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A model theory of induction

PHiLIP N. JOHNSON-LAIRD
Department of Psychology, Princeton University, New Fersey 08544, USA

Abstract Theories of induction tn psychology and artificial intelligence assume that the
process leads from observation and knowledge to the formulation of linguistic conjectures. This
paper proposes instead that the process yields mental models of phenomena. It uses this
hypothesis to distinguish between deduction, induction, and creative forms of thought. It shows
how models could underlie inductions about specific matters. In the domain of linguistic
conjectures, there are many possible inductive generalizations of a conjecture. In the domain of
models, however, generalization calls for only a single operation: the addition of information to
a model. If the information to be added is inconsistent with the model, then it eliminates the
model as false: this operation suffices for all generalizations in a Boolean domain. Otherwise,
the information that s added may have effects equivalent (a) to the replacement of an
existential quantifier by a universal quantifier, or (b) to the promotion of an existential
quantifier from inside to outside the scope of a universal quantifier. The latter operation is novel,
and does not seem to have been used tn any linguistic theory of induction. Finally, the paper
describes a set of constraints on human induction, and outlines the evidence in favor of a model
theory of induction.

Introduction

Induction is part of both everyday and scientific thinking. It enables us to understand
the world and to predict events. It can also mislead us. Many of the cognitive failures
that have led to notable disasters are inductions that turned out to be wrong. For
instance, when the car ferry, Herald of Free Enterprise, sailed from the Belgian port of
Zeebrugge on the 6 March, 1987, the master made the plausible induction that the bow
doors had been closed. They had always been closed in the past, and there was no
evidence to the contrary. The chief officer made the same induction, as did the bosun.
But, the assistant bosun, whose job it was to close the doors, was asleep in his bunk, and
had not closed the doors. Shortly after leaving the harbor, the vessel capsized and sank,
and 188 people drowned. Induction is indeed an important but risky business. If
psychologists had a better understanding of the strengths and weakness of human
inductive competence, then they might be able to help individuals to perform more
skillfully and to introduce more effective measures—especially by way of advisory
computer systems—to prevent inductive disasters.

Induction is also a theoretically confusing business. Some authors restrict the term
to very narrow cases; others outlaw it altogether. Textbooks often define it as leading
from particular premises to a general conclusion, in contrast to deduction, which they
define as leading from general premises to a particular conclusion. In fact, induction can
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lead from particular observations to a particular conclusion—as it did in the case of the
Herald of Free Enterprise, and deduction can lead from general premises to a general
conclusion. The first goal of this paper is accordingly to draw a principled distinction
between induction, deduction, and other forms of thought. Its second goal is to
distinguish between varieties of induction. And its third goal is to outline a new theory
of induction. This theory departs from the main tradition in psychology and philosophy,
which treats induction as a process yielding plausible verbal generalizations or hypoth-
eses. It proposes instead that induction generates mental models of domains. As we
shall see, this distinction is not trivial, and it turns out to have some unexpected
consequences. -

An outline of the theory of mental models

The central idea in the theory of mental models is that the process of understanding
yields a model (Johnson-Laird, 1983). Unlike other proposed forms of mental represen-
tation, such as propositional representations or semantic networks, models are based on
the fundamental principle that their structure corresponds to the way in which human
beings conceive the structure of the world. This principle has three important corol-
laries:

(1) Entities are represented by corresponding tokens in mental models. Each
entity is accordingly represented only once in a mental model.

(2) The properties of entities are represented by the properties of tokens repre-
senting entities.

(3) Relations among entities are represented by relations among the tokens
representing entities.

Thus, a model of the assertion, “The circle is on the right of the triangle” has the

following structure:
A0

A model may be experienced as a visual image, but what matters is, not the subjective
experience, but the structure of the model: entities are represented by tokens, their
properties are represented by properties of the tokens, and the relations between them
are represented by the relations between the tokens.

As an jllustration of the theory and of its implications for the mental representation
of concepts, I will consider its implementation in a program for spatial reasoning that
generates models like the one above (Johnson-Laird & Byrne, 1991). The program
constructs three-dimensional models on the basis of verbal assertions. It has a lexicon
in which each word has a analysis of its meaning into primitive constituents, which I
shall refer to as subconcepts. It has a grammar in which each rule has a corresponding
semantic principle for forming combinations of subconcepts. As the program parses a
sentence, it assembles subconcepts to form a representation of the sentence’s meaning.
This propositional representation is then used by other procedures to construct a model of
a particular situation described by the sentence.

Given a noun-phrase such as “the circle”, the program uses the subconcept
underlying circle to set up a simple model:

O
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And given the assertion:
The circle is on the right of the triangle

the parsing process combines the subconcepts underlying the words in the sentence to
yield the following result, which represents the meaning of the assertion:

(1 0 0) (OX(B)

The meaning of the relation x on the right of y is a set of subconcepts that consists of
values for incrementing y’s Cartesian co-ordinates to find a location for x:

100

The 1 indicates that x should be located by incrementing y’s value on the left-right
dimension whilst holding y’s values on the front-back and up-down dimensions con-
stant, i.e. adding Os to them.

What the program does with a propositional representation of the meaning of a
sentence depends on context. If the assertion is the first in a discourse, the program uses
the representation to construct a complete model within a minimal array:

A0

The reader will note that an assertion about the relation between two entities with
distinct properties is represented by a model in which there is a relation between two
entities with distinct properties.

Depending on the current state of any existing models, the program can also use the
propositional representation to add an entity to a model, to combine two previously
separate models, to make a valid deduction, or to make a non-monotonic inference. For
example, the program can make a transitive deduction, such as:

The circle is on the right of the triangle.
The cross is on the right of the circle.
.. The cross is on the right of the triangle.

without relying on any explicit statement of transitivity. It uses the subconcepts for on
the right of to construct the model:

Alo[+

It verifies the conclusion in the model, and is unable to find an alternative model of the
premises in which the conclusion is false. In summary, subconcepts combine to form
propositional representations that can be used by many different procedures for con-
structing and manipulating models.

The concept of on the right of is part of a system based on the same underlying set
of subconcepts:

on the right of:

on the left of: -
in front of:

behind:

above:

below:

OO O O = -
|

OO = m~=wOC

——0 O O O
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The theory postulates that some such system allows human reasoners to set up spatial
models and to manipulate them. It must exist prior to the mastery of any particular
spatial relation, and can be used to acquire new high-level concepts. For example, one
might acquire the relation represented by (1 0 1), roughly diagonally up and to the right,
if it played an important part in spatial thinking and was accordingly dignified by a single
spatial term. The subconceptual system also provides individuals with an idealized
taxonomy. In the real world, objects do not have to be perfectly aligned, and so a
judgement of the relation between them may compare their actual co-ordinates with
alternative possibilities in the taxonomy. Hence, the extension of a relation depends not
just on its subconceptual analysis but also on other concepts in the same taxonomy.

The theory of mental models extends naturally to the representation of sentential
connectives, such as and, if, and or, and quantifiers, such as any, and some. The theory
posits that models represent as little as possible explicitly. Hence, the initial representa-
tion of a conditional, such as “if there is an A then there is a 27, is by the following two
models:

[A] 2

The first line represents an explicit model of the situation in which the antecedent is
true, and the second line represents an implicit model of the alternative situation(s). The
second model is implicit because it has no immediately available content, but it can be
fleshed out to make its implicit content explicit. The square brackets around the A in
the first model are an “annotation” indicating that the A has been exhaustively
represented, i.e. it cannot occur in any other model (for a defense of such annotations,
see Newell, 1990; Johnson-Laird & Byrne, 1991). The implicit model can be, and in
certain circumstances is, fleshed out explicitly. The fleshing out can correspond to a
bi-conditional, “if and only if there is an A then there is a 2:

A 2
A T2

where “1” is an annotation representing negation. Alternatively, the fleshing out takes
the weaker conditional form:

A 2
A M2
—1A 12

There are similar models that represent the other sentential connectives, such as or, only
if, unless (see Johnson-Laird & Byrne, 1991, for the evidence for the psychological reality
of these models).

The representation of quantifiers is also a natural extension of the theory. An
assertion such as, “Some of the athletes are bakers”, has the following single model:

a b
a b
a

b

where, unlike the previous diagrams, each line now represents a separate individual in
the same model of a state of affairs: “a” denotes a representation of an athlete and “b”
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denotes a representation of a baker. The number of tokens representing individuals is
arbitrary. The final line represents implicit individuals, who may be of some other sort.
The statement, “All of the athletes are bakers”, has the following initial model:

faJ b
[a] b

[a] b

The square brackets represent that the athletes have been exhaustively represented (in
relation to the bakers). Similar interpretations are made for other quantifiers and for
assertions that contain more than one quantifier, such as “None of the Avon letters is
in the same place as any of the Bury letters”. Undoubtedly, the best success of the
theory of mental models has been in accounting for the phenomena of the comprehen-
sion of discourse and the phenomena of deductive reasoning. The theory rejects the idea
that discourse is encoded in a semantic network or in any other way that represents
merely the meanings of expressions. What is represented, as experiments have corrobo-
rated (see e.g. Garnham, 1987) are referents, their properties, and the relations among
them. The theory rejects the idea that deduction depends on formal rules of inference.
It proposes instead that reasoners construct models of premises, draw conclusions from
them, and search for alternative models of the premises that might falsify these
conclusions. It makes two principal predictions about deduction: the major cause of
difficulty of making deductions is the need to consider models of alternative possibilities;
the most likely errors are conclusions that overlook such alternatives. These predictions
have been corroborated in all the main domains of deductive reasoning, including
propositional, relational, and quantificational inferences (Johnson-Laird & Byrne,
1991). We now turn to the application of the model theory to induction, and we begin
by using it to help to draw a systematic distinction between induction and deduction.

Induction, deduction and semantic information

A simple way in which to distinguish induction, deduction, and other forms of thought,
depends on semantic information, that is, the models of possible states of affairs that a
proposition rules out as false (see Bar-Hillel & Carnap, 1964; Johnson-Laird, 1983). For
example, the proposition, “The battery is dead or the voltmeter is faulty, or both”, has
the following three explicit models of alternative possibilities:

d f
d —f
—d f

For simplicity, I am here using single letters to denote entities with particular properties:
d represents “the battery is dead”, and f represents “the voltmeter is faulty”, and, as
before, “—1” represents negation. Each line denotes a model of a different situation, and
so the disjunction eliminates only one out of four possibilities: the situation where there
is neither a dead battery nor a faulty voltmeter: —1d —1f. The categorical assertion,
“The battery is dead”, eliminates two models out of the four possibilities, 71 d f, and
—d 1f, and so it has a greater information content. And the conjunction, “The
battery is dead and the voltmeter is faulty”, eliminates all but one of the four and so it
has a still higher information content.
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This notion of semantic information enables us to distinguish between different
sorts of thought process. Given a set of premises and a conclusion, we can ask: what is
the relation between the states of affairs that they respectively eliminate? There are
clearly five possibilities (corresponding to the five possible relations between two sets):

(1) The premises and conclusion rule out exactly the same states of affairs. This is a
case of deduction, as the following example makes clear. You know that the battery is
dead or the voltmeter is faulty, or both. By testing the voltmeter, you observe that is not
faulty. Your premises are thus:

The battery is dead or the voltmeter is faulty, or both.
The voltmeter is not faulty.

And so you infer:
.. The voltmeter is not faulty and the battery is dead.

The conclusion follows validly from your premises, i.e. it must be true given that the
premises are true. It does not increase semantic information: the premises eliminate all
but one possibility:

d —f

and the conclusion holds in this model too. Like any useful deduction, the conclusion
makes explicit what was hitherto only implicit in the premises.

(2) The premises rule out fewer states of affairs than the conclusion, i.e. the conclusion
is consistent with additional models. Here is an example. There is a single premise:

The battery is dead.
and the conclusion is:
The battery is dead or the bulb is broken, or both.

The conclusion follows validly from the premise, i.e. it must be true given that the
premise is true. Logically-untrained individuals shun such deductions, however, pre-
sumably because they throw semantic information away.

(3) The premises and conclusion rule out disjoint states of affairs. This case can only
occur when the conclusion contradicts the premises. For example, the premise:

The battery is dead
rules out any model containing:
—1d
whereas the conclusion:
The battery is not dead
rules out any model containing:
d

Hence, the two assertions rule out disjoint states of affairs. A deduction may lead to the
negation of a hypothetical assumption, but no rational process of thought leads
itmmediately from a premise to its negation (though, cf. Freud, 1925).
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(4) The premises and conclusion rule out overlapping states of affairs. For example, the
premise:

The battery is dead
leads to the conclusion:
There is a short in the circuit.

The two propositions each rule out any situation in which both are false, namely, any
model containing:

—d s

where “715s” denotes “there is not a short in the circuit”, Each proposition, however,
also rules out independent states of affairs. The premise rules out any situation
containing —1d, and so it rules out the model:

—1d ]
And the conclusion rules out any situation containing —'s, and so it rules out the
model:

d Ts

The production of a conclusion that rules out situations overlapping those ruled out by
the premises may be the result of a free association where one proposition leads to
another that has no simple relation to it, or it may be the result of a creative thought
process.

(5) The conclusion goes beyond the premises to rule out some additional state of affairs
over and above what they rule out. This case includes all the traditional instances of
induction, and so henceforth I shall use it to define induction: An induction is any process
of thought yielding a conclusion that increases the semantic information in its initial observa-
tions or premises. Here is an example. Your starting point is the premises:

The battery is dead or the voltmeter is faulty, or both.
The voltmeter is faulty.

And you infer;
.. The battery is not dead.

The conclusion does not follow validly from the premises. They eliminate all but two
models: \

d f
—d f

The conclusion increases information beyond what is in the premises because it
eliminates the first of these two models. Yet, the conclusion is quite plausible and it may
be true. The difference between induction and deduction is accordingly that induction
increases the semantic information in the premises, whereas deduction maintains or
reduces it.

An assertion has semantic information because it eliminates certain models #f it is
true. It may not be true, however. And neither deduction nor induction comes with any
guarantee that their conclusions are true. If the conclusion you deduced about the
battery turns out to be false, then you should revise your belief in one or other of the
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premises. If the conclusion you induced about the battery turns out to be false, then you
should not necessarily change your mind about the truth of the premises. A valid
deduction yielding a false conclusion must be based on false premises, but an induction
yielding a false conclusion need not be.

Some varieties of induction

Induction occurs in three stages. The first stage is to grasp some propositions—some
verbal assertions or perceptual observations. The second stage is to frame a tentative
hypothesis that reaches a semantically stronger description or understanding of this
information. If this conclusion follows validly from the premises and the background
knowledge, then the inference is not an induction but an enthymeme, i.e. a deduction
that depends on premises that are not stated explicitly (see Osherson, Smith & Shafir,
1986). The third stage, if a reasoner is prudent, is to evaluate the conclusion, and as a
result to maintain, modify, or abandon it.

A common form of induction in daily life concerns a specific event, such as the
induction made by the master of the Herald of Free Enterprise that the bow doors had
been closed. Another form of induction leads to a general conclusion. For instance, after
standing in line to no avail for just one occasion in Italy, you are likely to infer:

In Italian bars with cashiers, you pay the cashier first and then take your receipt
to the bar to make your order.

A special case of an induction is an explanation, though not all explanations are arrived
at inductively. In the preceding case, the induction yields a mere description that makes
no strong theoretical claim. But, the process may be accompanied by a search for an
explanation, e.g.:

The barmen are too busy to write bills, and so it is more efficient for customers
to pay the cashier and then to use their receipts to order.

Scientific laws are general descriptions of phenomena, e.g. Kepler’s third law of
planetary motion describes the elliptical orbits of the planets. Scientific theories explain
these regularities on the basis of more fundamental considerations, e.g. Einstein’s theory
of gravitation explains planetary orbits in terms of the effects of mass on the curvature
of space-time. Some authors argue that induction plays no significant role in scientific
thinking. Thus, Popper (1972) claims that science is based on explanatory conjectures
that are open to falsification, but he offers no account of their origins. The distinction
between an explanation and a corresponding description is far from clear. One view is
that the explanation is a statement in a theoretical language that logically implies the
description, which is a statement in an observation language. But this claim is disputed
(see e.g. Harman, 1973; Thagard, 1988), and it misses the heart of the matter
psychologically. You can describe a phenomenon without understanding it, but you
cannot explain a phenomenon unless you have some putative understanding of it.
Descriptions allow one to make a mental simulation of a phenomenon, whereas
explanations allow one to take it to pieces: you may know what causes the phenomenon,
what results from it, how to influence, control, initiate, or prevent it, how it relates to
other phenomena or how it resembles them, how to predict its onset and course, what
its internal or underlying structure is, how to diagnose unusual events, and, in science,
how to relate the domain as a whole to others. Scientific explanations characteristically
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make use of theoretical notions that are unobservable, or that are at a lower physical
level than descriptions of the phenomena. An explanation accounts for what you do not
understand in terms of what you do understand: you cannot construct a model if the key
explanatory concepts are not available to you. Hence, a critical distinction is whether an
explanation is developed by deduction (without increasing the semantic information in
the premises and background knowledge), by induction (increasing the semantic infor-
mation), or by creation (with an overlap in the semantic information in the explanation
and the original knowledge and premises).

The induction of a generalization could just as well be described as an induction
about a concept. In the earlier example, you acquired knowledge about the concept:

Ttalian bars with cashiers.

These ad hoc concepts are clearly put together inductively out of more basic concepts,
such as the concepts of cashiers, receipts, and bars (Barsalou, 1987). Adults continue
to learn concepts throughout their lives. Some are acquired from knowledge by
acquaintance, others from knowledge by description. You cannot acquire the full
concept of a color, a wine, or a sculpture without a direct acquaintance with them, but
you can learn about quarks, genes, and the unconscious, from descriptions of them.

In summary, inductions are either specific or general; and either descriptive or
explanatory. Generalizations include the acquisition of ad koc concepts and the formu-
lation of conjectures to explain sets of observations, even perhaps a set containing just
a single datum, such as Sir Alexander Fleming’s observation of the destruction of
bacteria on a culture plate—an observation that led to the discovery of penicillin. All
these results are fallible, but human reasoners are usually aware of the fallibility of their
inductions.

Two hypotheses about induction: common elements vs. prototypes

My goal now is to advance a new theory of induction, which accounts for specific and
general inductions. To set the scene, however, I want to sketch the main lines of the
only two historically important ideas about induction. The first idea is that induction is
a search for what is common to a set of observations. Hence, if they all have an element
in common, then this element may be critical. If the positive and negative instances of
the class of observations differ just in respect of this element, then it is indeed the critical
element. This idea implies that a class of events has a set of necessary conditions that
are jointly sufficient to determine its instances (see Smith & Medin, 1981). It can be
traced back to the British Empiricist philosophers, such as Mill (1843), and it provided
the blueprint for a generation of modern psychological investigations. For example, one
of the founders of Behaviourism, Clark L. Hull (1920), studied the acquisition of
concepts based on common elements, and he extended his results to everyday concepts,
arguing that the meaning of dog is “a characteristic more or less common to all dogs and
not common to cats, dolls, and teddy-bears”.

The second idea rejects common elements (e.g. Wittgenstein, 1953; de Saussure,
1960). Hence, dogs have nothing in common with one another. They tend to have four
legs, fur, and the ability to bark, but these are not necessary conditions—a dog could be
three-legged, bald, and mute. The criteria for doghood accordingly characterize a
prototypical dog. Prototypes led a secret life in psychology (see e.g. Fisher, 1916;
Bruner, Goodnow & Austin, 1956) until they emerged in the work of Rosch (e.g. 1973).
She argued that real entities are mentally represented by prototypes. This idea was
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corroborated by the finding that not all instances of a concept are deemed to be equally
representative—a terrier is a prototypical dog, but a chihuahua is not. Similarly, the time
to make judgements about membership of a concept depends on the distance of the
instance from the prototype (see e.g. Rips, Shoben & Smith, 1973; Hampton, 1979).

The contrast between the two ideas of induction is striking. The first idea
presupposes that a general phenomenon has common elements, and the second idea
rejects this presupposition in favor of prototypes. Not surprisingly, current studies of
induction are in a state of flux. Students of artificial intelligence have turned the first
idea into machines that manipulate explicitly structured symbols in order to produce
inductive generalizations (e.g. Hunt, Marin & Stone, 1966; Winston, 1975; Quinlan,
1983; Michalski, 1984; Langley, Simon, Bradshaw & Zytkow, 1987). Connectionists
have implemented a version of the second idea (e.g. Hinton, 1986; Hanson & Bauer,
1989). Psychologists have examined both ideas experimentally (see Smith & Medin,
1981). And philosophers have argued that neither idea is viable and that induction is
impossible (see e.g. Fodor, 1988, and for a rebuttal, Johnson-Laird, 1983, Ch. 6). The
state of the art in induction can be summarized succinctly: theories and computer
programs alike represent inductive conjectures in an internal language based on a given
set of concepts; they use a variety of linguistic operations for generalizing (and
specializing) these conjectures; there are as yet no procedures that can rapidly and
invariably converge on the correct inductive description in a language as powerful as the
predicate calculus. Certainly, no adequate theory of the human inductive process exists,
and this gap is a serious defect in knowledge.

A model theory of specific inductions

The process of induction, I am going to argue, is the addition of information to a model.
In the case of specific inductions in everyday life, the process is hardly separable as a
distinct mental activity: it is part of the normal business of making sense of the world.
When the starter won’t turn over the engine, your immediate thought is:

The battery is flat.

Your conclusion is plausible, but invalid, and so Polya (1957) has suggested that formal,
but invalid, rules are the heuristic basis of such inferences. Because rules do not even
appear to underlie valid inferences (see Johnston-Laird & Byrne, 1991), it is likely that
specific inductions have another basis. You have models, perhaps simplistic, of the car’s
electrical circuitry including the battery and starter:

I+ —O| O

° .
The three symbols in the top left-hand brackets denote a model of the battery with
power, a model of the circuit conveying power to the starter, and a model of the starter
as working. The symbol on the top right hand denotes a model of the starter turning
over the engine. The second model consisting in the three dots is initially implicit: It is
just a place-holder to allow for the fact that there is an alternative to the first model.
When you observe that the starter does nor turn over the engine, then this observation
eliminates the first model and fleshes out the second model to yield:
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- — O |-

You can now diagnose that the battery is dead, though there are other possible
diagnoses: the circuit is broken, or the starter does not work. The original model might
be triggered by anything in working memory that matches its explicit content, and so it
can be used to make both deductions and inductions.

People are extraordinarily imaginative in building explanatory models that interre-
late specific events. Tony Anderson and I demonstrated their ability in an experiment
based on randomly paired events (Johnson-Laird & Anderson, 1991). In one condition
the subjects received pairs of sentences taken at random from separate stories:

John made his way to a shop which sold TV sets.
Celia had recently had her ears pierced.

In another condition, the sentences were modified to make them co-referential:

Celia made her way to a shop which sold TV sets.
She had recently had her ears pierced.

The subjects’ task was to explain what was going on. They readily went beyond the
information given to them in order to account for what was happening. They proposed,
for example, that Celia was getting reception in her ear-rings and wanted the TV shop
to investigate, that she was wearing new earrings and wanted to see herself on closed
circuit TV, that she had won a bet by having her ears pierced and was going to spend
the money on a TV set, and so on. The subjects were almost as equally ingenious with
the sentences that were not co-referential.

A critical factor in the construction of a model is, as Tversky and Kahneman (1973)
have established, the availability of relevant knowledge. We investigated this aspect of
specific inductions in an experiment using such premises as:

The old man was bitten by a poisonous snake.
There was no known antidote.

When we asked the subjects to say what happened, every single one replied that the old
man died. But, when the experimenter responded, “Yes, that’s possible but not in fact
true,” then the majority of subjects were able to envisage alternative models in which the
old man survived. If the experimenter gave the same response to each of the subjects’
subsequent ideas, then sooner or later they ran out of ideas. Yet, they tended to generate
ideas in approximately the same order as one another, i.e. the sequences were reliably
correlated. Hence, the availability of relevant knowledge has some consistency within
the culture. The conclusions to the snake-bite problem, for instance, tend to be
produced in the following order:

(1) The old man died.

(2) The poison was successfully removed, e.g. by sucking it out.
(3) The old man was immune to the poison.

(4) The poison was weak, and not deadly.

(5) The poison was blocked from entering the circulatory system, e.g. by the man’s
thick clothing.

Could the subjects be certain that they had exhausted all possible modeis of the
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Figure 1. Some rules of generalization used in inductive programs

premises? Of course, not. Indeed, by the end of the experiment, their confidence in their
initial conclusion had fallen reliably, even in 2 second group where the experimenter
merely responded, “Yes, that’s possible” to each idea. Specific inductions crop up so
often in everyday life because people rarely have enough information to make valid
deductions. Life is seldom deductively closed. Specific inductions are potentially unlimi-
ted, and so there may always be some other, as yet unforeseen, counterexample to a
putative conclusion. A few of the subjects in the experiment produced still more
baroque possibilities, such as that the old man was kept alive long enough for someone
to invent an antidote. If the sequence of conclusions is to be explained in terms of rules
for common sense inferences (see Collins & Michalski, 1989), then they will have to
generate a sequence of plausible inferences. However, Bara, Carassa and Geminiani
(1984) have shown in a computer simulation that such sequences can be generated by
the manipulation of models.

Models and generalization

General inductions, according to linguistic conceptions, depend on going beyond the
data in order to make a generalization. A variety of linguistic operations have been
proposed to make such generalizations, and Fig. 1 shows just some of them. It is natural
to wonder how many different linguistic operations of generalization there are. We can
begin to answer this question by considering the following possibilities. A sufficient
condition for a concept can be stated in a conditional assertion, e.g.:

If it is a square then it is an instance of the concept.

A necessary condition for a concept can also be stated in a conditional assertion, e.g.:
If it is an instance of the concept then it is a square.

Sufficient conditions for a concept, C, can be generalized by the following operations:

(1) Dropping a conjunct from the antecedent:

If A & B then C becomes If A then C
(2) Adding an inclusive disjunction to the antecedent:
If A then C becomes If A or B then C

Necessary conditions for a concept, C, can be generalized by the following operations:

(3) Adding a conjunct to the consequent:



A MODEL THEORY OF INDUCTION 17

If C then A becomes If C then (A & B)
(4) Dropping an inclusive disjunct from the consequent:
If C then (A or B) becomes If C then A

Both conditionals can be generalized by adding the respective converse so as to state
necessary and sufficient conditions:

(5) Adding the converse conditional:
If A then C become If and only if A then C
If C then A

These transformations are applicable to inductive hypotheses in general. Hence, for
example, the step from:

If something is ice, then it is water.
to:

If something is ice, then it is water and it is frozen.

is a generalization (based on operation 3).
The five operations above by no means exhaust the set of possible generalizations.
P p g
Consider, for example, the set of all four possible models that can be built from the two
p
propositions: “it’s a square”, and “it’s a positive instance of the concept,” and their
negations:

O +ve
O —ve
/[ +ve
0 -ve

where “+ ve” symbolizes “it’s a positive instance of the concept”, and “ — ve” symbol-
izes “it’s a negative instance of the concept”. The number of relevant propositions, n,
is two in this case, the number of possible models 2%, and the number of possible subsets
of them is 2@7, including both the set as a whole and the empty set. With any set of
models based on n propositions, then a hypothesis such as:

If it’s a square, then it’s a positive instance of the concept

eliminates a quarter of them. We can now ask how many logically distinct propositions
are generalizations of this hypothesis, i.e. how many eliminate the same models plus at
least one additional model. The answer equals the number of different sets of models
that exclude the same quarter of possible models as the original hypothesis minus two
cases: the empty set of models (which corresponds to a self-contradiction) and the set
excluded by the original hypothesis itself.

2(2n —(0.25)(2m) _ 2

In general, given a hypothesis, H, that rules out a proportion, I(H), of possible models,
the number of possible generalizations of H is equal to:

2@ —AENEM) — o

Unless a hypothesis has a very high information content, which rules out a large
proportion of models, then the formula shows that the number of its possible generaliza-
tions increases exponentially with the number, n, of potentially relevant propositions.
Any simple search procedure based on eliminating putative hypotheses will not be
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computationally tractable: it will be unable to examine all possible generalizations in a
reasonable time. Many inductive programs have been designed without taking this
problem into account. They are viable only because the domain of generalization has
been kept artificially small. The programmer rather than the machine has determined
the members of the set of relevant propositions.

Although there are many possible operations of linguistic generalization, the situ-
ation is very different if induction is based instead on mental models. Only one
operation is needed for the five generalizations above and indeed for all possible
generalizations in a Boolean domain. It is the operation of adding information to a
model with the effect of eliminating it. For example, to revert to the five operations
above, the generalization of dropping a conjunct from an antecedent is equivalent to
eliminating a model. Thus, an assertion of the form:

If A& B then C

corresponds to a set of models that includes:
A /B —1C

When this model is eliminated, the resulting set is equivalent to:
If A then C

and the tautology, B or not-B.

The operation of eliminating a model—by adding information that contradicts
it—suffices for any generalization, because generalization is nothing more than the
elimination of possible states of affairs. The resulting set of models can then be
described by a parsimonious proposition. Although the operation obviates the need to
choose among an indefinite number of different forms of linguistic generalization, it
does not affect the intractability of the search. The problem now is to determine which
models to eliminate. And, as ever, the number of possibilities to be considered increases
exponentially with the number of models representing the initial situation.

Models and the operations of generalization with quantifiers

Some inductive programs, such as INDUCE 1.2 (Michalski, 1983), operate in a domain
that allows quantification over individuals, i.e. with a version of the predicate calculus.
Where quantifiers range over infinitely many individuals, it is impossible to calculate
semantic information on the basis of cardinalities, but it is still possible to maintain a
partial rank order of generalization: one assertion is a generalization of another if it
eliminates certain states of affairs over and above those eliminated by the other
assertion. Once again, we can ask: how many operations of generalization are necessary?

The answer, once again, is that the only operation that we need is the archetypal
one that adds information to models so as to eliminate otherwise possible states of
affairs. Tokens can be added to the model in order to generalize the step from a finite
number of observations to a universal claim. You observe that some entities of a
particular sort have a property in common:

Electrons emitted in radioactive decay damage the body.
Positrons emitted in radioactive decay damage the body.
Photons emitted in radioactive decay damage the body.

These initial observations support the following model:
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P d
P d
P d

where “p” symbolizes a particle and “d” damage to the body. Information can be added
to the model to indicate that all such particles have the same property:

bl d
[p) d

[P} d

where the square brackets indicate that the set of particles is now exhaustively repre-
sented in the model. This model rules out the possibility of any particles emitted in
radioactive decay that do not damage the body. This operation on models corresponds
to a linguistic operation that leads from an initial observation:

Some particles emitted in radioactive decay damage the body.
to the conclusion:
Any particles emitted in radioactive decay damage the body.

Some authors refer to this operation as “instance-based” generalization (Thagard and
Holyoak, 1985) or as “turning constants into variables” (Michalski, 1983, p. 107).
There seems to be little to choose between the operation on models and the linguistic
operation. However, the operation on models turns out to yield other forms of linguistic
generalization.

Information can be added to a model to represent a new property of existing
individuals. If you have established that certain individuals have one property, then you
can make a generalization that they satisfy another. You observe, for example, bees with
an unusually potent sting:

[s]

[s]

[s]
where “s” denotes a bee with a potent sting, and the set is exhaustively represented. You
conjecture that the cause of the sting is a certain mutation:

[m] [s]
[m] [s]

[m] [s]

Likewise, new relations can be added to hold between existing entities in a model.
For example, a model might represent the relations among, say, a finite set of viruses
and a finite set of symptoms. The semantically weakest case is as follows:

v S
v S

vV —3s
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where there is one definite causal relation, signified by the arrow, but nothing is known
about the relations, positive or negative, between the remaining pairwise combinations
of viruses and symptoms. You can describe this model in the following terms:

At least one virus causes at least one of the symptoms.

By the addition of further causal relations the model may be transformed into the
following one:

v s
v i s
v—>3s
You can describe a model of this sort as follows:
Each of the symptoms is caused by at least one of the viruses.

Hence, the effect is still equivalent to the linguistic operation of replacing an existential
quantifier (“at least one”) in the previous description by a universal quantifier (“each”).
The addition of a further causal link, however, yields a still stronger model.

\4 s
v s
V—s

You can describe a model of this sort in the following terms:
At least one of the viruses causes each of the diseases.

In the predicate calculus, the linguistic effect of the operator is now to promote an
existential quantifier from inside to outside the scope of a universal quantifier:

Vs 3v v causes s = v Vs v causes s

No such rule, however, appears to be have been proposed by any current inductive
theory. The model theory has therefore led us to the discovery of a new form of
linguistic generalization.

The operation of adding information to models enables us to generalize from the
weakest possible model to the strongest possible one in which each of the viruses causes
each of the symptoms. Hence, the addition of information to models suffices for all
possible generalizations in those everyday domains that can be described by the
predicate calculus. It replaces the need for a battery of various linguistic operations.

How can induction be constrained?

The burden of the argument so far is simple: induction is a search for a model that is
consistent with observation and background knowledge. Generalization calls for only
one operation, but the search is intractable because of the impossibility of examining all
of its possible effects. The way to cut the problem down to a tractable size is, not to
search blindly by trial and error, but to use constraints to guide the search (Newell &
Simon, 1972). Three constraints can be used in any domain and may be built into the
inductive mechanism itself: specificity, availability, and parsimony.

Specificity is a powerful constraint on induction. It is always helpful to frame the
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most specific hypothesis consistent with observation and background knowledge, that is,
the hypothesis that admits the fewest possible instances of a concept.! This constraint
is essential when you can observe only positive instances of a concept. For example, if
you encounter a patient infected with a new virus, and this individual has a fever, a sore
throat, and a rash, then the most specific hypothesis about the signs of the disease is:

fever M sore throat N rash

where N denotes the intersection of sets. If you now encounter another patient with the
same viral infection, who has a fever and a rash, but no sore throat, you will realize that
your initial hypothesis was too specific. You can generalize it to one consistent with the
evidence:

fever N rash
Suppose, however, that you had started off with the more general inclusive disjunction:
fever U sore throat U rash

where U denotes the union of sets. Although this conjecture is consistent with the data,
it is too general, and so it would remain unaffected by your encounter with the second
patient. If the only genuine sign of the disease is the rash, then you would never discover
it from positive examples alone, because your hypothesis would accommodate all of
them. Hence, when you are trying to induce a concept from positive instances, you must
follow the specificity constraint. Your hypothesis may admit too few instances, but if so,
sooner or later, you will encounter a positive instance that will allow you to correct it.

This principle has been proposed by Berwick (1986) in terms of what he calls the
“subset” principle, which he derives from a theorem in formal learning theory due to
Angluin (1978). In elucidating children’s acquisition of syntax, phonology, and con-
cepts—domains in which they are likely to encounter primarily positive instances—
Berwick argues that the instances that are described by a current inductive hypothesis
should be as few as possible, If they are a proper subset of the actual set of instances,
then children can correct their inductive hypothesis from encounters with further
positive instances. But, if the current hypothesis embraces all the members of the actual
set and more, then it will be impossible for positive instances to refute the hypothesis.
What Angluin (1978) proved was that positive instances could be used to identify a
language in the limit, i.e. converge upon its grammar without the need for subsequent
modifications (see Gold, 1967), provided that the candidate hypotheses about the
grammar could be ordered so that each progressively more general hypothesis includes
items that are not included in its predecessor. The inductive system can then start with
the most specific hypothesis, and it will move to a more general one whenever it
encounters a positive instance that falls outside its current hypothesis.

Availability is another general constraint on induction. It arises from the machinery
that underlies the retrieval of pertinent knowledge. Some information comes to mind
more readily than other information, as we saw in the case of the specific induction
about the snake bite. The availability of information, as Tversky and Kahneman (1973)
have shown, can bias judgement of the likelihood of an event. It also underlies the
“mutability” of an event—the ease with which one can envisage a counterfactual
scenario in which the event does nor occur (see Tversky & Kahneman, 1982; Kahneman
& Miller, 1986). Availability is a form of bias, but bias is what is needed to deal with
the intractable nature of induction.

Parsimony is a matter of fewer concepts in fewer combinations. It can be defined
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only with respect to a given set of concepts and a system in which to combine them.
Hence, it is easily defined for the propositional calculus, and there are programs
guaranteed in principle to deliver maximally parsimonious descriptions of models within
this domain (see Johnson-Laird, 1990). What complicates parsimony is that the pre-
sumption of a conceptual system begs the question. There is unlikely to be any
procedure for determining absolute parsimony. Its role in induction therefore seems to
be limited to comparisons among alternative theories using the same concepts.

The most important constraint on induction I have left until last for reasons that
will become clear. It is the use of existing knowledge. A rich theory of the domain will
cut down the number of possible inductions; it may also allow an individual to
generalize on the strength of only a single instance. This idea underlies so-called
“explanation-based learning” in which a program uses its background knowledge of the
domain to deduce why a particular instance is a member of a concept (see e.g. DeJong
& Mooney, 1986; Mitchell, Keller & Kedar-Cabelli, 1986). Another source of knowl-
edge is a helpful teacher. A teacher who cannot describe a concept may still be able to
arrange for a suitable sequence of instances to be presented to pupils. This pedagogical
technique cuts down the search space and enables limited inductive mechanisms to
acquire concepts (Winston, 1975). The constraints of theory are so important that they
often override the pure inductive process: one ignores counterexamples to the theory.
The German scientist and aphorist, Georg Lichtenberg (1742-1799), remarked: “One
should not take note of contradictory experiences until there are enough of them to
make constructing a new system worthwhile”. The molecular biologist James Watson
has similarly observed that no good model ever accounts for all the facts because some
data are bound to be misleading if not plain wrong (cited in Crick, 1988, p. 60). This
methodological prescription appears to be observed automatically by young children
seeking to acquire knowledge. Karmiloff-Smith and Inhelder (1974/5) have observed
that children learning how to balance beams ignore counterexamples to their current
hypotheses. Such neglect of evidence implies that induction plays only a limited role in
the development of explanations. An explanation does not increase the semantic
information in the observations, but rather eliminates possibilities that only overlap with
those that the evidence eliminates. According to my earlier analysis, the process is
therefore not inductive, but creative.

The design of the human inductive system

Although studies in psychology and artificial intelligence have been revealing, no-one
has described a feasible program for human induction. What I want to consider finally
are some of the design characteristics that any plausible theory must embody. If nothing
else, these characteristics show why no existing algorithm is adequate for human
induction. The agenda is set by the theory of mental models and the underlying
subconcepts from which they are constructed. This theory implies that there are three
sources of concepts.

The first source is evolution. What must be genetically endowed for induction to be
possible are the following basic components:

(1) A set of subconcepts. These subconcepts include those for entities, properties,
and relations, that apply to the perceptual world, to bodily states and emotions, and to
mental domains including deontic and epistemic states (facts, possibilities, counterfac-
tual states, impossibilities). They are the ultimate components out of which all induc-
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TaBLE 1. Some examples illustrating the ontological and epistemological
classification of concepts

The epistemological dimension

The
ontological Analytical Natural
dimension concepts kinds Artefacts
Entities
Objects: Triangle Dog Table
Substances: Space Water Food
Properties Straight Alive Expensive
Relations Causes Sees Owns

tions are constructed, and they are used in the construction and manipulation of mental
models. It is of little use to define one concept, such as woman, in terms of other
high-level concepts, such as adult, human, female. The concept must depend on
subconcepts that can be used to construct models of the world. What is needed is an
analysis of the satisfaction conditions of our most basic ideas and their interrelations.
These conditions enable us to envisage the world and in certain circumstances to verify
our imaginings. ' .
(2) A set of methods for combining concepts. These methods include composition, i.e.
a method that allows one subconcept to call upon another, and recursion, i.e. a method
that allows a set of subconcepts to be used in a loop that is executed for a certain
number of times (see Boolos & Jeffrey, 1989). These combinations interrelate subcon-
cepts to form concepts, and they interrelate concepts to form new high-level concepts
or inductive conjectures.

(3) A set of inductive mechanisms. It is these mechanisms that make possible induction
of concepts and generalizations.

The second source of concepts is knowledge by compilation. The process depends on
an inductive mechanism that assembles concepts (and their taxonomic interrelations)
out of the set of innate subconcepts and combinations. Verbal instruction alone is no use
here: there is no substitute for the construction of models of the world—its entities,
properties, and relations. Ultimately, the repeated construction of models, as I suggested
in the case of spatial relations, such as diagonally up and to the right, enables the relevant
concept to be compiled into subconcepts.

Concepts constructed from subconcepts are heterogeneous: some are analyric in
that they have necessary and sufficient conditions; others such as natural kinds and
artefacts are open-ended, prototypical, and depend on default values. Table 1 gives
examples of these three main sorts of concepts for entities, properties, and relations.
This heterogeneity has consequences for the mechanism that constructs new concepts.
Those concepts with necessary and sufficient conditions might be induced by a variant
of the method that builds decision trees (Quinlan, 1983), but this method runs into
difficulties with concepts that depend on prototypes. They might be acquired by a
program that constructs hierarchies of clusterings in which instances are grouped
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together in ways that are not all or none (e.g. Pearl, 1986; Fisher, 1987; Gennari,
Langley & Fisher, 1990)

Neither decision-tree nor connectionist programs correspond precisely to the
required inductive mechanism. Its input, as I have argued, is a sequence of models, and
its output is a heterogeneous set of concepts. This heterogeneity suggests that the
mechanism builds up a hierarchy of defaults, exceptions, and necessary conditions. The
mechanism must also be able to acquire concepts of objects, properties, relations, and
quantification. Although there are proposals that are syntactically powerful enough to
cope with these demands, no satisfactory program for inducing the corresponding
concepts yet exists.

The third source of both concepts and conjectures is knowledge by composition. The
process depends on a mechanism that comes into play only after some high-level
concepts have been assembled out of subconcepts. Its results take the form of inductive
generalizations and ad hoc concepts, which it composes out of existing high-level
concepts. For example, you can acquire the ad hoc concept “araeostyle” from the
following definition:

An araeostyle building has equi-distant columns with a distance between them
of at least four times the diameter of the columns.

Many machine programs are static in that they construct new concepts out of a fixed
basic set that depends on the user’s specification of the inductive problem (see e.g.
Hunt, Marin & Stone, 1966; Mitchell, 1977). The human inductive mechanism,
however, is evolutionary. It constructs new concepts from those that it has previously
constructed; and, unlike most existing programs, it can construct novel concepts in
order to frame an inductive hypothesis. It can also deploy compositional principles in
the construction of concepts such as araeostyle. Existing programs can induce some
compositional concepts using explicitly structured representations (see Anderson, 1975;
Power & Longuet-Higgins, 1978; Selfridge, 1986), but they cannot yet induce concepts
that depend on recursion. Although connectionist systems can acquire rudimentary
conceptual systems, and also rudimentary syntactic rules (see e.g. Hanson & Kegl,
1987), they are not presently able to learn sufficiently powerful concepts to emulate
human competence.

Knowledge by composition, as in the case of araeostyle, saves much time and
trouble, but it is superficial. The shift from novice to expert in any conceptual domain
appears to depend on knowledge by compilation. Only then can a concept be immedi-
ately used to construct models or to check that the concept is satisfied in a perceptual
model. The induction of generalizations similarly depends on the use of experience to
add information to models of the relevant domain.

The case for models

Theorists tend to think of induction as yielding linguistic generalizations (see e.g. the
contributions in Kodratoff & Michalski, 1990). Hence, a major question has been to
find the right language in which to represent concepts and conjectures. There has been
much debate amongst the proponents of different mental languages, such as semantic
networks, production systems, and versions of the predicate calculus. Yet, as I have
argued, to think of the results of induction as linguistic representations may be a vast
mistake. It may not do justice to human thinking. The purpose of induction is to make
sense of the world, either by enabling individuals to predict or to categorize more
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efficiently or, better still, to understand phenomena. The mind builds models, and the
structure of models is the basis of human conceptions of the structure of the world. The
products of induction may therefore be models, either ones that simulate phenomena
(descriptive inductions) or else ones constructed from more elemental subconcepts
(explanatory inductions). After such models have been induced, they can, if necessary,
be used to formulate verbal generalizations.

One advantage of models is that the inductive mechanism needs, in principle, only
one operation of generalization: the addition of information to models. This operation
is equivalent to quite diverse effects on linguistic hypotheses. When it leads to the
elimination of a model, it is equivalent to adding the negation of the description of that
model to the current verbal hypothesis. It can have the effect of a so-called universal
generalization, which introduces a universal quantifier in place of an existential. And it
can have the effect of promoting an existential quantifier from inside to outside the
scope of a universal quantifier.

Another advantage of models is that they embody knowledge in a way that naturally
constrains inductive search. They maintain semantic information, they ensure internal
consistency, and they are parsimonious because each entity is represented only once.
They can also focus attention on the critical parts of the phenomena. An instructive
example is provided by Novak’s (1977) program for solving textbook problems in
physics. It initially represents problems in a semantic network, but this representation
contains too much information, and so the program extracts from it a model of the
situation that is used to identify the points where forces have to balance.

One final advantage of models is that they elucidate the clues about induction that
have emerged from the psychological laboratory. Because of the limited processing
capacity of working memory, models represent only certain information explicitly and
the rest implicitly. One consequence is that people fall into error, and the evidence
shows they make the same sorts of error in both deduction and induction. Thus, in
deduction, they concentrate on what is explicit in their models, and so, for example,
they often fail to make certain deductions. In induction, they likewise focus on what is
explicit in their models, and so seldom seek anything other than evidence that might
corroborate their inductive conjectures. They eschew negative instances, and encounter
them only when they arise indirectly as a result of following up alternative hypotheses
(see e.g. Bruner ez al., 1956; Wason, 1960; Klayman & Ha, 1987). In deduction, they
are markedly influenced by the way in which a problem is framed: what a model
represents explicitly depends on what is explicitly asserted, and so individuals often have
difficulty in grasping that two assertions have the same truth conditions, e.g. “Only the
bakers are athletes” and “All the athletes are bakers” (see Johnson-Laird & Bryne,
1991). In induction, there are equally marked effects of how a problem is framed (see
Hogarth, 1982). In both deduction and induction, disjunctive alternatives cause
difficulties. They call for more than one model to be constructed, whereas reasoners are
much better able to cope with a single model and thus have a natural preference to work
with conjunctions. Disjunctive informative even appears to block straightforward deci-
sions. For example, many people who choose a vacation if they pass an exam, or if they
fail it, do not choose it when the outcome of the exam is unknown (see Shafir &
Tversky, 1991; Tversky & Shafir, 1991). The very preference of a “common element”
analysis of concepts is just another manifestation of the same phenomenon. Similarly, a
single model of a process underlies the natural tendency to overgeneralize. Once children
learn, for example, how to form the regular past tense, their tendency to generate
“go~-ed” supplants their previous grasp of “went” as a separate lexical item. Finally,
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knowledge appears to play exactly the same part in both deduction and induction. It
biases the process to yield more credible conclusions.

Conclusions

The principal contrast in induction is between specific and general inductions. Specific
inductions are part of comprehension: you flesh out your model of a discourse or the
world with additional information that is automatically provided by your general
knowledge. General inductions yield new models, which can also enrich your conceptual
repertoire. The human inductive mechanism that carries out these tasks appears to
embody five design characteristics:

(1) Its ultimate constituents are a set of subconcepts and conceptual combina-
tions that are powerful enough to construct any mental model.

(2) Tt can induce heterogeneous concepts of objects, properties, and relations
from knowledge by acquaintance. The repeated construction of models leads
to the compilation of concepts into subconcepts, including necessary subcon-
cepts and those that specify default values.

(3) It can construct novel concepts from knowledge by composition, assembling
them according to principles that generate recursively embedded structures.

(4) It can construct a model of a domain either ab initio or by adding information
to an existing set of models in accordance with evidence.

(5) It is guided by constraints. It takes into account available knowledge; it
formulates the most specific generalizations consistent with the data and
background knowledge; and, perhaps, it seeks the simplest possible conjecture
consistent with the evidence.

The price of tractable induction is imperfection. We often concentrate on the
triumphs of induction and the minor imperfections that yield clues to the nature of its
mechanism. We overlook its catastrophes—the fads of pseudo-science, the superstitions
of daily life, and the disastrous generalizations that lead to such events as the sinking of
the Herald of Free Enterprise. The origin of these errors is in the human inductive
mechanism: its heuristics are what students of other cultures refer to as “magical
thinking”. And the pressure of working memory capacity often puts too much emphasis
on what is explicitly represented in a model. Theorists, this theory argues, are bound to
focus on what is explicitly represented in their models. The reader is invited to reflect
on the recursive consequences of this claim for the present theory.
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Note

1. The most specific description of a set is one that admits the fewest possible instances. The most specific
proposition about a phenomenon is the one that rules out as false the fewest possible states of affairs. The
difference reflects the difference between sets (which have conditions of satisfaction) and propositions
(which are true or false).
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