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A theory of deductive reasoning is presented fora major class of inferences that has not been investi-
gated by psychologists: inferences that depend on multiply-quantified premises (e.g., "None of the
Princeton letters is in the same place as any of the Dublin letters"). It is argued that reasoneis con-

struct mental models based on their knowledge of the meanings of quantifiers (and other terms,
including relational expressions). Three experiments corroborate the model theory's prediction that
inferences that require the construction of only 1 model will be easier than those that require more
than 1 model. The model theory assumes that the logical properties of quantifiers emerge from their
meanings and are not mentally represented in rules of inference. How such a semantic process can
occur compositionally (i.e., guided by the syntactic analysis of sentences) is described.

Deductive reasoning is a process of thought that yields new

information from old and aims to establish valid conclusions,

that is, conclusions that are necessarily true given the truth of

the initial premises or observations. The study of its underlying

mental mechanisms is almost as old as experimental psychol-

ogy, but remains a matter of controversy. There are three main

views that have been proposed in both cognitive psychology and

artificial intelligence. First, the reasoning mechanism depends

on formal rules of inference; second, it depends on content-spe-

cific rules of inference; and, third, it depends on semantic pro-

cedures that search for interpretations (or models) of the prem-

ises that are counterexamples to conclusions. The principal

goal of this article is to establish a theory of deductive reasoning

for a major class of inferences that has not been investigated

before by psychologists: those that depend on multiply-quanti-

fied premises. There are theories of relational reasoning and of

syllogistic reasoning (i.e., from singly quantified premises), but

multiple quantification is more powerful, and its logical analysis

calls for the full resources of that branch of logic known as the

first-order predicate calculus. In this article we develop a theory

based on the manipulation of models and report experimental

evidence that confirms this theory.

An example of a multiply-quantified assertion is as follows:

None of the artists is taller than any of the beekeepers. Such

assertions contain a relational expression—here, a two-place

relation, "taller than"; its arguments are quantified by such ex-

pressions as "all," "some," "none," and "any." These quantifiers

behave in ways that are similar to the quantifiers of the first-

order predicate calculus, but there are other "nonstandard"
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quantifiers, such as "most" and "few," that do not. Our concern

here is solely with standard quantifiers, and we begin by consid-

ering them in the light of the three major classes of psychologi-

cal theories of reasoning.

Three Theories of Reasoning

Formal Rules of Inference

For many years, it was taken for granted that the human infer-

ential mechanism is based on formal rules of inference (see,

e.g., Braine, 1978; Inhelder & Piaget, 1958; Osherson, 1975;

Rips, 1983; Wason& Johnson-Laird, 1972). According to these

theories, the first step in reasoning is to make manifest the logi-

cal form of the premises by representing them in an internal

language that reveals this syntactic structure. Next, formal rules

of inference are used (by definition, in a purely syntactic way)

to derive conclusions. The theories have usually adopted the

philosophy of so-called natural deduction, in which each con-

nective has its own associated rules of inference (see, e.g.,

Braine, 1978; Johnson-Laird, 1975; Osherson, 1975; Rips,

1983). For example, the rule of modus ponens governs implica-

tions of the form, if p then q, which can be symbolized as p -»

q. Hence, given assertions of the form

•q,

the rule permits the derivation of the conclusion: q.

Kflerent formal theories vary in the details of the language in

which they express logical form and in their rules of inference.

Braine and Rumain (1983, p. 296) observed of quantified infer-

ences of the following sort:

All psychologists are either clinicians or experimenters

Therefore, all psychologists who are not clinicians are

experimenters

that the conclusion seems immediate. They wrote, "Adults we
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have asked say that the conclusion Mows directly. This behav-

iour suggests that they have an inference schema that takes them

from premise to conclusion in a single step." They, accordingly,

proposed that mental logic contains a rule of the following

form:

a's are either F or G.

Therefore, a's that are not F are G.

Three stages of inference that are separated by logicians are

thereby collapsed into one: the elimination of quantifiers, de-

duction based on connectives, and the restoration of appropri-

ate quantifiers.

We accept that in simple inferences the use of separate rules

to eliminate and to restore quantifiers seems highly implausi-

ble. But, there is a cost to be paid for doing away with these rules

and building their effects into the rules for connectives. The re-

sulting system is not complete; that is, there are valid inferences

that cannot be derived within it, including those multiply-quan-

tified deductions that are the topic of this article. There is, in

fact, no existing psychological theory based on formal rules that

is sufficiently powerful to accommodate them.

Formal theories have been successful in predicting some em-

pirical observations. Osherson (1975) discovered that the num-

ber of steps in a derivation correlates with subjects' perfor-

mance in judging the validity of propositional inferences. Sim-

ilarly, the number of steps required for propositional inferences

according to Braine, Reiser, and Rumain's (1984) theory pre-

dicts the latencies and rated difficulty of subjects' evaluations

of conclusions. Rips (1983) has developed a computer simula-

tion that also models a number of empirical phenomena in the

protocols of subjects who think aloud while proving proposi-

tional inferences. Despite these successes, formal theories run

into several problems.

One problem is that the content of premises can have striking

effects on the conclusions that subjects draw from them (e.g.,

Byrne, 1989; Byrne & Johnson-Laird, 1989; Griggs & Cox,

1982; for reviews, see Evans, 1982; Wason & Johnson-Laird,

1972). Yet formal rules by definition are supposed to apply re-

gardless of content. Theorists argue that these effects arise dur-

ing the stage of understanding the premises and retrieving their

logical form. An alternative hypothesis is that there are content-

specific rules of inference.

Content-Specific Rules of Inference

The idea of content-specific rules of inference was first pro-

posed in artificial intelligence (Hewitt, 1971) and is related to

the development of production systems (Anderson, 1983; New-

ell, 1973). Variations on it have been explored by psychologists

seeking to account for the effects of content (Johnson-Laird &

Wason, 1977, p. 353). Cheng and Holyoak (1985) have also ar-

gued that people are guided by pragmatic reasoning schemas,

that is, general rules that apply to particular classes of goals. An

example is the permission schema: If action A is to be taken,

then precondition B must be satisfied; if precondition B is not

satisfied, then action A must not be taken.

A content-specific rule of inference—couched, for instance,

in a production system—expresses a general assertion, such as

that all psychologists are experimenters, in the form of a proce-

dure:

Condition: (Psychologist x)

Action: (Experimenter x),

so that whenever its antecedent condition is matched by an as-

sertion about a specific individual, for example,

(Psychologist Alicia),

the action is automatically triggered and makes the further as-

sertion,

(Experimenter Alicia).

This variable-binding mechanism is thus similar to Braine and

Rumain's (1983) collapsing of rules for quantifiers and connec-

tives into a single step.

General assertions, such as "All psychologists are experi-

menters," can also be expressed in a different procedure that

works in a backward chain from the goal of establishing that

someone is an experimenter to the subgoal of establishing that

the same individual is a psychologist. In other words, whenever

the subgoal is satisfied, the main goal is also satisfied.

Formal and content-specific rules both run into a dilemma.

On the one hand, people can make some deductions that de-

pend solely on the properties of quantifiers and connectives; and

so content-specific rules alone cannot account for all reasoning.

On the other hand, people are sometimes affected by content,

and so a uniform procedure for extracting formal structure and

applying formal rules to it cannot account for all reasoning,

either. Both theories can, of course, be adapted so as to avoid

the dilemma. Another way out is provided by the third, and

radically different, class of theories, in which inference depends

not on matching sentences to rules of inference but on proce-

dures that operate on the semantic interpretations of premises.

Reasoning by Model

Logicians long ago recognized that in addition to a purely

formal system of inference—the proof-theoretic methods that

exploit essentially syntactic procedures—it is also possible to

formulate a semantic system based on providing a model-theo-

retic interpretation of the formal language. A proof-theoretic

system defines formal derivations of proofs; a model-theoretic

system defines valid inferences (i.e., those in which the conclu-

sion is true in any interpretation, or model, of the premises). A

major part of metalogic is devoted to proving certain relations

between the formal and the semantic systems. A formal calcu-

lus is thus said to be "complete" if any theorem that is valid in

the semantics is derivable within the calculus. A major discov-

ery in 20th-century logic is that there are incomplete logics. For

example, there is no consistent way to formalize the second-

order predicate calculus (in which quantified variables can take

sets as their values) that is guaranteed to enable all valid conclu-

sions to be derived. Formal systems are therefore not trivial

variants of the semantics of logical systems (see, e.g., Jeffrey,

1981).
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There are various psychological theories of reasoning based

on the notion of constructing and manipulating models of asser-

tions. Some theorists have argued that inferences based on sin-

gly-quantified premises, such as "All psychologists are experi-

menters," are interpreted in the form of Euler circles (Erickson,

1974) or by equivalent strings of symbols (Guyote & Sternberg,

1981). Others have explored systems based on Venn diagrams

or equivalent strings of symbols (Newell, 1981). However, the

standard systems of Euler circles and Venn diagrams apply only

to singly-quantified assertions and have no way of representing,

for example, "Some of the psychologists are taller than some of

the linguists" (see, e.g., Gardner, 1958). Hence, we need another

sort of theory that assumes that mental models have the same

structure as the situations that they represent (Johnson-Laird,

1983). In this theory, a finite set of individuals is represented,

not by a circle enscribed in Euclidean space, but by a finite set

of mental tokens. These tokens may occur in the form of a vi-

sual image, or they may not be directly accessible to conscious-

ness. What matters is not the subjective experience—most peo-

ple claim to be unaware of how they reason—but the structure

of the hypothesized models.

Theories based on these models have been successful in ac-

counting for the patterns of performance that occur in reason-

ing from singly-quantified premises, such as syllogisms (see

Byrne & Johnson-Laird, in press-b; Johnson-Laird & Bara,

1984a), in reasoning about two-dimensional spatial relations (see

Byrne & Johnson-Laird, in press-c), and in reasoning proposition-

ally (see Johnson-Laird, Byrne, & Schaeken, 1989). The number

of models constructed for any particular premises depends on the

precise details of the reasoning algorithm. Johnson-Laird and Bara

(1984a) described two computer programs that construct differing

numbers of models for syllogistic reasoning: One program never

constructs more than two models for any syllogism; the other pro-

gram constructs three models for certain cases. Perhaps because

people differ in the procedures they use, it has so far proved impos-

sible to decide between the two accounts. What is common to

them both, however, is the set of syllogisms that require only one

model. Hence, the crux of the theory is whether it is necessary to

construct one model or more than one model in order to draw a

valid conclusion. Problems requiring only one model offer no

choice to the reasoner, but where there is a choice, the problem

will be more difficult because ordinary reasoners evidently have

no simple deterministic procedure for searching for counterexam-

ples. We now propose to extend this theory to inferences based

on multiply-quantified assertions, but we need first to outline the

requisite formal logic.

The Logic of Multiply-Quantified Assertions

An assertion such as

Some artists are not in the same place as all beekeepers,

contains two quantified arguments of a two-place relation.

There are 12 logically distinct ways of quantifying a two-place

relation:

1. (VA)(VBXARB)

2. (EA)(VB)(ARB)

3. (EB)(VAXARB)

4. (VBXEAXARB)

5. (VA)(EB)(ARB)

6. (EA)(EB)(ARB)

and their respective negations. There are many ways of express-

ing each of the resulting propositions in natural language. Sen-

tences with quite different superficial forms can express the

same underlying proposition. Thus, each of the following sen-

tences has an interpretation in common:

Some artists are not in the same place as all beekeepers.

Not all artists are in the same place as all beekeepers.

Some artists are not in the same place as some beekeepers.

The predicate calculus captures the senses of these sentences

by the following logically equivalent expressions in which "—"

symbolizes negation; "E" symbolizes the existential quantifer

"at least some"; "V" symbolizes the universal quantifier "any";

and, for simplicity, the apparatus of restricting quantification

to particular sets has been taken for granted:

(E artist) — (V beekeeper) (In-same-place artist beekeeper)

— (V artistXV beekeeper) (In-same-place artist beekeeper)

(E art 1st)(E beekeeper) — (In-same-place artist beekeeper).

In the predicate calculus, unlike natural language, the univer-

sal quantifier makes no claim about the existence of members

in the corresponding set, whereas "all" often carries such an

implication (see Boolos, 1984; Johnson-Laird & Bara, 1984b).

Likewise, in natural language, unlike the predicate calculus,

there are ambiguities in scope. An assertion such as

Every artist is in the same place as some beekeeper,

has two distinct interpretations:

(V artistXE beekeeper)(In-same-place artist beekeeper),

which means that every artist is in the same place as some bee-

keeper or other, and

(E beekeeper)(V artist)(In-same-place artist beekeeper),

which means that there is at least some beekeeper who is in the

same place as every artist. The predicate calculus distinguishes

between these two interpretations in terms of two different for-

mulas. Scope ambiguities, however, are not invariable in natu-

ral language. Thus, the assertion

No artist is in the same place as some beekeepers,

strongly suggests the interpretation in which "some" has the

larger scope; that is, there are some beekeepers for whom no

artist is in the same place:

(E beekeeper) — (E artistXIn-same-pIace artist beekeeper).

Linguistic theories of the interpretation of quantified sen-

tences have generally operated in ways that are similar to the

predicate calculus, although they differ in the theoretical para-
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digm within which they are framed (see Harman, 1972; John-

son-Laird, 1970; Keenan, 1971; Lakoff, 1972; May, 1985;

Partee, 1975). Thus, for example, Hornstein (1984) captured

differences in scope by postulating distinct underlying logical

forms, which are transformationally derived from the surface

syntax of sentences, whereas Cooper (1983) handled them

within the semantic component of an analysis based on Mon-

tague grammar.

Relations differ quite widely in their logical properties, and

logicians distinguish between several major families of them.

We are concerned here with just two of their logical properties.

First, a relation is transitive if it yields a transitive conclusion;

for example,

If x is in the same place as y,

and y is in the same place as z,

then x is in the same place as z.

Second, a relation is symmetric if it yields a symmetric conclu-

sion, for example,

If x is in the same place as y,

then y is in the same place as x.

There are other logical properties, and, as the examples should

make clear, one can ask what is the status of any relation with

respect to any property. Thus, the relation "in the same place

as" is transitive and symmetric. Whatever logical properties of

a relation are needed to derive a conclusion in the predicate

calculus, they must be stated as separate assumptions (or

"meaning postulates") along with the premises.

There are various ways in which to formalize the predicate

calculus. The usual strategy for proofs depends on a three-stage

process:

1. The quantifiers in the premises are eliminated by special

rules (rules of instantiation).

2. Reasoning then occurs on the basis of prepositional con-

nectives, such as disjunction and conjunction, and accord-

ingly uses only prepositional rules.

3. Quantifiers are restored to the resulting conclusion, using

special rules to reintroduce them (rules of generalization).

Because the calculus recognizes two quantifiers, the universal

quantifier "any" and the existential quantifier "some," each has

its own rules of instantiation and generalization. The rule for

instantiating an existential quantifier is straightforward. Given

an existential assertion, such as

(ExXPhilosopher x) & (Psychologist x),

the rule says, in effect, because the premise applies to at least

someone in the domain of discourse, then at any point in a

proof, a hypothetical individual can be introduced as the value

of the variable, provided that the same individual has not been

instantiated earlier:

(Philosopher Dan) & (Psychologist Dan).

The premise applies to some hypothetical individual—here, as-

sumed to be Dan. Hence, this hypothetical individual is ulti-

mately going to have to be replaced by an existential quantifier.

Given a universally quantified implication, "If anyone is a psy-

chologist, then he or she is an experimenter":

(VxXPsychologist x) -»•(Experimenter x),

the rule of universal instantiation says, in effect, because the

premise applies to everyone in the domain of discourse, then at

any point in a proof anyone can be freely introduced as the

value of the variable, for example,

(Psychologist Dan) -»• (Experimenter Dan).

Once the quantifiers have been eliminated from expressions,

the second stage, which concerns only the connectives, can take

place. The third and final stage reintroduces quantifiers. Where

an individual is an instantiation of an existential quantifier, then

this quantifier must be restored; otherwise, a universal quanti-

fier can be restored.

Table 1 shows a summary of a formal derivation of the follow-

ing valid inference:

None of the Princeton letters are in the same place as any

of the Cambridge letters.

All of the Cambridge letters are in the same place as all

of the Dublin letters.

Therefore, None of the Princeton letters are in the same place

as any of the Dublin letters.

In order to derive the conclusion, it is necessary to state explic-

itly (in meaning postulates) that the relation "in the same place

as" is transitive and symmetric. Stage 1 eliminates the quanti-

fiers, Stage 2 uses the rules of inference governing prepositional

connectives, and Stage 3 reintroduces quantifiers. Because the

hypothetical individuals were originally introduced by univer-

sal instantiation, the rule of universal generalization can be used

to restore universal quantifiers.

The premises of the following inference differ only in one of

the quantifiers in the second premise,

None of the Princeton letters are in the same place as any

of the Cambridge letters.

All the Cambridge letters are in the same place as some

of the Dublin letters.

Therefore, None of the Princeton letters are in the same place

as some of the Dublin letters.

or, equivalently,

Some of the Dublin letters are not in the same place

as any of the Princeton letters.

The formal derivation of the inference is almost identical to the

one in Table 1: It uses exactly the same prepositional rules in

Stage 2, and the derivation as a whole is exactly the same length.

The only difference is that the instantiation of the existentially

quantified variable must include a tag to ensure that the final

process of generalization restores an existential quantifier.

Although there are psychological theories of reasoning based

on formal rules of inference, these theories are primarily con-

cerned with prepositional reasoning (see Braine, 1978; Braine,
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Table 1
A Formal Derivation in the Predicate Calculus

The premises can be symbolized as

1. (VP)(VC)-(PSC) [None of the P are in the same place as any of the C]
2. (VQ(VDXCSD) [All of the C are in the same place as all of the D]
3. (VXXVYXVZXXSY & YSZ -» XSZ) [Transitivity of'in the same place as']
4. (VXXVY)(XSY -> YSX) [Symmetry of'in the same place as')

Stage 1: Instantiation of quantifiers

5. (VC)—(pSC) [universal instantiation of Pin premise 1]
6. -^(pSc) [universal instantiation of C in 5]
7. (VDXcSD) [universal instantiation of C in premise 2]
8. (cSd) [universal instantiation of D in 7]
9,10,11. (pSd & dSc) -» pSc [universal instantiation of X,Y, and Z in 3]

12,13. (cSd)->(dSc) [universal instantiation of X and Y in 4]

Stage 2: Prepositional reasoning

14. -(pSd&dSc) [modustollensfrom lines6and 11]
15. —(pSd) or —(dSc) [equivalent to 14 by de Morgan's law]
16. (dSc) [modusponensfrom8andl3]
17. ~(pSd) [disjunctive rule from 15 and 16]

Stage 3: Reintroduction of quantifiers

18. (VDMpSD) [Universalgeneralizationofdinl7]
19. (VPXVDMPSD) [Universal generalization of pin 18]
The conclusion corresponds to:

None of the P are in the same place as any of the D.

Note. V = universal quantifier "all"; — = symbol for negation; S = the relation "in the same place as." Far
simplicity, we have adopted the apparatus of restricting quantified variables to particular sets: P = Princeton
letters, C = Cambridge letters, and D = Dublin letters.

Reiser, & Rumain, 1984; Osherson, 1975; Rips, 1983). Unfor- mental tokens and (b) properties of individuals and relations
tunately, as we mentioned earlier, there is no such theory that between them by corresponding mental tokens. For example,
is powerful enough for multiply-quantified inferences. We will the premise
consider the possibility of constructing such a theory later; but . . .
now we turn to a theory based on mental models. None of the Princeton letters is in the same place as any

of the Cambndge letters.

A Theory of Multiply-Quantified Reasoning Based on has the following sort of model,

Mental Models . . .
I P P P I c c c I

According to the model theory, a valid inference depends on . -. , _ , , _ , • . • _ • _ ,
three stages of thought. First, the premises are understood, that '*"* represents three Princeton letters and three Cambridge
is, interpretative procedures construct a mental model repre- letters-the numbers of letters are arbitrarily selected. The rela-

senting their content. This process depends on the meaning of tlon m th^.same Place * 1S here represented by mental tokens
the premises and on general knowledge. Second, if possible, a corresponding to spattal locations; thus, the model represents

conclusion is formulated that asserts something that is not ex- entltles in Places> fd the vertlcal barners "W* boundaries
plicitly stated in any single premise. Third, to test the validity <'•*••the *"**«* le«ers a« ** m the same place as the Cam-
of the conclusion, a search is made for alternative models of the brld8e letters>'The '"formation » a second premise

premises that refute the conclusion. If there is no such alterna- All of the Cambridge letters are in the same place as all
tive model, the conclusion is valid. If there is such an alternative of the Dublin letters,
model, then the reasoner should return to the second stage to
try to determine whether there is any conclusion true in all of can be added to the model to yield the following,

the models so far constructed. If it is uncertain that there is such I p D c l c c c d d d l
an alternative model, then the reasoner can draw the conclusion
in a tentative or probabilistic way. The second stage of reasoning is to formulate a putative con-

The first stage of reasoning, accordingly, is the construction elusion that conveys something that is not explicit in any prem-
of a model of the premises. The theory postulates that mental ise. A procedure that scans the model for such a relation will
models represent (a) finite sets of individuals by finite sets of yield the conclusion



REASONING BY MODEL 663

None of the Princeton letters is in the same place as any
of the Dublin letters.

The third stage calls for a search for alternative models that
refute the putative conclusion. The fundamental distinction in
the theory is between those premises that require only one
model to be constructed and those that require more than one
model. In our current example, there is no alternative model
and so the conclusion is valid.

We will now consider an inference that does depend on the
construction of multiple models. Consider the premises

None of the Princeton letters is in the same place as any
of the Cambridge letters.

All of the Cambridge letters are in the same place as some
of the Dublin letters.

The first premise yields the same sort of model as before,

| ppp |ccc|

When the information from the second premise comes to be
added to this model, then, unlike the previous example, there
is a choice between more than one possible model. One of these
models is

| p p p | c c c d d | o d |

in which the "o" in front of the rightmost "d" indicates that
this item is optional (i.e., it may or may not be present in the
situation represented by the model). This model supports the
same conclusion as before:

None of the Princeton letters is in the same place as any
of the Dublin letters.

Another possible model, however, is

I pp I c c c d d | pod |

which falsifies the previous conclusion. Taken together, the two
models support the conclusion:

Some of the Princeton letters are not in the same place
as any of the Dublin letters.

But, again, this conclusion can be refuted by a further model,

I pppod | cccdd |

These three models exhaust the set of possibilities, ignoring as
irrelevant, of course, the precise numbers of tokens. Hence, the
only valid conclusion, which holds over all of the models, is

None of the Princeton letters is in the same place as some
of the Dublin letters,

or, equivalently:

Some of the Dublin letters are not in the same place as
any of the Princeton letters.

There are, of course, weaker conclusions that also follow, such
as

Some of the Dublin letters are not in the same place as
some of the Princeton letters.

or in one of its senses,

None of the Princeton letters is in the same place as all
of the Dublin letters.

There are no further models of the premises that refute these
conclusions.

In short, the first example offered no choice about how to
combine the two premises, but the present case offers such a
choice and so it has more than one model. Choice, here, con-
cerns not trivial variations in the particular number of tokens
representing a set, but only those matters that directly affect
what valid conclusions can be drawn from the premises, that is,
the place into which a letter is put. The theory, accordingly, as-
signs any set of premises to one of three categories: (a) those
that yield one model and, therefore, validly support a novel con-
clusion; (b) those that yield more than one model but validly
support a novel conclusion because it holds across all of the
models; and (c) those that yield more than one model and do
not validly support a novel conclusion because none holds
across all of the models. An informal procedure for discovering
the status of a problem is to construct a model of the first prem-
ise and then to determine whether there is any choice in adding
the information from the next premise to the model. If not, then
the premises support one model and have a valid conclusion. If
there is a choice, then it is necessary to determine whether the
resulting set of models supports a conclusion that interrelates
the end terms and that holds across all of the models.

With multiple-model syllogisms, it is clear that people are not
equipped with a simple deterministic algorithm for searching
for alternative models; they produce a wide variety of responses
to the same problem and are not particularly consistent from
one presentation of it to the next (see Johnson-Laird & Bara,
1984a). A similar lack of a deterministic search procedure for
problem solving has been reported by Newell and Simon (1972,
chap. 1). Hence, granted that working memory has a limited
processing capacity, the present theory predicts that people
should perform more accurately with one-model problems
than with multiple-model problems with valid conclusions. It
also predicts that they should perform more accurately with
one-model problems than with multiple-model problems with
no valid conclusions, although here the comparison is con-
founded by the qualitatively distinct responses to the two sorts
of problems. (If people are biased toward responding that there
is no valid conclusion, then they may perform quite well on
such problems for spurious reasons.) The aim of Experiment 1
was to determine whether these predictions were correct.

Experiment 1

Because there had been no previous study of multiply-quanti-
fied inferences, we needed to find out whether ordinary individ-
uals were able to reach a reasonable proportion of correct con-
clusions for a sample of problems. There is a large number of
doubly-quantified inferences. Each premise can express 1 of 12
underlying propositions, and there are also often many ways, as
we have seen, to express one of these propositions. The order of
the terms in the two premises can be in one of four so-called
figures.
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Table!
Nine One-Model or Multiple-Model Problems

Used in Experiment 1

One-model problems

1. All of the X are in the same place as all of the Y
All of the Y are in the same place as all of the Z
(Therefore, All of the X are in the same place as all of the Z.)

2. All of the X are in the same place as some of the Y
All of the Y are in the same place as all of the Z
(Therefore, All of the X are in the same place as all of the Z.)

3. All of the X are in the same place as all of the Y
Some of the Y are in the same place as all of the Z
(Therefore, All of the X are in the same place as all of the Z.)

Multiple-model problems with no valid conclusion

4. None of the X are in the same place as any of the Y
None of the Y are in the same place as any of the Z
(No valid conclusion interrelating X and Z.)

5. None of the X are in the same place as some of the Y
None of the Y are in the same place as any of the Z
(No valid conclusion interrelating X and Z.)

6. None of the X are in the same place as any of the Y
Some of the Y are in the same place as none of the Z
(No valid conclusion interrelating X and Z.)

Multiple-model problems with valid conclusions

7. None of the X are in the same place as any of the Y
All of the Y are in the same place as some of the Z
(Therefore, None of the X are in the same place as some of the Z.)

8. None of the X are in the same place as some of the Y
All of the Y are in the same place as some of the Z
(Therefore, None of the X are in the same place as some of the Z.)

9. None of the X are in the same place as any of the Y
Some of the Y are in the same place as some of the Z
(Therefore, None of the X are in the same place as some of the Z.)

Note. The conclusions (in parentheses) were not presented to the sub-
jects.

Figure 1 Figure 2 Figure 3 Figure 4

A-B

B-C

B-A

C-B

A-B

C-B

B-A

B-C

Where a relation is symmetric, however, the difference between

one order and another affects the logic of the problem only if

the scope of the quantifiers changes.

It was clearly impossible to test subjects with the full set of

problems, and so in Experiment 1, we used six one-model prob-

lems, six multiple-model problems with valid conclusions, and

six multiple-model problems with no valid conclusions. The

main aim of the experiment was to determine whether there was

any difference between the one-model and the multiple-model

problems with valid conclusions. If not, then we could immedi-

ately reject the model-based theory.

Our set of inferences was also chosen to answer a subsidiary

question. There is always one set of individuals that is referred

to in both premises—the so-called middle term—and in some

of the inferences one reference to it concerned the whole set

(e.g., "all of the Cambridge letters"), whereas the other refer-

ence did not (e.g., "some of the Cambridge letters"). Such an

apparent clash of quantifiers should cause reasoners some

difficulty in building a single model unless they treat "some" as

signifying "at least some and possibly all." Hence, the model-

based theory predicts that subjects would find such inferences

slightly harder than those in which there was no clash of quanti-

fiers.

Method

The experiment was carried out in Bologna, Italy, and the relation
that was used in all of the problems was, "nello stesso posto," which is
Italian for "in the same place as." This relation was chosen because it
has the required logical properties (of transitivity and symmetry) to en-

able us to construct three one-model problems, three multiple-model
problems with valid conclusions, and three multiple-model problems
with no valid conclusions. These nine problems, which are shown in

Table 2, are all in the first figural arrangement. We constructed a further
nine problems by presenting the premises of these problems in the op-

posite order (i.e., in the second figural arrangement). The content of the
terms consisted in the names of hobbies and occupations selected so
that there was no obvious a priori relation among them. The triples of

nouns were assigned to the 18 problems at random, in two different
ways: One half of the subjects received one set of materials, and the
other half of the subjects received the other set of materials. Each subject
carried out the problems in a different random order.

The subjects were tested individually, and they were told to state what,

if anything, followed from the premises. Each problem was printed on
a separate piece of paper. The subjects had to read the problem aloud
and then, working at their own pace, state their answer aloud. The exper-
imenter recorded the answer. Subjects were told that in some cases there
might not be sufficient information to draw a conclusion between the

two end terms; in that case they were to say "no valid conclusion." The
task was explained by way of an example that also served as a practice
trial.

We tested 20 students at the University of Bologna (13 women and 7
men) whose ages ranged from 20 to 25 years. Two of the subjects were
replaced during the course of the experiment because they did not fol-
low the instructions. There are no selection procedures for entry into
Italian universities, and so our subjects there come from a much broader
population than do students in the United States, for example.

Results and Discussion

Table 3 shows the percentages of correct responses for the

three sorts of problem. There were 68% correct solutions to the

one-model problems and 13% correct solutions to the multiple-

model problems with valid conclusions; every subject went in

the predicted direction, except for two ties (p = .518), The

difference between the one-model problems and the multiple-

model problems with no valid conclusions (50% correct) was in

the predicted direction, but was not reliable (Wilcoxon's T =

42.5, n = 16, p > .05). As Table 3 suggests, the first figural ar-

rangement was slightly easier than the second (Wilcoxon's T =

21.5,n= 16,p<.02).

For the one-model problems, those with the same quantifiers

in the middle term yielded 80% correct conclusions, and those

with conflicting quantifiers yielded 63% correct conclusions.

This predicted difference was significant (Wilcoxon's T=9,n =

12, p < .01). Although the trend was in the predicted direction

for the multiple-model problems with valid conclusions, there
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Table3
Percentages of Correct Responses to the Three Sorts

of Problems in Experiment 1

Figure

1
2

One
model

73
63

Multiple
model with

no valid
conclusion

50
50

Multiple
model with

valid conclusion

25
0

Overall

49
38

were too few correct responses overall for the difference to be

significant. The reason for the difference, we believe, is that

when one premise asserts that a set is in the same place as all of

the members of a second set and another premise locates only

some of this second set, there is an initial problem in construing

the two premises. The way to construct a unified model is, in

effect, to overrule the premise containing "some" and to inter-

pret the quantifier as referring to the whole set.

The results corroborate the model theory. One-model prob-

lems were easier than multiple-model problems with valid con-

clusions. Although the one-model problems were not reliably

easier than the multiple-model problems with no valid conclu-

sions, the trend was in the right direction. The failure to obtain

a significant difference might be because of the qualitatively dis-

tinct responses required to the two sorts of problem: in one

case, a conclusion, and in the other case, the response that there

is no valid conclusion. The finding that problems in the first

figural arrangement are slightly easier than those in the second

figural arrangement is entirely analogous to a figural effect for

syllogisms. Figure principally influences the order in which

terms are mentioned in syllogistic conclusions, but it sometimes

has an effect on difficulty (see, e.g., Johnson-Laird & Bara,

1984a, who explain the phenomenon in terms of the order in

which information enters working memory).

One incidental but important observation is that the results

cannot be explained by any simple response-priming effect.

The correct conclusion to the one-model problems always

matches the logical form of one of the premises; for example,

All X are in the same place as All Y.

Some Y are in the same place as All Z.

Therefore, All X are in the same place as All Z.

In at least two cases, however, this condition also applied to

valid multiple-model problems (i.e., the two problems, in the

first and second figural arrangements, based on Item 8 in Table

2):

None of the X are in the same place as some of the Y.

All of the Y are in the same place as some of the Z.

Therefore, None of the X are in the same place as

some of the Z.

The match here between the conclusion and the first premise in

no way facilitated performance. The subjects were correct on

only 13% of trials—identical to their performance on the other

valid multiple-model problems in which there was no such

match.

Although our results appear to confirm the model theory,

there is an alternative possibility to be taken into account. All

of the one-model problems are based on two affirmative prem-

ises, but all of the multiple-model problems are based on one

affirmative and one negative premise. It is well-known that neg-

ative assertions are harder to understand (see, e.g., Clark &

Clark, 1977; Wason, 1959), and so this factor could account for

at least part of the difference between the two sorts of problems.

Experiment 2 examined this alternative explanation.

Experiment 2

The aim of Experiment 2 was twofold. First, we needed to

control for the effects of negative premises, which were pre-

viously confounded with the number of models. Second, we

wanted to extend our findings, if possible, to a variety of differ-

ent relations with the same appropriate logical properties.

Method

The subjects acted as their own controls and were asked to state in
their own words what, if anything, followed from 18 different doubly-
quantified pairs of premises. All of the problems, including those with

no valid conclusion, were based on the combination of one affirmative
premise and one negative premise. Hence, any difference in difficulty
could not be attributed to negation. The problems were either one-

model or multiple-model problems. They derived from three basic pat-
terns of premises, which we state here, together with valid conclusions,
although these were not presented to the subjects.

One-model problem:

None of the A is in the same place as any of the B.

All of the B are in the same place as all of the C.

[Therefore, None of the A is in the same place as any of the C.]

Multiple-model problem with a valid conclusion:

None of the A is in the same place as any of the B.

All of the B are in the same place as some of the C.

[Therefore, None of the A are in the same place as some of the C]

Multiple-model problem with no valid conclusion:

None of the A is in the same place as some of the B.

Some of the B are in the same place as all of the C.

[No valid conclusion interrelating the end terms, A and C.]

Each of these basic patterns is in the first figural arrangement, and a
further three basic patterns were constructed in the second figural ar-
rangement by stating each pair of premises in the opposite order. We
used three different transitive and symmetric relations to make a set of
18 problems out of the six basic patterns: "in the same place as," "equal
in height to," and "related to" in the simple consanguineal sense that

subjects naturally treat as being transitive and symmetric. The nouns
in the premises referred to hobbies and professions selected so as to
obviate any a priori connections.

We devised one set of lexical contents and assigned it twice at random
to the 18 problems; one half of the subjects were tested with one of the
assignments, and the other half of the subjects were tested with the other
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Table 4

Percentages of Correct Responses in Experiment 2 as a

Function of Models and the Nature of the Relation

Relation

Equal in
height to

In the same
place as

Related to

One model

69

58
72

Multiple model
with valid
conclusion

14

17
17

Multiple model
with no valid
conclusion

42

33
44

assignment. Each subject was presented with the inferences in a differ-

ent random order. The procedure was the same as in Experiment 1.
We tested 20 members (17 women and 3 men) of the Applied Psychol-

ogy Unit subject panel, whose ages ranged from 22 to 60 years. These

subjects come from a variety of occupations and are more generally
representative of the population at large than are university students. We
eliminated 2 subjects because they failed to understand the instructions.

Results and Discussion

Table 4 presents the percentages of correct responses to each

of the different sorts of problems. Although the data are binary,

we carried out an analysis of variance on them (see Scheffe,

1960). There was only one significant result: As the model the-

ory predicts, the number of models had a striking effect on the

accuracy of subjects' responses; there were 67% correct conclu-

sions for one-model problems, 16% correct conclusions for

multiple-model problems with valid conclusions, and 40% cor-

rect responses to multiple-model problems with no valid con-

clusions, F(2, 34) = 17.05, p < .0005. Subsequent comparisons

with Newman-Keuls tests revealed that the one-model prob-

lems were reliably easier than both the valid multiple-model

problems, ?(3, 34) = 8.26, p < .001, and the invalid multiple-

model problems, q(2,34) = 4.36, p < .001. Within the multiple-

model problems, the invalid ones were reliably easier than the

valid ones, q(2,34) = 3.91, />< .05. No other factor, or interac-

tion between factors, approached significance. In particular,

there was no effect of the different sorts of relations.

One incidental observation provided a striking corroboration

of the model theory. We observed a tendency for subjects to

draw an odd sort of conclusion. Given the following multiple-

model problem:

None of the tourists are in the same place as any of the artists.

All of the artists are in the same place as some of the doctors,

subjects typically erred by concluding

None of the tourists are in the same place as any of the doctors,

which suggests that they were constructing an initial model of

the form

| t t t | a a a d d I d d I

and were failing to check for alternatives. One subject, however,

drew exactly the opposite conclusion,

Some doctors and tourists are in the same place,

and another concluded

Some tourists and doctors could be in the same place.

The reason for such conclusions, we believe, is that subjects,

perhaps after they have constructed the aforementioned initial

model, realize that the following alternative model is also

possible:

I t t t d d | a a a d d I

Their attention is then caught by the fact that some of the doc-

tors could indeed be in the same place as the tourists—as the

model illustrates—and they overlook the need for a conclusion

to be true in all possible models of the premises. If subjects are

constructing alternative models in this way, then they should

tend to use modal qualifications of their conclusions. In fact, we

observed that 21% of the responses to the valid multiple-model

problems contained a modal auxiUiary such as "could" or

"may." Only 2% of the one-model problems elicited such con-

clusions, and this difference is reliable because not a single sub-

ject went in the opposite direction (p = .58). Of the conclusions

erroneously drawn to the invalid multiple-model problems,

20% were also modal.

Critics sometimes suggest that one-model problems might be

easier because there are more potentially correct, although logi-

cally weaker, conclusions to them than to valid multiple-model

problems. Hence, subjects might do better with one-model

problems merely because they are guessing among the possible

conclusions that relate the two end terms. In fact, the results of

this experiment clearly rebut the argument. The correct conclu-

sions to the one-model problems were without exception of the

sort

None of the A is in the same place as any of the C,

or its logical equivalents. In theory, there could be logically

weaker conclusions, such as "Some of the A are not in the same

place as some of the C." The subjects never drew any such con-

clusions to the one-model problems.

The results of Experiment 2 again confirm the model theory:

There was a marked effect of the number of models on the

difficulty of drawing valid conclusions. Because all of the prob-

lems are based on affirmative and negative premises, there is no

way to account for the results purely in terms of the difficulty of

understanding negative assertions. There is, however, one other

possible alternative explanation. The one-model problems are

based on premises that have no scope ambiguities, whereas the

valid multiple-model problems include an affirmative premise

that is potentially ambiguous in scope (e.g., "All the artists are

related to some of the beekeepers"). In fact, such sentences are

normally interpreted with the scope of the quantifiers following

their surface order and cause no interpretative difficulty (see

Johnson-Laird, 1970). Nevertheless, our final experiment was

designed to examine this alternative explanation.

Experiment 3

We constructed a set of 16 doubly-quantified pairs of prem-

ises: one half of them were in the first figural arrangement, and
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the other half were in the second figural arrangement; likewise,

one half of them contained two affirmative premises, and the

other half contained one affirmative and one negative premise.

Table 5 summarizes the eight problems in the first figural ar-

rangement. Each problem was based on the relation "is related

to." There were 10 one-model problems, 2 multiple-model

problems with valid conclusions, and 4 multiple-model prob-

lems with no valid conclusions. The problems included prem-

ises with scope ambiguities and contained such premises in

both the one-model and multiple-model problems; for exam-

pie,

None of the A are related to any of the B

Some of the B are related to all of the C (one-model)

and

None of the A are related to any of the B

All of the B are related to some of the C (multiple-model).

Method

The subjects acted as their own controls and were asked to state in
their own words what, if anything, followed from 16 different doubly-
quantified pairs of premises. Of the problems 8 were in the first figural

arrangement (see Table 5), and the remaining 8 were constructed from
them by reversing the order of the premises to form problems in the
second figural arrangement. All of the problems were based on the rela-
tion, "is related to." The nouns in the premises referred to hobbies and
professions selected so as to obviate any a priori connections. Of the 8
problems, 4 consisted of two affirmative premises, and 4 consisted of

one affirmative and one negative premise.
We devised one set of lexical contents and assigned it twice at random

to the 16 problems; one half of the subjects were tested with one of the
assignments, and the other half of the subjects were tested with the other

assignment. There were four filler items that were based on a different

relation ("taller than"), and they were presented at random intervals
within the series of test trials.

The procedure was the same as before. We tested 14 members (11

women and 3 men) of the Applied Psychology Unit subject panel, whose
ages ranged from 23 to 68 years. We eliminated 3 subjects—2 because
they had failed to understand the instructions, and 1 because he had

studied logic.

Results and Discussion

Table 6 presents the percentages of correct conclusions for

each of the problems. There were 72% correct solutions to the

one-model problems, and only 23% correct conclusions to the

valid multiple-model problems (Wilcoxon's T= 1, n = 10, p <

.005, one tailed). There were also 23% correct responses to the

invalid multiple-model problems, which were reliably harder

than the one-model problems (Wilcoxon's T= 4, n = 10, p <

.01, one tailed).

It is instructive to compare the pair of one-model problems

based on Item 6 (see Table 6) with the pair of valid multiple-

model problems based on Item 7. The only difference between

the premises of these two pairs of problems is in the order of

the two quantifiers in one premise; both of these premises are,

in principle, ambiguous in scope. Yet, there were 64% correct

Table 5

Eight Problems Used in Experiment 3 and Their Status as

One-Model or Multiple-Model Problems

Affirmative problems

1. All of the X are related to all of the Y
All of the Y are related to all of the Z
(Therefore, All of the X are related to all of the Z.)
One-model problem.

2. All of the X are related to some of the Y
All of the Y are related to all of the Z
(Therefore, All of the X are related to all of the Z.)
One-model problem.

3. All of the X are related to some of the Y
All of the Y are related to some of the Z
(Therefore, All of the X are related to some of the Z.)
One-model problem.

4. AH of the X are related to some of the Y
Some of the Y are related to all of the Z
(No valid conclusion interrelating X and Z.)
Multiple-model problem.

Negative problems

5. None of the X are related to any of the Y
All of the Y are related to all of the Z
(Therefore, None of the X are related to any of the Z.)
One model problem.

6. None of the X are related to any of the Y
Some of the Y are related to all of the Z
(Therefore, None of the X are related to any of the Z.)
One model problem.

7. None of the X are related to any of the Y
All of the Y are related to some of the Z
(Therefore, None of the X are related to some of the Z.)
Multiple-model problem.

8. None of the X are related to some of the Y
Some of the Y are related to all of the Z
(No valid conclusion interrelating X and Z.)
Multiple-model problem.

Note. A farther eight problems were constructed by presenting the
premises in the opposite order, that is, the second figural arrangement
The correct conclusions (in parentheses) were not presented to the sub-
jects.

conclusions to the one-model problems, but only 23% correct

conclusions to the valid multiple-model problems (Wilcoxon's

T = 2, n = 7, p < .025, one tailed). This difference cannot be

attributed to the polarity of the problems (both pairs contain a

negative premise); it cannot be attributed to differences in the

difficulty of coping with one sort of quantifier in comparison to

another (the quantifiers are identical); and it cannot be attrib-

uted to differences in scope ambiguity (both pairs contain one

scope ambiguous premise). The only plausible explanation is

that the easy problems call for just one model to be constructed,

but the difficult problems call for multiple models to be con-

structed.

Experiment 3 once again supported the model-based theory.

The results failed to show that the polarity of premises—

whether they are affirmative or negative—has a reliable effect

on the difficulty of inferences. The subjects made 58% correct

responses to the affirmative problems and 49% correct re-
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Table 6

Percentages of Correct Responses to the

Problems in Experiment 3

Variable Problem

Affirmative

No. of models
Item no.
Figure

First
Second

All-all
All-all

One
1

82
82

All-some
All-all

One
2

82
73

All-some
All-some

One
3

55
64

All-some
Some-all

Multiple"
4

19
9

Negative

No. of models
Item no.
Figure

First
Second

None-any
All-all

One
5

91
64

None-any
Some-all

One
6

55
73

None-any
All-some

Multiple
7

27
19

None-some
Some-all

Multiple "
8

36
27

a No valid conclusion.

sponses to the negative problems; this difference was not statis-

tically significant (Wilcoxon's T = 11.5, « = 9, p > .05).

A Procedure for Constructing Models of Multiply-

Quantified Assertions

Granted that the model-based theory appears to predict per-

formance, we will consider in more detail how the theory actu-

ally works. One of its advantages, unlike a theory based on for-

mal rules, is that it gives an account of comprehension—the

construction of models—and reasoning itself depends merely

on formulating conclusions and searching for counterexamples.

Most of the theoretical work is done once there is an analysis of

the meanings of expressions (i.e., the mapping in either direc-

tion from expressions to models). It is therefore easy to extend

the theory to a new domain: Given the meanings of the expres-

sions in the domain, the same general procedures for construct-

ing and manipulating models apply (Johnson-Laird & Byrne,

1989). Indeed, once such a system has access to the meanings

of quantifiers, relations, and other terms, it can construct

models of premises, formulate conclusions based on them, and

search for counterexamples to such conclusions. Moreover, the

logical properties of these terms, such as the transitivity and

symmetry of a relation, will emerge from the process without

any need to use explicit statements of these properties in the

form of meaning postulates. We demonstrate first how the logi-

cal properties of a relation can emerge from its meaning, and

then how the meanings of quantifiers can be represented so that

the resulting models yield inferences.

In order to understand an assertion, such as

Alicia is in the same place as Bill,

the interpretative system needs to have a grasp of the meaning

of the relation. This meaning will enable it to construct a model

of the situation; for example,

| Alicia Bill |

and to verify that the relation holds within such models. What

is therefore needed is a representation of the contribution that

the relation makes to the truth conditions of an assertion, that

is, how the world (or rather a model of it) would have to be for

the assertion to be true. Thus, the meaning of the relation is a

specification that can enter into the semantic representation of

a sentence. It ensures that when this representation is used to

construct a model, the two arguments of the relation are repre-

sented in a part of the model corresponding to one place.

Plainly, certain notions must be taken for granted in this speci-

fication of truth conditions: These are the primitives of the sys-

tem, which are not normally expressible in the language under

analysis. In writing computer programs based on this idea, one

treats the meaning of the relation as a fragment of code that can

be used (when it has been combined with the code correspond-

ing to the relevant noun phrases) to construct and evaluate

models (see Johnson-Laird, 1983, chap. 11). Thus, the code for

"in the same place as" will lead to the construction of models

like the aforementioned one.

The meaning of a relation is not the same as its logical proper-

ties. The logical properties govern the implications of assertions

containing the relation; for example, "Alicia is in the same

place as Bill" implies that "Bill is in the same place as Alicia."

The meaning, however, governs the truth or falsity of an asser-

tion containing the relation with respect to models of the world.

Moreover, there are many relations that, like "in the same place

as," are transitive and symmetric (e.g., "equal in height to").

Hence, if the interpretative system knows only that a relation

has these logical properties, it will not know which particular

relation is referred to or how to interpret it.

There is a strong moral to be drawn: The logical properties

of a term emerge from its meaning as soon as it is put to use in

constructing and evaluating models (Johnson-Laird, 1983).

The two premises, "Alicia is in the same place as Bill" and "Bill

is in the same place as Chris" yield the model

| Alicia Bill Chris |

from which it follows that Alicia is in the same place as Chris.

No alternative model of the premises refutes this conclusion,

and so it is valid. A transitive inference has therefore emerged

from the meaning of the relation.

The construction of models also depends, of course, on the

meanings of the quantifiers in the premises. They too must con-

tribute to the semantic representation of a sentence that is used

to guide the construction or evaluation of a model. Any theory

of the interpretation of multiply-quantified sentences must al-

low for the occurrence of an indefinite number of quantifiers,

even within the same noun phrase; for example,
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Some of the relatives of every employee of all the
friends of. . .,

and so the interpretation of quantifiers is likely to depend on a
mechanism that operates compositionally (i.e., building up the
interpretation of an expression from the meanings of its constit-
uents and the syntactic relations among them). We assume that
the system works on a rule-by-rule basis in which for each
syntactic rule, there is a structural semantic principle for as-
sembling the semantic representation that will guide the con-
struction of models. A comparable assumption is standard in
grammars based on Montague's work (see Partee, 1975), but
the "possible worlds" semantics of such theories is not intended
to be psychologically realistic because the meaning of each sen-
tence corresponds to an infinite number of possible worlds.

In the lexicon, each word has a lexical entry that specifies its
contribution to the truth conditions of assertions. These mean-
ings are combined by semantic principles that take into account
the syntactic relations between the constituents of sentences,
and the resulting information is used to assemble a program
that constructs a model of the sentence. The program depends
on three principal components: (a) a knowledge of the meaning
of the relation expressed in the sentence, (b) a knowledge of the
meanings of quantifiers, and (c) an ability to use the procedure
for each quantified phrase — essentially a "loop" — in construct-
ing an appropriate overall program.

The meaning of a quantifier is, in essence, the raw material
for a loop that is used in the model-building (or model-evaluat-
ing) program. Thus, the universal quantifier "all" needs a loop
that constructs (or evaluates) values for each item in the set,
whereas the existential quantifier "some" constructs (or evalu-
ates) values for some arbitrary number of the members of the
set. It will be easier to understand these principles by way of
simple examples of the construction of models.

Given the assertion,

Every Avon letter is in the same place as some Bury letter,

the program enters a loop corresponding to the interpretation
of the first noun phrase (which, for convenience, we refer to as
Loop A). On first entering this loop, it chooses an arbitrary size
for the universally quantified set (e.g., three Avon letters). Be-
cause the loop is based on a universal quantifier, it is going to
ensure that each member of the set satisfies the basic relation
expressed by the predicate of the sentence, x is in the same place
as y. Sometimes, as we shall see, there is an existing value for x
or y, which places constraints on the process of selection. Here,
at the start of the process, there is no such constraint, and so
Loop A merely ensures that an Avon letter is put into a particu-
lar place:

The program then enters the loop for the second quantified
phrase (Loop B). Because the loop is based on the quantifier
"some", it will ensure that at least some members of the set
satisfy the basic relation, and so it selects an arbitrarily sized
subset (e.g., two Bury letters) that are going to satisfy the basic
relation. The remaining items in the set will ultimately be repre-

sented as not satisfying the basic relation, but, if one follows
the logical principle that "some" signifies "at least some and
possibly all," they will be represented as optional items. Loop B
selects a member of the subset, y, and puts it into the model in
a way that satisfies the basic relation, which now has a value for
its first variable, a is in the same place as y:

| a b |

The process continues to cycle through Loop B until all of the
members of the subset have been inserted into the model:

| a b b |

Next, the program returns to Loop A to select the next item of
the set to satisfy the basic equation, which has been reset to, x
is in the same place as y:

| a b b | a |

The program reenters Loop B to assign an arbitrarily sized sub-
set (in this case, one Bury letter) to the same place:

| a b b | a b |

The process continues in the same manner until all of the Avon
letters have been inserted into the model. When this task has
been completed, the optional Bury letters that do not satisfy the
basic relation are added to the model. The final result will be
the following sort of model:

I abb |ab | abb | ob |

The interpretation of the negative quantifier, "none," is
equivalent to that of the universal quantifier, except that the re-
lation is reset to be negative. Thus, for example,

None of the Avon letters is in the same place as any
of the Bury letters,

calls for two universal loops (the quantifier "any" can here be
interpreted as a universal) and a negated basic relation, x is not
in the same place as y.

The order of the loops depends on the scope of the quantifiers:
The first loop corresponds to the quantified phrase with the larg-
est scope, the second loop corresponds to the quantified phrase
with the next largest scope, and so on. Thus, consider the inter-
pretation of

Some Bury letters are in the same place as every Avon letter,

in which the scope is taken to correspond to the surface order
of the quantifiers. The program consists in the same two loops
as the first example, but they are in the opposite order. Hence,
the program begins with Loop B and selects an arbitrarily sized
subset of the Bury letters (e.g., two letters). It inserts the first
one into the model,

and enters Loop A. On first entering this loop, it chooses an
arbitrary size for the universally quantified set (e.g., four Avon
letters). The loop iteratively ensures that each of these y's satis-
fies the basic relation, b is in the same place as y:
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| b a a a a ]

Next, the program returns to Loop B to select the next (and in
this case, final) item in the subset. Because Loop A is for a uni-
versal quantifier, the basic equation has not been reset, and so
the new Bury letter, x, has to satisfy the relation, x is in the same
place as a:

| b b a a a a |

Finally, the optional Bury letters that do not satisfy the relation
are added to yield the final model:

| b b a a a a | ob ob |

Strictly speaking, both this sentence and the first example are
ambiguous in scope, but we have now illustrated both of their
possible interpretations. The program must allow for scope am-
biguities, and we assume that they exist unless they are explic-
itly ruled out by the choice of quantifiers. There is also another
sort of ambiguity that arises with certain universal quantifiers,
particularly "all." They can be used both distributively (as in
the case of "every" in the preceding examples) or collectively
(i.e., in the sense of "all together"). This interpretation is highly
salient for

All the Avon letters are in the same place as some
of the Bury letters,

and yields the following sort of model:

| a a a b b i obob |

The collective interpretation requires a modification in the loop
for the universal quantifier that ensures that it is exhaustively
iterated before control passes to the loop below.

In general, the construction program can be assembled as the
sentence is parsed because it is necessary only to assemble loops
that correspond to the appropriate quantifiers. The overall prin-
ciple is that when a loop is satisfied, control passes to the loop
below. But, when all the loops below have been satisfied (or the

loop is the bottommost one), control passes to the loop above.
And, if there is no loop above (the loop is the topmost one), then
the program halts with the final model. Hence, once the three
main components are specified—the interpretation of the
quantifiers (the core of the loop), the interpretation of the rela-
tion (a component of each loop), and the principle by which
loops are put together—it is possible to assemble a program for
constructing a model of any multiply-quantified assertion.

The procedure for formulating conclusions takes as its input
one or more models and looks for the appropriate quantifiers
to characterize a relation between terms that are not explicitly
related in any premise. Given a relevant pair of terms, A and
C, and a model, the procedure establishes whether the relation
between them is affirmative or negative. It then works down
through the hierarchy of the six possible interrelationships in
terms of their semantic strength. The strongest possible affir-
mative relationship is the following:

1. (VAXVB)ARB: Allthe A are in relation, R, to all the B.

Two slightly weaker ones are

2. (EA)(VB)ARB:
Some of the A are in relation, R, to all the B.

3. (EBXVA)BRA:
Some of the B are in relation, R, to all the A.

Still weaker, respectively, are the following:

4. (VBXEA)BRA:
All the B are in relation, R, to some of the A.

5. (VAXEB)ARB:
All the A are in relation, R, to some of the B.

And, finally, the weakest possible relationship is

6. (EAXEB)ARB:
Some of the A are in relation, R, to some of the B.

There is a similar hierarchy for the six possible negative interre-
lationships. The procedure seeks to establish the strongest con-
clusion that is true in all of the models of the premises; it will
respond "no valid conclusion" if no description holds across all
the models.

The search for alternative models of the premises to refute a
putative conclusion could, in theory, be carried out in a purely
random way, provided that the same models are not sampled
more than once. A random alteration can be made to a model
and, if the result is still consistent with the premises, the conclu-
sion can be evaluated with respect to it. A model is finite, and
there are only a finite number of alterations that can be made
to it. Hence, sooner or later, they will have been exhausted. Al-
though ordinary individuals seem not to possess any simple de-
terministic search procedure, they perhaps do not search en-
tirely at random, either. At present, however, we have too little
information to characterize the details of the search, which in
any case may differ from one individual to another.

In summary, once a compositional semantics has been speci-
fied for the quantifiers and relations, then it can be used to con-
struct models on the basis of the meaning of assertions, to
formulate conclusions that hold in models, and to evaluate al-
ternative models that may be counterexamples to putative con-
clusions. The same meanings can be used to control all of these

processes.

General Discussion

There are three main views about the human inferential
mechanism: It uses abstract formal rules, content-specific rules,
or model-building procedures based on the meanings of prem-
ises. In reasoning, one could use any or all of these means, al-
though it is difficult to see how experimental observations could
falsify the logical union of the three sorts of theories. Other stud-
ies have shown, however, that the model-based theory suffices
to account for the phenomena of syllogistic reasoning (Johnson-
Laird & Bara, 1984a), two-dimensional spatial reasoning
(Byrne & Johnson-Laird, in press-c), and reasoning with pro-
positional connectives (Johnson-Laird, Byrne, & Schaeken,
1989). We have shown here that the theory can be extended nat-
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urally to reasoning with multiply-quantified premises. Content-

specific rules are highly implausible as a basis for such infer-

ences because people can make deductions that depend solely

on the basis of quantifiers and connectives. The theory would

merely pass on the explanatory burden to some (yet to be for-

mulated) account of how such inferences could be encoded in

content-specific rules. The real issue raised by multiple quanti-

fication is therefore between theories based on models and those

based on formal rules.

Could one devise a rule-based theory to account for our re-

sults? In principle, rule-based theories have universal Turing

machine power (see Jeffrey, 1981), and hence they are unlikely

to be refuted once and for all by empirical observations. At

present, there is no rule-based psychological theory that is pow-

erful enough to cope with the multiply-quantified inferences

that we used in our experiments (see, e.g., Braine, 1978; Braine,

Reiser, & Rumain, 1984; Johnson-Laird, 1975; Rips, 1983),

and we anticipate severe difficulties in extending existing theo-

ries so that they will explain the phenomena. We have explored

this problem in two different ways.

Our first approach was to prove the conclusions of all of the

valid inferences used in our experiments, and we used a predi-

cate calculus based on the rules for connectives proposed by

current psychological theories (e.g., Braine, 1978; Rips, 1983).

As Table 1 shows, the derivation for a one-model problem of

the form

None of the P is in the same place as any of the C.

All of the C are in the same place as all of the D.

Therefore, None of the P is in the same place as any of the D.

is 19 lines in length. The derivation for the valid multiple-model

problem, which differs in only one quantifier:

None of the P is in the same place as any of the C.

All of the C are in the same place as some of the D.

Therefore, None of the P is in the same place as some of the D.

is also 19 lines in length, and 17 of the lines are identical. The

entire prepositional stage of reasoning is identical for the two

deductions. All that differs is that the existential quantifier in

the second problem is instantiated at the start of the derivation

and therefore is re-introduced at the end of the derivation. Yet,

as Experiment 2 showed, problems of the first sort yielded 67%

correct conclusions, whereas problems of the second sort

yielded only 16% correct conclusions. Even if one adopts a pos-

tulate of negative transivity,

If x is not in the same place as y, and y is in the same place as z,

then x is not in the same place as z,

there is no difference between the two derivations though they

are both shorter. Conversely, the one-model problem (1) in Ta-

ble 6 has a 14-line derivation, whereas the one-model problem

(6) has a 19-line derivation, but there was no reliable difference

in difficulty between them. In short, the lengths of derivations

predict differences in difficulty that are not observed, and fail to

predict differences that are observed (see also Byrne & Johnson-

Laird, in press-a).

Our second approach to developing a formal theory was

based on the following consideration. A formal theory has to

manipulate a representation of the logical form of premises,

which is essentially a syntactic representation. Hence, what is

needed is a linguistic difference between the two sorts of prob-

lem (one model vs. valid multiple model) that somehow leads

to a much longer or more complex derivation for the multiple-

model problems. The problem shown in Table 1 differs from

its multiple-model variant only by one quantifier. The second

premise of the multiple-model problem contains an existential

quantifier:

All of the C are in the same place as some of the D.

One might argue that this premise calls for the use of different

and more complicated rules. Unfortunately, any attempt to ex-

plain the phenomena in this way is doomed because premises

of exactly this form occur in several one-model problems that

caused no great difficulty to our subjects (see, e.g., Problem 2

in Table 2, and Problem 3 in Table 5).

We have searched for some other relevant feature that might

account for the difference between the two sorts of problems.

Our search has failed. The difference in difficulty between one-

model and multiple-model problems seems unlikely to be a re-

sult of any of the following factors:

1. A response-priming effect, that is, a match between the

form of the correct conclusion and the form of one of the prem-

ises (ruled out by Experiment 1, in which there were valid mul-

tiple-model problems that had such a match).

2. The affirmative or negative polarity of the premises (ruled

out by Experiment 2, in which all of the problems contained

one affirmative and one negative premise).

3. The greater number of logically distinct conclusions

counting as valid for the one-model problems than for the valid

multiple-model problems (ruled out by Experiment 2, in which

the subjects drew only one sort of conclusion—the logically

strongest—to the one-model problems).

4. The difficulty of "some," which might require longer deri-

vations or rules that are more difficult to use (ruled out by Ex-

periment 3, which used "some" in both sorts of problems).

5. Ambiguity in the scope of quantifiers (ruled out by Experi-

ment 3).

6. An "atmosphere" effect, that is, a correspondence be-

tween the quantifiers in the correct conclusion and the quanti-

fiers in the premises (ruled out by Experiments 1 and 3).

7. The difficulty of certain premises as a whole (ruled out by

Experiment 3, in which a one-model problem and a multiple-

model problem were identical apart from the order of the quan-

tifiers in the second premise, but these two premises occurred

in other problems, in which they give rise to opposite effects).

Hence, the likelihood of a syntactic factor accounting for our

results is remote, and rule-based theories are, by definition, in-

sensitive to other factors. Such arguments are always open to the

criticism that they have ignored alternatives that would survive

refutation by the data. We believe that we have considered all

of the alternatives that meet the psychological considerations

adduced in the construction of existing rule-based theories.
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Those who doubt this claim have, of course, a simple way to
refute it: They have only to construct a rule-based theory that
does account for our results.

In contrast, the phenomena are predicted by the theory based
on mental models. The subjects found it reliably easier to draw
inferences from premises that were consistent with only one
model than from those that were consistent with more than one
model. Likewise, they were slightly impeded, as the theory pre-
dicts, if there was a clash between the quantifiers of the two oc-
currences of the middle term. Where more than one model
could be constructed, they made a small but reliable use of
modally qualified conclusions, and their errors tended to be
conclusions consistent with a proper subset of possible models.
Both of these phenomena are singularly difficult to explain on
the basis of formal rules.

Contrary to what many theorists have supposed, including
ourselves at one time, there is a fundamental peculiarity about
theories of reasoning based on formal rules. They propose that
ordinary individuals, having gone to the trouble of understand-
ing the premises, base their inferences on something other than
a full, rich, semantic interpretation. They are supposed instead
to reason from an abstract logical skeleton that would require
extra pains to derive. Moreover, so much reasoning in daily life
is not even intended to be valid, that theories that can account
only for attempts to think validly are handicapped from the
start. Yet any semantic account of reasoning, such as the theory
of mental models, must contain components that carry out the
equivalent work of rules of inference. A central assumption of
our theory is that models never contain variables, and indeed
the work of instantiation is merely part of the normal process
of comprehension. Universal quantifiers are instantiated by sets
of mental tokens that are treated as exhausting the relevant set;
existential quantifiers are similarly instantiated by sets of men-
tal tokens, except that there are optional items that fail to satisfy
the conditions of the assertion. One of the consequences of this
distinction is that the choice of quantifier in one premise can
affect the number of models that can be constructed for the set
of premises as a whole. Another consequence is that the proce-
dures that formulate putative conclusions will generalize any
relation using the appropriate quantifier. The model-based the-
ory has separate procedures that operate, in effect, to instanti-
ate and to generalize, but because these components operate
differently from the rules used in the predicate calculus, they
are able to predict the relative difficulty of inferences.

The model-based theory is readily extendable to deal with
nonstandard quantification and to account for such inferences
as

All A are related to most B.

All B are related to most C.

Therefore, All A are related to most C.

Once one has an account of the semantics of "most," which is
relatively straightforward, the same apparatus of constructing
and evaluating models can be applied directly. The theory based
on mental models is relatively simple to refute: It predicts that
whenever the meaning of premises supports more than one
model and the models need to be considered to reach a valid

conclusion, the inferential task will be harder. This prediction
has now withstood empirical testing for reasoning with a vari-
ety of multiply-quantified premises.
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