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Iniroduction

In a pioneering study, Rips (1989) reports an investigation of what we will
refer to as “metz-logical” puzzies. The puzzles he studied depend on imagin-
ing that there are only two sorts of persons: knights, who always tell the
truth; and knaves, who always lie. Here is a typical problem: “There are two
inhabitants, A and B, each of whom is a knight or a knave. A says, ‘I am a
knave and B is a knave’. B says, ‘A is a knave’. What is the status of A and
B: knight, knave, or impossible to tell?” The solution is that A is a knave
and B is a knight.

Rips makes two principal claims. First, he argues that the process of solving
these problems is accurately characterized by his theory, which uses formal
rules of inference in the natural deduction format, and which is an extension
of an =arlier theory (see Rips, 1983). Second, he presents a challenge to
theorists who espouse mental models: “Produce an explicit account of reason-
ing on knight-knave problems that is (a) theoretically explicit, (b) empirically
adequate, and (c) not merely a notational variant of the natural-deduction
theory” (Rips, 1989, p. 113). Our aim in this paper is to meet this challenge.
We will present an alternative theory based on menta! models, which is not
a notational variant of the natural deduction theory, which is explicit, and
which provides a better theoretical account of Rips’s results.
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A critique of Rips’s theory

We have four main misgivings about Rips’s account. First, he underestimates
the importance of meta-logical thinking. He appears to view it as logically
on a par with other sorts of deduction. He overlooks a key feature: it hinges
on an explicit concern with matters of truth and falsity. There is ai: irony
here. The heyday of the purely formal approach to logic (as opposed to
psychology) was brought to an end by the development of meta-logic: Tarski
showed how to formulate a model-theoretic semantics for the syntactic cal-
culus of predicate logic, and Godel proved that the predicate calculus is
“complete” in that it provides a formal derivation for any theorem that is
valid in the semantics (e.g., Boolos & Jefirey. 1980). Yet, Rips himself elimi-
nates “truth” and “falsity” in his theory. Eisew here, he has written: “cognitive
psychology has to do without semantic notions like truth and reference that
depend on the relationship between mental representations and the world”
(Rips, 1986). As a general analysis of meta-linguistic assertions, the probler.s
of this approach are well known (see Austin, 1970; Barwise & Etchemendy,
1987). Without the noticn of truth, there is no notion oi validity, and meta-
logic evaporates.

Second, Rips deals with just one variety of meta-logical puzzle. There are
many other varieties, for example: “There are two sorts of persons: logicians,
who always make valid deductions; and politicians, who never make valid
deductions. A says that either B is telling the truth or else B is a politician
(but not both). B says that A is lying. C deduces that B is a politician. Is C
a logician?” Rips’s program cannot handle all knight-and-knave problems—
not even all of those that he investigated experimentally, and it cannot handle
other sorts of problem without introducing a vast number of formal rules.

Third, Rips proposes only a single deterministic procedure for solving
meta-logical problems. According to this procedure, reasoners assume that
the first individual in a puzzle is a knight, and explore the consequences of
this assumption; next, they assume that this individual is a knave, and explore
the consequences of this assumption. They then assume that the next indi-
vidual in a puzzle is a knight, and so on. In fact, we have observed that
logically untutored individuals are much less systematic in their approach
until they have had considerable experience with the problems. They do not
come to the task armed with a deterministic procedure that leads to the
solution. Unlike, say, a linear syllogism, where the answer emerges rapidly
and almost automatically, people can and do reflect about these problems.
They spontancously make meta-logical remarks, for example: “A could be
telling the truth about the first part [of the conjunction] so the second part
of A’s assertion is a lie”. In short, an adequate theory must allow for diverse
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strategies in solving, or attempting to solve, meta-logical problems. The pro-
cedure embodied in Rips’s program is too inflexible.

Fourth, and most important, the procedure postulated by Rips is t0o pow-
erful and, as we will show in the next section, it places an impossiblc load on
the processing capacity of working memory.

A theory of meta-logical reasoning based on mental models

Reasoning with models

In our view, the ability to make straightforward propositional deductions is
a prerequisite for solving meta-logical puzzles. For example, reasoners must
be able to make the following deduction:

A or B (or both)
not A
Therefore, B

if they are going to cope with knight-and-knave puzzles. Unlike Rips, we
believe that the ability to make these straightforward deductions depends not
on formal rules of inference but on the ability to construct models of states
of affairs. We have described this theory and a computer implementation of
it elsewhere (see Johnson-Laird, Byrne, & Schaeken, 1989), and so we will
sketch only its outlines here. The deduction above is made by constructing a
set of models to represent the meaning of the first premise:

A -B
-A B
A B

where each line represents a separate model. The information from the sec-
ond premise can be incorporated only by eliminating those models that are
inconsistent with it. The process leaves behind only one model:

-A B

A procedure for formulating conclusions that do not correspond to any of
the premises then yields the conclusion:

Therefore, B

For simplicity, we have used completely explicit models in this example.
In fact, our theory assumes that ordinary individuals make explicit as little
information as possible in their initial models of premises. They represent the



disjunction above by the following modeis:
A
B

and they render these models wholly explicit only if forced to do so by the
mferentnal task. The theory predncts that the greater the number of exphcnt
models that have to be constructed, the harder the inferential task will be.
This prediction has been confirmed in a number of experiments.

Granted a model theory of ordinary propositional deduction, how do
people proceed with meta-logncal puzzles' We believe that their ordinary

deductive machinery does not cope with them. But, they possess a higher-
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thought) using their ordinary deductive machinery as a sub-component. They
typically have no existing procedures for dealing with ---eta-!ogic-l relations,
and so their first efforts are tentative: they may, like a logician. pursue the

consequences of certain assumptions about the truth or falslt_y of premises,
they may notice certain interesting patterns in a puzzle, or they may grasp
the consecuences of circular assertions. With experience of the puzzles, they
are hkely to develop more systematlc strategles - perhaps as a result of the
“chunking” mechanism postulated by Newell (in press). Thus the develop-
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itional deduction. And we will then show how the theory leads io certain
piedicted patterns of difficult ty that are corroborated by the results of Rips’s
experiments.

Five strategies of meta-logical reasoning
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We have modeiled various meta-logical strategies by adding a component to
our program that carries out model-based propositional deductions. The pro-
oram narses a cot of nremicec cuch ace
bl“lll r’“lUVU S Uwey Vi llellllUvU, DWAWwiE WO

A asserts that not A and not B
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B asseris that B and A

and builds up a set of models representing their meaning. Because the meta-
logical procedures use the ordinary deductive procedures as a sub-compo-
nent, it is necessary to transiate “true” and “false” into the language of that
suo-component Hence, the program uses the same symbol for both negatlon
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favour a general elimination of truth and falsity. In many cases, the transla-
tion is inadmissible, for example in the definition of validity.

In order to examine the plausibility of Rips’s strategy, we have implemented
a notational variant of it using models instead of formal rules of inference:
the program follows up to the bitter end the full chain of consequences of
making the contrasting pair of assumptions about an individual assertor. We
will present two examples of its use, before we consider other less demanding
strategies. The first problem (number 9 in the Appendix) has the premises:

A asserts that not B and C
B asserts that not A
C asserts that B

The chain from assuming the truth of A is straightforward, and yields a

contradiction. It calls for the conjunction of the model representing that A
is true:

A
with the models representing A’s assertion:
-B C

The semantics of conjunction calls for forming the Cartesian product of the
two sets of models, eliminating any inconsisterncies:

A -B C

The program then follows up —B. The semantics of negating a proposition
calls for constructing the complement of its set of models. The set represent-
ing B’s assertion contains one model:

-A

and so its complement is obvicusly: A. This is consistent with the result
above. Next, the program follows up C. The model of C’s assertion is:

B

which yields a contradiction when it is conjoined with the result above. The
cutput of the prograra, which summarizes the process thus far, is:

CHAIN hyp A > A -BC, neg-hypB - -BA, hypC—->CB, = A
CONTRADICTION

The chain from assuming the falsity of A is extremely complicated. The
root of the problem is the need to follow up a set of disjunctive models. In
assuming the falsity of A, the reasoner has to form the negation of A’s
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assertion, that is, the negation of: not B and C. This negation, conjoined with
not A, yields the following disjunctive set of models:

-A -B -C
-A B -C

The procedure must now follow up each of the consequences within each of
these models: hypothesizing B and then C in the first model, not B (which
immediately yieids a contradiction) in the second model, and B and then not
C in the third model. The outcome is: —A B C. This model is passed tc the
procedure that describes models, and the resuii is the conclusion:

Not A and B and C
The program’s output for this part of the chain is:

CHAIN neg-hyp A - -AB{(,-A-B-C,-AB -C
DISJUNCTIVE CONSEQUENCES hypB—-B —A, hypC—-» CB
DISJUNCTIVE CONSEQUENCES neg-hyp B - —-B A, hyp B - B
—A, neg-hypC—» -C-B=-ABC

iT FOLLOWS FROM THE CHAIN THAT NOT A AND B AND C

We will spare the reader the details of what happens when the procedure
continues by constructing chains from the other two premises of the problem,
though they also yield the same conclusion. In our view, the need to follow
up the consequencss of disjunctive models renders the strategy most improb-
able in the present case, especially granted that the problem was among the
casiest for Kips’s subjects (29% correct).

The sceond problem (number 19 in the Appendix) has the premises:

A asserts that not B
B asserts that A and C
C asserts that not A

The program yields the following output {rom the fuli chain based on the first
premise:

CHAIN hyp A - A —-B, neg-hyp B— -B -AC, -B A -C, -B —A
—C, neg-hypC— —-CA = A ~-B ~-C

CHAIN neg-hyp A - —A B, hyp B - B A C == A CONTRADICTION
IT FOLLOWS FROM THE CHAIN THAT A AND NOT B ANDNOTC

The use of the complete chain in this case is therefore lecs complicated than
in the previous example. There is no need to follow up any disjunctive con-
sequences. Yet, the problem was one of the most difficult that Rips investi-
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gated, and only 12% of the subjects solved it.

The contrast between these two examples led us to doubt whether Rips’s
strategy was correct (regardless of whether it was based on formal rules or
mental models). We therefore developed four simpler strategies (based on
informal protocols that we have collected).

A. simple chain is constructed in the following way. Reasoners follow up
the conscquences of ascuring the truth of the first premise, but they abandor.
the strategy whenever it becomes necessary to follow up disjunctive consequ-
ences. If they have not been forced to abandon the strategy, they then con-
sider the consequences of assuming the falsity of the first premise, again
abandoning the strategy whenever it is necessary tc follow up disjunctive
consequences. A further difference from Rips’s full chzin is that the procedure
does not go on to consider the consequences of other premises.

A circular assertion, such &s:

A asserts that A is false and B is true

catches the attention of most people. As our protocols show, reasoners are
likely to grasp th:it the assertion appears to be self-refuting. Many people at
this point can go no further. Some, however, grasp that if A’s assertion is
false, and A’s assertion is a \.cnjunction, then the first clause is true, and so
the second clause must be false. This circular sirategy accordingly first as-
sumes that the assertor is telling the truth, and follows up only the immediate
consecuence of this assumption, i.e. it does riot consider the consequences
of this consequence (unlike the full chain). Next, it assumes that the assertor
is making a false assertion, and follows up only the immediate consequence
of this assumption. The circular strategy solves a problem if and only if orc
of these two assumiptions leads to a contradiction and the other leads to an
assngnment of a truth value to all the individuals in the problem
Here is an example. Given the problem:

A asseris that not A and not B
B asserts that B and A

the program produces the following output:
hyp A — NIL neg-hyp A - —A B = NOT A AND B

The output shows that the result of assuming the truth of A was nii, that is,
a contradiction, and the result of assuming the falsity of A is a single model
—A B. For problems that do not contain any circular assertions, this simple
strategy is impotent.

So far, the three strategies that we have described all rely on making
hypoethetical assumptions and then following up their consequences o various
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degrees. There is an alternative tactic, however, that can be used once one
has discovered that a particular hypothesis leads to a contradiction. Consider
the problem (number 2 in the Appendix) that has the premises:

A asserts that A and B
B asserts that not A

There is & circular assertion, but the circular strategy fails, because it is
necessary to trace two links (from A to B, and frem B back to A, in order
to discover that A must be false). Likewise, the simple chain fails because it
is necessary to follow up the disjunctive consequences of negating A, i.e. —A
B, —A —B. Once —A has been discovered as a consequence of hypothesizing
A, there is a simple matching tactic that is a direct consequence of comparing
models: —A is the case, and the content of B’s assertion is —A, and so B
must be true.

We have implemented this hypothesize-and-match strategy using again the
model deductive procedure to carry out the essential work. The strategy
considers the consequences of assuming that the first assertion, A, is true. If -
and only if the consequeiices lead to a contradiction, it then attempts to
match —A to the content of the other assertions. If some other assertion, B,
has a matcning content, then B is true. This consequence can in turn be
matched with the content of other assertions, and so on. It is possible to
implement a mismatch tactic in which the falsity of B is derived from its
inconsistency with some known truth, but, once again, we beiieve that such
a strategy is likely to be bevond the competence of most people.

One other simpie straiegy aiso iixes use of matching, and it is likely to
be developed from encounters with the following sorts of premises (problem
5 in the Appendix):

A asserts that not C
B asserts that not C
C asserts that A and not B

Reasoners may notice that since A and B make the same assertion, they are
either both true or both false. C, nowever, does not assign the same status
to both of them. Hence, C is false. Both A’s assertion and B’s assertion
inatch this conclusion, and so both are true. There are two tactics underlying
this same-asseriion-and-matck: strategy: first, the detection that two assertors
make the same assertion, which in turn is inconsistent with a third assertion;
and, second, the use of a match between the resulting conclusion (—C) and
the content of specific assertions (A and B both assert not C). The strategy
alsc detects where two individuals niake opposing assertions about the samc
individual, znd assigns falsity to an . assertion that treats the two individuals
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as of the same status. We have little doubt that reasoners develop still other
strategies depending upon the particular problems that they encounter, but
we have not yet attempted to model them.

In summary, we have described five strategies:

L. Rips’s full chain: assume that an assertor tells the truth, and follow up
the consequences, and the cunsequences of the consequences, and so on.
Assume that an assertor tells a lie, and do likewise. Carry out both processes
for all premises.

2. Simple chain: assume that the assertor in the first premise tells the truth.
and follow up the consequences, but abandon the procedure if it becomes
necessary to follow up disjunctive consequences. Assume that the assertor in
the first premise is lying and do likewise.

3. Circular: if a premise is circular, follow up the immediate consequences
of assuming that it is true, and then foliow up the immediate consequences
of assuming that it is false.

4. Hypothesize-and-match: if the assumption that the first assertor A is
telling the truth leads to a contradiction, then attempt io match —A with the
content of other assertions, and so on.

5. Same-assertion-and-match: if two assertions make the same claim, and
a third asserior, C, assigns the two assertors to different types, or vice versa,
then attempt to match —C with the content of other assertions. and so on.

The predictions of the model theory

The four simple strategics that we described in the previous section are all
based on the assumption that ordinary individuals have a limited ability to
process models of premises. Hence, they cannot cope with negaved conjunc-
tions that force them to consider the consequences of a disjunctive set of
models, they have only a limited ability to foilow up the consequences of
assumptions, and they find positive matches easier than negative mismatches.
The model theory accordingiy makes three main predictions about perfor-
mance with meta-logical puzzles granted some minimal competence with
them.

The first prediction is that problems that can be solved by using one of tic
simple strategies will be easier than those that reguirc more .powcrf.ui
strategies such as the full chain proposed by Rips. In order to test this predic-
tion, we have re-analysed the resuits of Rips’s first experiment, which pe
kindly made available to us. The 34 problems are stated in the Appendix,
and we have indicated those problems that can be solved using three of the
simple strategies (simple chain, hypothesize-and-match, and same-assertion-
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and-match). We have ignored the circular strategy because the problems it
solves are also soluble using a simple chain. Overall performance in the
experiment was low (20% correct). Yet, there were 28% correct conclusions
to the problems that can be solved by one of the four simple strategies, and
only 14% correct conclusions to the problems that cannot be solved in this
way (Mann-Whitney U = 7, p < .001, one-tail, ty materials). This result was
corroborated by separate analyses of the simple strategies versus more com-
plex versions of them: simple chain problems 28% correct versus full chain
problems 14% correct, U = 2, p < .001; hypothesize-and-match problems,
27% correct versus fui iiiatching problems, including those requiring negative
mismatches, 12% correct. U = 3.5, p < .002. Too few problems could be
solved by the similarity strategy to justify a statistical analysis.

The second prediction is that the difficulty of a problem will be a function
of the number of clauses that it is necessary to use in order to solve the
problem. This number obviously relates to the number of clauses in the
statement of the problem, but the two notions are distinct, as we can illustrate
by considering two contrasting examples.

The first problem has the premises:

A asserts that not A and B
B ass¢rts thai B

The circular strategy applied ts the first premise yields the conclusion that A
is false and hence B is false. The program in effect merely traverses the
circular joop from A back to A in order to discover the contradiction. The
coiisequences of B’s assertion can be followed up, but they play no part in
discovering tire solution. The second problem has the premises:

A asseris that A and not B
B asserts that A

In this case thie circular strategy fails to solve the problem, because it is
necessary to consider both premises. The hypothesize-and-match strategy
proceeds as foilows: assume that A is true, and it follows that not B. From
not B, it follows that not A, which contradicts the assumntion. Given not A,
B is not true because B ssserts that A, Hence, the solution is: not A and not
B. This problem should therefore be harder than the first one. The program
in effect iraverses the link from A to B, and then the link from B back to A,
in ordes to discover the contradiction.

This second prediction, as we have illustrated, can be couched in terms of
the number of links that have to be traversed in order to solve a problem. In
this sense, the prediction is almost independent of the processing theory that
we have proposed, and is likeiy to be made by any sensible analysis of meta-
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logical problems. Indeed, we suspect that the number of links to be traversed
is one of the main contributors to the number of steps that Rips’s program
requires in order to solve a problem. The two problems above are indeed
taken from his second experiment, and show how in this case our rather
simpler account makes the same predictions as his theory. There is a corollary
to our prediction. For many problems, the number of clauses (links) that
have to be explored depends on the particular premise with which the process
of reasoning begins. Hence, an experimental manipulation of this variable
should affect performance

The third prediction is 1 consequence of the model theory. Other things
being equal, the hypothes:s that an assertion is true should be easier to pro-
cess than the hypothesis thai an assertion is false: the operation of negating
a set of models takes work. It calls, as we have seen, for the construction of
the complement of a set of models. This prediction is corroborated by a result
from Rips’s second experiment, which by his own account presented some
difficulty for his theory. The finding was that certain ways of couching a
probleim, such as:

A: 1 am a knave or B is a knight
B: I am a knight

are easier than others, s ~h as:

A: I am a knave or B is a knave
B: I am a knight

The second version, however, calls for a slightly more complex process. Our
simple chain strategy yields the following output for the first problem:

hywA—-AB, hyrB->B=AB
neg-hyp A — NIL = A CONTRADICTION

It yields the following output for the second problem:

hyp A—> A —B, sieg-hypB—»> -B= A -B
neg-hyp A — NIL == A CONTRADICTION
As the reader will note, the second problem requires a negative operation

that is not required oy the first problem. This difference runs through the
complete set of probiems and accounts for the difference between them.



80 . N. Johnson-Laird and R.M.J. Byrne

General discussion

Psychology is a “recursive” discipline because a piausible theory of high-level
cognition should reveal how the theory itself could have been created as a
result of high-level cognition. Hence, a theory of meta-logical deduction
should provide some insight into its own development. Our theory postulates
a capacity to think about the truth and falsity of premises (or indirect reflec-
tions of them in the guise of knights and knaves), which in turn depends on
a general meta-coguitive capacity to reflect about problems and processes of
thought at -1 higher level (see Johnson-Laird, 1983, Ch. 16). In this way,
relatively simple reasoning strategies can be invented by logically untutored
individuals. The same component can be used by logicians to create formal
calculi for deduction, and then to reflect upon the relations between these
calculi and their semantics. And, most ixziportantly, it can be used by cogni-
tive scientists io construct theories about itself. Given only Rips’s single deter<
ministic procedure, then neither these abilities nor the experimental results
can be fully explained

The major constraint that we have imposed on the meta-logical component
is that the strategies that it develops are restricted by the capacity of working
memory. Hence, the four simpie siraicgies follow up the consequences ot
assumptions only to a limiizd extent, and they make posiiive matches more
readily than negative mismatches. Yet they account for more aspects of Rips’s
first experiment than does s own theory. They also account for the two
principal results of his second experiment. Indeed, they make additional more
fine-grained predictions that we have nct reported, because of lack of space.
In short, we have presented a model theory of meta-logical reasoning that is
explicit, that is not a notational variani of the natural deduction theory, and
that accounts fer the known phenomena of meta-logical deduction.

Envoi

Rips mounts an ingenious defence of his theory. He considers the following
proposition:

If T am telling the truth, then the natural deduction theory is correct

As he points out, this assertion appears to be logically true (cf. Barwise and
Etchemendy, 1987, p. 23). Alas, he here violates his own well-known princi-
ple, to which we have already alluded: “cognitive psychology has to do with-
out semantic notions like truth” (Rips, 1986). He must therefore withdraw
the argument on pz:r: of contradiction. We recommend to him, however, the
following robust Cid<lian argument. Suppose that Rips vltimately devises a
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comprehensive theory of meta-logical reasoning based on formal rules. We
will call this system, Rips Logic. Now consider the following proposition:

A asserts that A is not derivable in Rips Logic

This claim is either true or false. If it is false, then Rips Logic allows one to
derive an assertion that asserts of itself that it is not derivable in Rips Logic.
Hence, Rips Logic is inconsistent. If the claim is true, there is a true meta-log-
ical assertion that cannot be captured within Rips Logic. Hence, Rips Logic
is incomplete. Hcnce, a formal theory of ineta-logical reasoning is bound to
be either inconsistent or incomplete.
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Appendix. The results of Rips’s Experiment 1, together with three simple
strategies that can solve some of the problems

Note: We have stated the problems, not in the guise of knights and knaves, but in
abbreviated form in which, for example, “A: —A & B” corresponds to A asserts that
A is a knave and B is a knight. A cross in a column indicates that the corresponding
problem can be solved by the corresponding strategy, where “same” refers to the
same-assertion-and match-strategy, and “hypo-match” refers to the hypothesize-znd-
match strategy. All problems can be solved by Rips’s full chain strategy provided that
it is equipped with the appropriate rules of inference.

Strategies
Problem Percent Hypo- Simple
number Problem Solution correct Samic  match chain
3 clauses
i. A:~Av-B
B: -A A&-B 27 +
2 A: £ &B
B: -A ~ALB 27 +
3. A:-A&-B
B: -A -A&B 27 + +
4. A: AvB
B: A A& -B 18
4 clauses
5. A:-C
B: -C
C: A&-B A&-C&n 35 +
6. A: B&-C
R A
C: B -A&B&C 30 -+
7. A:-A&--B
B: A&B -A&-B K} +
8. Al-A&-B
B: B&-A ~-A&B 29 +
9. A:-B&C
B: ~A
C:. B -A&B&C 29 +
10. A C
B: -C
C: A&B -A&-C&bs 27 +
11. A:-C
B: AvC
C:-B -C&B&A 27 +
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Problem
number

Percent
Problem Solution correct

12.

13.

14.

15.

16.

18.

5 clauses
2i.

N
I\

23.

24.

2.

OEPORPOBPOEPAFNZOFROTRZ>OI>OD

> 2w

OBPOBROTEND

A&B B&-C&—-A 27

-A ~-A&B&C 24

A A&B&C 24

A A& -B&C 21

A -A&B&-C 15

B -A&-B&-C 12

-A A& -B&-C 12

A&-B -C(A+B) 0

1
>
e
s}
|
-
kS

!
b+
2

|
O

27

-A&C -A&B&C 27

-B A& -B&C 21

B A&-8&-C 18

-A&-B A&B&-C 18

Strategies

Hvpe- Simple
Same match chain
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Strategies

Problem Perceat Hypo- Simpie
number Problem Solution correct Same match chain
26. A: C&A
B: A&-~C
C: -A -A&-B&C 15
27. A: B&A
B: B&-C
C: A ~-A&-C{(Bv-B) 9
28. A:-B& -C
B: -A&-C
C:--B A&-B& -C 6 i
29, A:-B&A
B: A&C
C: -B -A&-B&C 6
30. A: B&C
B: B&-A
C A -A&-C(Bv-B) 3
9 clauses
31. A:-A&-B& -C
B: AvBvC(
C: -Av-Bv-C -A%B&C 29 +
32. A: A&B&C
B: -Av-Bv-C
C: AvBvC ~A&B&C 27 +
33. A:-B&-C&-A
B:-C&-B&A
C.-A&-B&C -A&-B&C 21
34, A: B&C&A
B: C&B&-A

C.-A&-B&C -A&~-B(Cv-0C) 0




