty can be illustrated
by returning to the example. Suppose that the conditional:

If infection 1 is cystitis, then administer penicillin
is correct. We may also want the conditional:

If infection 1 is cystitis and infection 2 is bacteremia, then admin-
ister penicillin

to be correct, but the conditional:

If infection 1 is cystitis and the patient is allergic to penicillin,
then administer penicillin

to be incorrect. There is, however, no difference in the logical form of these
two conditionals. Their inconsistency arises at a deeper level, since it depends
on our knowledge of the effects of penicillin on those who are allergic to it.
The moral is plain: current systems of formal logic and their implementations
in theorem-provers cannot cope with inconsistencies between ordinary con-
ditional rules.

The third difficulty in detecting inconsistencies also concerns the use of
formal techniques, and again I shall illustrate it by way of an example.
Suppose there are two rules of the form:
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If more than half the 4s are Bs then X is the case
If more than half the 4s are Cs then X is the case

and you wish to add the following rule to the knowledge base:

If at least one Bis a C, then X is not the case.

Plainly, your new rule is inconsistent with your old rules, since the following
inference is valid:

More than half the 4s are Bs
More than half the As are Cs
Therefore, at least one Bisa C.

There is no way, however, in which this inconsistency can be detected in the
first-order predicate calculus or a computer implementation of it. Why?
Because the quantifier ‘more than half’, like many others, cannot be captured
within any system in which existential and universal quantification occurs
over individuals (Barwise and Cooper 1981). One needs quantification over
sets, i.e. the second-order predicate calculus. But this calculus is incomplete
in that there can be no set of formal rules of inference that capture all valid
second-order deductions.

Doubtless, there are ad hoc solutions to the last two of these problems, but
their existence should at least make us pause to think before we adopt systems
based on formal rules of inference to check the consistency of a knowledge
base. There is indeed an alternative approach that derives from the study of
human cognition.

Mental models and the knowledge base

The problem of maintaining the consistency of a knowledge base (or indeed
of any sort of data base) can be approached obliquely by considering first an
apparently rather different problem: how people understand discourse and
build up a mental representation of it. There are grounds for supposing that
human beings have the ability to construct a mental model of the state of
affairs described by the discourse (Johnson-Laird 1983a). This theory of
mental models assumes that comprehension is a two-stage process: first, a
superficial linguistic representation of an utterance is set up; second, this
representation is used in the construction of a mental model of the state of
affairs that the discourse describes. In general, a discourse is represented by
just a single mental model, which is based on the meaning of the utterances
in the discourse, relevant information about the context, and inferences from
general knowledge. The content of a particular utterance is merely a clue to
what has to be constructed: inferences ‘flesh out’ the bones of the discourse.

If one builds only a single model, then since nearly all discourse is radically
indeterminate, the problem arises as to how to construct a model in the
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absence of a complete description. One method is to make an arbitrary choice,
and, if the choice turns out to be wrong in the light of subsequent information,
then to revise the model. The significance of the model therefore depends on
the existence of procedures that can revise it so as to undo mistaken assump-
tions or inappropriate interpretations of indeterminate descriptions. The
system therefore simulates a non-deterministic automaton that always con-
structs the correct model of the discourse (given that the discourse describes
just one state of affairs): it converges on the correct model by modifying the
existing model so as to render it compatible with the discourse as a whole
(provided that the discourse is consistent).

At the heart of the theory lies the following idea: mental models represent
the extensions of assertions, i.e. the situations they describe, whereas the
superficial linguistic representations, together with the machinery for con-
structing and revising models, represent the intensions of assertions, i.e. the
sets of all possible situations that the assertions could describe. In effect, a
mental model is a fragment of many possible worlds: all those possible worlds
within which the model can be embedded because the discourse it represents
is true in them. Thus, the structure of mental models corresponds to the
structure of a state of affairs. A mental model is therefore different in structure
from a semantic network, or a representation in the form of a syntactically
structured string of symbols. Both these types of representation have struc-
tures quite remote from the states of affairs that they designate. For example,
a semantic network representing the assertion:

Every man owns one car

contains a node representing men, a node representing ownings, a node
representing cars, a node representing implications, and a number of other
nodes to capture the appropriate logical structure of the assertion (see
Hendrix 1979). A mental mode! merely contains a set of mental tokens
corresponding to the set of men, a set of mental tokens corresponding to the
set of cars, and a set of mental relations between these tokens representing
the relation of ownership:

man — car
man — car
(car).

The token in parentheses represents the possibility of a car that is not owned
by a man. This model is a fragment of all those possible worlds in which there
are two men and three cars, and every man owns one car. The significance of
the model is not limited to sets with these cardinalities. The numbers of
tokens can be chosen arbitrarily if there is no information to the contrary,
and they can be revised in the light of subsequent information. Obviously, a
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plausible psychological theory must make further assumptions about how to
deal with large numbers: the model is not constructed in complete detail.

The way in which to maintain consistency can be illustrated by considering
in more detail the process of representing discourse in a mental model—a
process that has been modelled in a program that makes spatial inferences
on the basis of verbal descriptions (see Johnson-Laird 1983a). The program
requires seven general procedures:

1. A procedure that begins the construction of a new mental model whenever
an assertion makes no reference, either explicitly or implicitly, to any
entity in the current model of the discourse.

2. A procedure which, if at least one entity referred to in the assertion is
represented in a current model, adds the other entities, properties, or
relations, to the model in an appropriate way.

3. A procedure that integrates two or more hitherto separate models if an
assertion interrelates entities in them.

4. A procedure which, if all the entities referred to in an assertion are
represented in a current model, verifies whether the asserted properties or
relations hold in the model.

The verification procedure may be unable to establish the truth value of
an assertion for a current model: there may be no information in the model
about the relevant property or relation. A model of John standing next to
June, for instance, does not yield a truth value for ‘John is taller than June’.
In such cases, there is:

5. A procedure that adds the property or relation (ascribed in the relation)
to the model in the appropriate way. (This procedure is not implemented
in the program.)

Since only a single model is constructed for a discourse with referents in
common, the procedures that construct the model will inevitably be forced
to make arbitrary assumptions since ordinary assertions are almost always
consistent with more than one state of affairs. Such a decision may be wrong
in that it leads to a conflict with subsequent information in the discourse.
Superficial conflicts will be revealed by the verification procedure. Two recur-
sive procedures are needed, however, in order to cope with the simulation of
the non-deterministic device that always constructs the right model. These
procedures are able to detect genuine inconsistencies between the model and
a new assertion:

6. If an assertion is found to be true of the current model (by the verification
procedure), then there is a procedure that checks whether the model can
be modified in a way that is consistent with the previous discourse but
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that renders the current assertion false. Where no such modification is
possible without doing violence to the previous discourse, the current
assertion adds no new semantic content: it is a valid deduction from the
previous assertions.

7. If an assertion is found to be false of the current model (by the verification
procedure), then there is a procedure that checks whether the model can
be modified in a way that is consistent with the previous discourse but
that renders the current assertion true. When no such modification is
possible without doing violence to the previous discourse, the current
assertion is inconsistent with the previous discourse. If such a modification
is possible, however, then the inconsistency is thereby resolved.

The first of these procedures embodies the fundamental semantic principle
of validity: an inference is valid if and only if there is no model of the premises
in which the conclusion is false. The second of these procedures embodies
what might be termed the fundamental semantic principle of non-monotonic
inference: any arbitrary assumption consistent with the premises can always
be made in building a model, since it can always be revised if it is inconsistent
with subsequent discourse.

The reason that these two procedures must be recursive can be illustrated
by considering the operation of the program for spatial inferences. If the
program is given the radically indeterminate description:

Z is on the right of ¥
X is on the left of Z

it constructs the following spatial model:
X Y Z

If it is subsequently told:
X is on the right of Y

then the verification procedure (4) initially returns the value false. This value
elicts the procedure (7) for determining whether there is any way in which
the model could be rearranged so as to render the assertion true. Obviously,
what the procedure must do is to check whether, if it switches round the
positions of X and Y, the result is still compatible with the earlier discourse.
In fact, there is no hindrance to the switch’s taking place. But, suppose instead
that the previous discourse had also contained an assertion to the effect that
W is in front of X, and that the model therefore was of the form:

X Y Z
w
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In this case, before X can be switched with Y, it is necessary to check whether
the position of W can be similarly shifted. There is nothing in the discourse
to prevent such a switch and the program will construct the revised model:

Y X Z
w

Let us consider one further example, however, in which other, earlier,
assertions have established that V'is in front of ¥, and that ¥V is on the right
of W, yielding the model:

X Y Z
w v

At this point, the program is told as before that X is on the right of Y. It
must now first attempt to switch X and Y, but it discovers that W is in front
of X and that V is in front of Y. Hence, it must check the earlier discourse
to determine whether W and ¥ can be switched round; in fact, the switch is
impossible because of the assertion that V' is on the right of W. Only at this
point is it plain that X and Y cannot be switched, and thus the program
announces that the new assertion is inconsistent with the previous description.

There is no limit to the number of dependents of items in a model that
might have to be followed up in order to determine whether the model can
be reorganized. That is why the process has to be handled by a procedure
that can call itself recursively.

The reader may by now be beginning to wonder what all this discussion
of mental models and discourse has to do with the problem in hand: the
maintenance of consistency in a knowledge base. The answer in a nutshell is
that a knowledge base can be treated as a set of models of discourse. The
machinery that has been described can be used mutatis mutandis to maintain
consistency.

Conclusions

The use of models in a knowledge base depends, of course, on formulating
truth-conditions for the relevant linguistic descriptions that will at the very
least relate them appropriately to the models. The technique of searching for
inconsistencies by relating a new rule to what is in the knowledge base stands
or falls by the existence of such a semantics. It is a simple matter to formulate
the appropriate truth-conditions for spatial expressions; it is much harder to
formulate them for such terms as ‘allergic’, ‘cystitis’, etc. This problem
certainly calls for expert knowledge, but it is an epistemological problem that
confronts any theorist wishing to develop an adequate semantic theory and
is in no way peculiar to the present approach. However, it is important to
distinguish two levels of a model-based semantic system: the first level relates



Human experts and expert systems 45

expressions to internal models, and the second level relates internal models
to the world. The use of models as a means to consistency depends only on
formulating a semantics at the first level. The general strategy that is employed
nevertheless has the advantage of solving the problems that confront systems
based on formal rules of inference.

First, if the models in a data base are finite and the recursive processes for
revising them are restricted to finite possibilities, then the system will con-
stitute an effective decision procedure for the consistency of any assertion
with the set of assertions embodied in the models. The domains of most
existing expert systems appear to be appropriately modelled in such a finite
way; that is, unlike a mathematical calculus, one can always posit a maximum
number of individuals of any sort without doing violence to the rules. Hence,
for such domains, it is possible to obviate the lack of a general decision
procedure for the first-order predicate calculus.

Second, the tactic of making an assumption that can then be revised in
the light of subsequent information is indeed what is needed in order to
accommodate the non-monotonic aspects of ordinary reasoning. Conditional
rules can thus be treated as having the following force:

If p is the case and there is-nothing to the contrary, then ¢ is the
case

Third, once the truth-conditions for such quantifiers as ‘more than half’
have been formulated (in relation to models), there is no need to specify
formal rules of inference since the recursive procedures work without them.

The use of models in a knowledge base is not a new idea (cf. DENDRAL),
but what perhaps has not been appreciated is how they open up the way to
more effective procedures for maintaining consistency. They also offer a
potential means to improve other aspects of expert systems. A model can
form the basis for different uses of expertise. Just as a human expert may
depend on models for carrying out a variety of tasks, so too models in a
computer system are likely to provide a more flexible representation of
knowledge than explicit conditional rules. Moreover, if the models are iso-
morphic to the state of affairs they represent, then a major step has been
taken towards the development of a semantics that relates a program’s
representations to the world.
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