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Abstract 

This paper outlines the theory of reasoning based on mental models, and then 
shows how this theory might be extended to deal with probabilistic thinking. The 
same explanatory framework accommodates deduction and induction: there are 
both deductive and inductive inferences that yield probabilistic conclusions. The 
framework yields a theoretical conception of strength of inference, that is, a theory 
of what the strength of an inference is objectively: it equals the proportion of 
possible states of affairs consistent with the premises in which the conclusion is true, 
that is, the probability that the conclusion is true given that the premises are true. 
Since there are infinitely many possible states of affairs consistent with any set of 
premises, the paper then characterizes how individuals estimate the strength of an 
argument. They construct mental models, which each correspond to an infinite set 
of possibilities (or, in some cases, a finite set of infinite sets of possibilities). The 
construction of models is guided by knowledge and beliefs, including lay con- 
ceptions of such matters as the “law of large numbers”. The paper illustrates how 
this theory can account for phenomena of probabilistic reasoning. 

1. Introduction 

Everyone from Aristotle to aboriginals engages in probabilistic thinking, 

whether or not they know anything of the probability calculus. Someone tells you: 

*Fax (609) 258 1113, e-mail phil@clarity.princeton.edu 

The author is grateful to the James S. McDonnell Foundation for support. He thanks Jacques 

Mehler for soliciting this paper (and for all his work on 50 volumes of Cognition!). He also thanks 

Ruth Byrne for her help in developing the model theory of deduction, Eldar Shafir for many friendly 
discussions and arguments about the fundamental nature of probabilistic thinking, and for his critique 

of the present paper. Malcolm Bauer, Jonathan Evans and Alan Garnham also kindly criticized the 

paper. All these individuals have tried to correct the erroneous thoughts it embodies. Thanks also to 

many friends - too numerous to mention - for their work on mental models. 

SSDZ 0010-0277(93)00594-W 



190 P.N. Johnson-Laird / Cognition SO (1994) 1X9-209 

There was a severe frost last night. 

and you are likely to infer: 

The vines will probably not have survived it. 

basing the inference on your knowledge of the effects of frost. These inferences 

are typical and ubiquitous. They are part of a universal human competence, which 

does not necessarily depend on any overt mastery of numbers or quantitative 

measures. Aristotle’s notion of probability, for instance, amounts to the following 

two ideas: a probability is a thing that happens for the most part, and conclusions 

that state what is probable must be drawn from premises that do the same (see 

Rhetoric, I, 1357a). Such ideas are crude in comparison to Pascal’s conception of 

probability, but they correspond to the level of competence a psychological theory 

should initially aspire to explain. 

Of course many people do encounter the probability calculus at school. Few 

master it, as a simple test with adults shows: 

There are two events, which each have a probability of a half. What is the 

probability that both occur? 

Many people respond: a quarter. The appropriate “therapy” for such errors is to 

invite the individual first to imagine that A is a coin landing heads and B is the 

same coin landing tails, that is, P(A & B) = 0. and then to imagine that A is a 

coin landing heads and B is a coin landing with the date uppermost, where date 

and head are on the same side, that is, P(A & B) = 0.5. At this point, most 

people begin to grasp that there is no definite answer to the question above -joint 

probabilities are a function of the dependence of one event on the other. 

Cognitive psychologists have discovered many phenomena of probabilistic 

thinking, principally that individuals do not follow the propositional calculus in 

assessing probabilities, and that they appear to rely on a variety of heuristics in 

making judgements about probabilities. A classic demonstration is Tversky and 

Kahneman’s (1983) phenomenon of the “conjunction fallacy”, that is, a violation 

of the elementary principle that P(A & B) cp(B). For example, subjects judge 

that a woman who is described as 31 years old, liberal and outspoken, is more 

likely to be a feminist bankteller than a bankteller. Indeed, we are all likely to go 

wrong in thinking about probabilities: the calculus is a branch of mathematics that 

few people completely master. 

Theorists relate probability to induction, and they talk of both inductive 

inference and inductive argument. The two expressions bring out the point that 

the informal arguments of everyday life, which occur in conversation, newspaper 



P.N. Johnson-Laird I Cognition 50 (1994) 189-209 191 

editorials and scientific papers, are often based on inductive inferences. The 

strength of such arguments depends on the relation between the premises and the 

conclusion. But the nature of this relation is deeply puzzling - so puzzling that 

many theorists have abandoned logic altogether in favor of other idiosyncratic 

methods of assessing informal arguments (see, for example, Toulmin, 1958; the 

movement for “informal logic and critical thinking”, e.g. Fisher, 1988; and 

“neural net” models, e.g. Thagard, 1989). Cognitive psychologists do not know 

how people make probabilistic inferences: they have yet to develop a computable 

account of the mental processes underlying such reasoning. 

For this celebratory volume of Cognition, the editor solicited papers summa- 

rizing their author’s contributions to the field. The present paper, however, looks 

forward as much as it looks back. Its aim is to show how probabilistic thinking 

could be based on mental models - an approach that is unlikely to surprise 

assiduous readers of the journal (see, for example, Byrne, 1989; Johnson-Laird & 

Bara, 1984; Oakhill, Johnson-Laird, & Garnham, 1989). In pursuing the editor’s 

instructions, part 2 of the paper reviews the theory of mental models in a 

self-contained way. Part 3 outlines a theoretical conception of strength of 

inference, that is, a theory of what objectively the strength of an inference or 

argument depends on. This abstract account provides the agenda for what the 

mind attempts to compute in thinking probabilistically ( a theory at the “computa- 

tional” level; Marr, 1982). However, as we shall see, it is impossible for a finite 

device, such as the human brain, to carry out a direct assessment of the strength 

of an inference except in certain limiting cases. Part 4 accordingly describes a 

theory of how the mind attempts to estimate the strength of inferences (a theory at 

the “algorithmic” level). Part 5 shows how this algorithmic theory accounts for 

phenomena of probabilistic thinking and how it relates to the heuristic approach. 

Part 6 contrasts the model approach with theories based on rules of inference, and 

shows how one conception of rules can be reconciled with mental models. 

2. Reasoning and mental models 

Mental models were originally proposed as a programmatic basis for thinking 

(Craik, 1943). More recently, the theory was developed to account for verbal 

comprehension: understanding of discourse leads to a modeE of the situation 

under discussion, that is, a representation akin to the result of perceiving or 

imagining the situation. Such models are derived from syntactically structured 

expressions in a mental language, which are constructed as sentences are parsed 

(see Garnham, 1987; Johnson-Laird, 1983). Among the key properties of models 

is that their structure corresponds to the structure of what they represent (like a 

visual image), and thus that individual entities are represented just once in a 

model. The theory of mental models has also been developed to explain deductive 
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reasoning (Johnson-Laird, 1983; Johnson-Laird & Byrne, 1991). Here, the 

underlying idea is that reasoning depends on constructing a model (or set of 

models) based on the premises and general knowledge, formulating a conclusion 

that is true in the model(s) and that makes explicit something only implicit in the 

premises, and then checking the validity of the conclusion by searching for 

alternative models of the premises in which it is false. If there are no such 

counterexamples, then the conclusion is deductively valid, that is, it must be true 

given that the premises are true. Thus, the first stage of deduction corresponds to 

the normal process of verbal comprehension, the second stage corresponds to the 

normal process of formulating a useful and parsimonious description, and only the 

third stage is peculiar to reasoning. To characterize any particular domain of 

deduction, for example reasoning based on temporal relations such as “before”, 

“after” and “while”, or sentential connectives such as “not”, “if”, “and” and 

“or”, it is necessary to account for how the meanings of the relevant terms give 

rise to models. The general reasoning principles, as outlined above, then 

automatically apply to the domain. In fact, the appropriate semantics has been 

outlined for temporal relations, spatial relations, sentential connectives and 

quantifiers (such as “all”, “none” and “some”), and all of these domains can be 

handled according to five representational principles: 

(1) Each entity is represented by an individual token in a model, its properties 

are represented by properties of the token, and the relations between entities are 

represented by the relations between tokens. Thus, a model of the assertion “The 

circle is on the right of the triangle” has the following spatial structure: 

n 0 

which may be experienced as a visual image, though what matters is not so much 

the subjective experience as the structure of the model. To the extent that 

individuals grasp the truth conditions of propositions containing abstract concepts, 

such as friendship, ownership and justice, they must be able to envisage situations 

that satisfy them, that is, to form mental models of these situations (see Johnson- 

Laird, 1983, Ch. 15). 

(2) Alternative possibilities can be represented by alternative models. Thus, 

the assertion “Either there is a triangle or there is a circle, but not both” requires 

two alternative models, which each correspond to separate possibilities: 

n 

0 

(3) The negation of atomic propositions can be represented by a propositional 

annotation. Thus, the assertion “There is not a triangle” is represented by the 

following sort of model: 
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where “1” is an annotation standing for negation (for a defence of such 

annotations, see Polk & Newell, 1988; and Johnson-Laird & Byrne, 1991, pp. 

130-l). Of course, the nature of the mental symbol corresponding to negation is 

unknown. The principal purpose of the annotation is to ensure that models are 

not formed containing both an element and its negation. Thus, the only way to 

combine the disjunctive models above with the model of “There is not a triangle” 

is to eliminate the first model, leaving only the second model and its new negated 

element: 

1A 0 

It follows that there is a circle. As this example shows, deductions can be made 

without the need for formal rules of inference of the sort postulated in “natural 

deduction systems” (see, for example, Rips, 1983; Braine, Reiser & Rumain, 

1984), such as, in this case, the formal rule for disjunction: 

A or B 

not A 

:. B 

(4) Information can be represented implicitly in order to reduce the load on 

working memory. An explicit representation makes information immediately 

available to other processes, whereas an implicit information encodes the 

information in a way that is not immediately accessible. Individuals and situations 

are represented implicitly by a propositional annotation that works in concert with 

an annotation for what has been represented exhaustively. Thus, the proper initial 

representation of the disjunction “Either there is a triangle or there is a circle, but 

not both” indicates that for the cases in which triangles occur, and the cases in 

which circles occur, have been exhaustively represented, as shown by the square 

brackets: 

This set of models implicitly represents the fact that circles cannot occur in the 

first model and triangles cannot occur in the second model, because circles are 

exhaustively represented in the second model and triangles are exhaustively 

represented in the first model. Thus, a completely explicit set of models can be 

constructed by fleshing out the initial models to produce the set: 

a 10 

1A 0 
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where there is no longer any need for square brackets because all the elements in 

the models have been exhaustively represented. The key to understanding implicit 

information is accordingly the process of fleshing out models explicitly, which is 

governed by two principles: first, when an element has been exhaustively 

represented (as shown by square brackets) in one or more models, add its 

negation to any other models; second, when a proposition has not been 

exhaustively represented, then add both it and its negation to separate models 

formed by fleshing out any model in which it does not occur. (Only the first 

principle is needed to flesh out the models of the disjunction above.) 

(5) The epistemic status of a model can be represented by a propositional 

annotation; for example, a model represents a real possibility, a counterfactual 

state of affairs, or a deontic state. 

A model that does not contain propositional annotations, that is, a model 

based on the first two assumptions above, represents a set of possible states of 

affairs, which contains an infinite number of possibilities (Barwise, 1993). Hence, 

the model above of the assertion “The circle is on the right of the triangle” 

corresponds to infinitely many possibilities; for example, the model is not specific 

about the distance apart of the two shapes. Any potential counterexample to a 

conclusion must be consistent with the premises, but the model itself does not 

enable the premises to be uniquely reconstructed. Hence, in verbal reasoning, 

there must be an independent record of the premises, which is assumed to be the 

linguistic representation from which the models are constructed. This record also 

allows the inferential system to ascertain just which aspects of the world the 

model represents; for example, a given model may, or may not, represent the 

distances apart of objects, but inspection of the model alone does not determine 

whether it represents distance. Experimental evidence bears out the psychological 

reality of both linguistic representations and mental models (see Johnson-Laird, 

1983). 

Models with propositional annotations compress sets of states of affairs in a 

still more powerful way: a single model now represents a finite set of alternative 

sets of situations. This aspect of mental models plays a crucial role in the account 

of syllogistic reasoning and reasoning with multiple quantifiers. For example, 

syllogistic premises of the form: 

All the A are B 

All the B are C 

call for one model in which the number of As is small but arbitrary: 

[[al bl 
[[aI bl r . . . 



P.N. Johnson-Laird I Cognition 50 (1994) 189-209 195 

As are exhaustively represented in relation to Bs, Bs are exhaustively represented 

in relation to Cs, Cs are not exhaustively related, and the three dots designate 

implicit individuals of some other sort. This single model supports the conclusion: 

All the A are C 

and there are no counterexamples. The initial model, however, corresponds to 

eight distinct sets of possibilities depending on how the implicit individuals are 

fleshed out explicitly. There may, or may not, be individuals of each of the three 

following sorts: 

individuals who are not-a, not-b, not-c 

individuals who are not-a, not-b but c 

individuals who are not-a. but b and c 

These three binary contrasts accordingly yield eight alternatives, and each of them 

is consistent with an indefinite number of possibilities depending on the actual 

numbers of individuals of the different sorts (see also Garnham, 1993). In short, 

eight distinct potentially infinite sets have been compressed into a single model, 

which is used for the inference. 

The theory of reasoning based on mental models makes three principal 

predictions. First, the greater the number of models that an inference calls for, 

the harder the task will be. This prediction calls for a theoretical account of the 

models postulated for a particular domain. Such accounts typically depend on 

independently motivated psycholinguistic principles; for example, negative asser- 

tions bring to mind the affirmative propositions that are denied (Wason, 1965). 

Second, erroneous conclusions will tend to be consistent with the premises rather 

than inconsistent with them. Reasoners will err because they construct some of 

the models of the premises-typically, just one model of them-and overlook 

other possible models. This prediction can be tested without knowing the detailed 

models postulated by the theory: it is necessary only to determine whether or not 

erroneous conclusions are consistent with the premises. Third, knowledge can 

influence the process of deductive reasoning: subjects will search more assiduous- 

ly for alternative models when a putative conclusion is unbelievable than when it 

is believable. The first two of these predictions have been corroborated ex- 

perimentally for all the main domains of deduction (for a review, see Johnson- 

Laird & Byrne, 1991, and for a reply to commentators, see Johnson-Laird & 

Byrne, 1993). The third prediction has been corroborated in the only domain in 

which it has so far been tested, namely, syllogistic reasoning (see, for example, 

Oakhill, Johnson-Laird, & Garnham, 1989). In contrast, theories of deduction 
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based on formal rules of inference exist only for spatial reasoning and reasoning 

based on sentential connectives (e.g., Rips, 1983; Braine. Reiser, & Rumain, 

1984). Where the model theory and the formal rule theories make opposing 

predictions, the evidence so far has corroborated the model theory. 

3. The strength of an inference 

By definition, inductive arguments are logically invalid; that is, their premises 

could be true but their conclusions false. Yet such arguments differ in their 

strength - some are highly convincing, others are not. These differences are an 

important clue to the psychology of inference. However, one needs to distinguish 

between the strength of an argument - the degree to which its premises, if true, 

support the conclusion, and the degree to which the conclusion is likely to be true 

in any case. An argument can be strong but its conclusion improbable because the 

argument is based on improbable premises. Hence, the probability of the 

premises is distinct from the strength of the argument. In principle, the 

probability of a conclusion should depend on both the probability of the premises 

and the strength of the argument. But, as we shall see, individuals are liable to 

neglect the second of these components. 

Osherson. Smith, and Shafir (1986) in a ground-breaking analysis of induction 

explored a variety of accounts of inferential strength that boil down to three main 

hypotheses: (1) an inference is strong if. given an implicit assumption, schema or 

causal scenario, it is logically valid; that is, the inference is an enthymeme (cf. 

Aristotle); (2) an inference is strong if it corresponds to a deduction in reverse, 

such as argument from specific facts to a generalization of them (cf. Hempel. 

1965); and (3) an inference is strong if the predicates (or arguments) in premises 

and conclusion are similar (cf. Kahneman & Tversky. 1972). Each hypothesis has 

it advantages and disadvantages, but their strong points can be captured in the 

following analysis, which we will develop in two stages. First. the present section 

of the paper will specify an abstract characterization of the objective strength of 

an argument - whar in theory has to be computed in order to determine the 

strength of an inference (the theory at the “computational” level). Second, the 

next section of the paper will specify how in practice the mind attempts to assess 

the strength of an argument (the theory at the “algorithmic” level). 

The relation between premises and conclusion in inductive inference is a 

semantic one. and it can be characterized abstractly by adopting the semantic 

approach to logic (see, for example, Barwise & Etchemendy. 1989). An assertion 

such as “The circle is on the right of the triangle” is, as we have seen, true in 

infinitely many different situations; that is, the distance apart of the two shapes 

can differ. as can their respective sizes, shapes, textures and so on. Yet in all of 
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these different states the circle is on the right of the triangle. Philosophers 

sometimes refer to these different states as “possible worlds” and argue that an 

assertion is true in infinitely many possible worlds. We leave to one side the issue 

of whether or not possible worlds are countably infinite. The underlying theory 

has led to a powerful, though controversial, account of the semantics of natural 

language (see, for example, Montague, 1974). 

Armed with the notion of possible states of affairs, we can define the notion of 

the strength of an inference in the following terms: a set of premises, including 

implicit premises provided by general and contextual knowledge, lend strength to 

a conclusion according to two principles: 

( 1) The conclusion is true in at least one of the possible states of affairs in 

which the premises are true; that is, the conclusion is at least consistent with the 

premises. If there is no such state of affairs, then the conclusion is inconsistent 

with the premises: the inference has no strength whatsoever, and indeed there is 

valid argument in favor of the negation of the conclusion. 

(2) Possible states of affairs in which the premises are true but the conclusion 

false (i.e., counterexamples) weaken the argument. If there are no counterexam- 

ples, then the argument is maximally strong - the conclusion follows validly from 

the premises. If there are counterexamples, then the strength of the argument 

equals the proportion of states of affairs consistent with the premises in which the 

conclusion is also true. 

This account has a number of advantages. First, it embraces deduction and 

induction within the same framework. What underlies deduction is the semantic 

principle of validity: an argument is valid if its conclusion is true in any state of 

affairs in which its premises are true. An induction increases semantic information 

and so its conclusion must be false in possible cases in which its premises are true. 

Hence, inductions are reverse deductions, but they are the reverse of deductions 

that throw semantic information away. 

Second, the probability of any one distinct possible state of affairs (possible 

world) is infinitesimal, and so it is reasonable to assume that possible states of 

affairs are close to equi-possible. It follows that a method of integrating the area 

of a subset of states of affairs provides an extensional foundation for probabilities. 

The strength of an inference is accordingly equivalent to the probability of the 

conclusion given the premises. It is 1 in the case of a valid deduction, 0 in the case 

of a conclusion that is inconsistent with the premises, and an intermediate value 

for inductions. The two abstract principles, however, are not equivalent to the 

probability calculus: as we shall see, the human inferential system can attempt to 

assess the relevant proportions without necessarily using the probability calculus. 

Likewise, the principles have no strong implications for the correct interpretation 

of probability, which is a matter for self-conscious philosophical reflection. The 
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principles are compatible with interpretations in terms of actuarial frequencies of 

events, equi-possibilities based on physical symmetry, and subjective degrees of 

belief (cf. Ramsay, 1926; Hintikka’s, 1962, analysis of beliefs in terms of 

possibility; and for an alternative conception, see Shafer & Tversky’s, 1985, 

discussion of “belief functions”). Hence, an argument (or a probability) may 

concern either a set of events or a unique event. Individuals who are innumerate 

may not assign a numerical degree of certainty to their conclusion, and even 

numerate individuals may not have a tacit mental number representing their 

degree of belief. Individuals’ beliefs do differ in subjective strength, but it does 

not follow that such differences call for a mental representation of numerical 

probabilities. An alternative conception of “degrees of belief” might be based on 

analogue representations (cf. Hintzman, Nozawa, & Irmscher, 1982), or on a 

system that permitted only partial rankings of strengths, such as one that recorded 

the relative ease of constructing different classes of models. 

Third, the account is compatible with semantic information. The semantic 

information conveyed by a proposition, A, equals 1 -p(A), where p(A) denotes 

the probability of A (Bar-Hillel & Carnap, 1964; Johnson-Laird. 1983). If A is 

complex proposition containing conjunctions, disjunctions, etc., its probability 

can be computed in the usual way according to the probability calculus. Hence, as 

argued elsewhere (Johnson-Laird, 1993), we can distinguish between deduction 

and induction on the basis of semantic information, that is, the possible states of 

affairs that a proposition rules out as false. Deduction does not increase semantic 

information; that is, the conclusion of a valid deduction rules out the same 

possibilities as the premises or else fewer possibilities, and so the conclusion must 

be true given that the premises are true. Induction increases semantic in- 

formation; that is, the conclusion of an induction goes beyond the premises 

(including those tacit premises provided by general knowledge) by ruling out at 

least some additional possibility over and above the states of affairs that they rule 

out. This account captures all the standard cases of induction, such as the 

generalization from a finite set of observations to a universal claim (for a similar 

view, see Ramsay, 1926). 

Fourth, the account is compatible with everyday reasoning and argumentation. 

One feature of such informal argumentation is that it typically introduces both a 

case for a conclusion and a case against it - a procedure that is so unlike a logical 

proof that many theorists have supposed that logic is useless in the analysis of 

everyday reasoning (e.g, Toulmin, 1958). The strength of an argument, however, 

can be straightforwardly analyzed in the terms described above: informal 

argumentation is typically a species of induction, which may veer at one end into 

deduction and at the other end into a creative process in which one or more 

premises are abandoned. Thus, a case for a conclusion may depend on several 

inductive arguments of differing strength. 

The obvious disadvantage of the account is that it is completely impractical. No 
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one can consider all the infinitely many states of affairs consistent with a set of 

premises. No one can integrate all those states of affairs in which the conclusion is 

true and all those states of affairs in which it is false. Inference with quantifiers 

has no general decision procedure; that is, proofs for valid theorems can always 

be found in principle, but demonstrations of invalidity may get lost in the “space” 

of possible derivations. Inference with sentential connectives has a decision 

procedure, but the formulation of parsimonious conclusions that maintain 

semantic information is not computationally tractable; that is, as premises contain 

more atomic propositions, it takes exponentially longer to generate such conclu- 

sions (given that NP # P). So how does this account translate into a psychological 

mechanism for assessing the strength of an argument? It is this problem that the 

theory of mental models is designed to solve. 

4. Mental models and estimates of inferential strength 

Philosophers have tried to relate probability and induction at a deep level (see, 

for example, Carnap, 1950), but as far as cognitive psychology is concerned they 

are overlapping rather than identical enterprises: there are probabilistic infer- 

ences that are not inductive, and there are inductive inferences that are not 

probabilistic. Here, for example, is a piece of probabilistic reasoning that is 

deductive: 

The probability of heads is 0.5. 

The probability of the date uppermost given heads is 1. 

The probability of the date uppermost given tails is 0. 

Hence, the probability of the date uppermost is 0.5. 

This deduction makes explicit what is implicit in the premises, and it does not 

increase their semantic information. A more mundane example is as follows: 

If you park illegally within the walls of Siena, you will probably have your 

car towed. 

Phil has parked illegally within the walls of Siena. 

Phil will probably have his car towed. 

This inference is also a valid deduction. Conversely, many inductive inferences 

are not probabilistic; that is, they lead to conclusions that people hold to be valid. 

For example, the engineers in charge at Chernobyl inferred initially that the 

explosion had not destroyed the reactor (Medvedev, 1990). Such an event was 

unthinkable from their previous experience, and they had no evidence to suppose 

that it had occurred. They were certain that the reactor was intact, and their 
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conviction was one of the factors that led to the delay in evacuating the 

inhabitants of the nearby town. Of course people do make probabilistic induc- 

tions, and it is necessary to explain their basis as well as the basis for probabilistic 

deductions. To understand the application of the model theory to the assessment 

of strength, it will be helpful to consider first how it accounts for deductions based 

on probabilities. 

Critics sometimes claim that models can be used only to represent alternative 

states of affairs that are treated as equally likely. In fact, there is no reason to 

suppose that when individuals construct or compare models they take each model 

to be equally likely. To illustrate the point, consider an example of a deduction 

leading to a probabilistic conclusion: 

Kropotkin is an anarchist. 

Most anarchists are bourgeois. 

:. Probably, Kropotkin is bourgeois. 

The quantifier “most” calls for a model that represents a proportion (see 

Johnson-Laird, 1983, p. 137). Thus, a model of the second premise takes the 

form: 

. . . 

where the set of anarchists is exhaustively represented; that is, anarchists cannot 

occur in fleshing out the implicit model designated by the three dots. When the 

information in the first premise is added to this model, one possible model is: 

in which Kropotkin is bourgeois. Another possible model is: 
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in which Kropotkin is not bourgeois. Following Aristotle, assertions of the form: 

probably S, can be treated as equivalent to: in most possible states of affairs, S. 

And in most possible states of affairs as assessed from models of the premises, 

Kropotkin is bourgeois. Hence, the inferential system needs to keep track of the 

relative frequency with which the two sorts of models occur. It will detect the 

greater frequency of models in which it Kropotkin is bourgeois, and so it will 

deduce: 

Probably, Kropotkin is bourgeois 

Individuals who are capable of one-to-one mappings but have no access to 

cardinal or ordinal numbers will still be able to make this rence. They have 

merely to map each model in which S occurs one-to-one wi ach model in which 

S does not occur, and, if there is a residue, it corresponds the more probable 

category. Likewise, there are many ways in principle in ch to estimate the 

relative frequencies of the two sorts of model - from r m sampling with 

replacement to systematic explorations of the “space” of ible models. The 

only difference in induction is that information that go nd the premises 

(including those in tacit knowledge) is added to models basis of various 

constraints (see Johnson-Laird, 1983). 

The strength of an inference depends, as we have , on the relative 

proportions of two sorts of possible states of affairs consis with the premises: 

those in which the conclusion is true and those in which it lse. Reasoners can 

estimate these proportions by constructing models of the ises and attending 

to the proportions with which the two sorts of models corn mind, and perhaps 

to the relative ease of constructing them. For example, n that Evelyn fell 

(without a parachute) from an airplane flying at a height 00 feet, then most 

individuals have a prior knowledge that Evelyn is likely e killed, but naive 

individuals who encounter such a case for the first time ca fer the conclusion. 

The inference is strong, but not irrefutable. They may be a 0 imagine cases to 

the contrary; for example, Evelyn falls into a large haystac r a deep snow drift. 

But, in constructing models (of sets of possibilities), tho in which Evelyn is 

killed will occur much more often than those in which E n survives - just as 

models in which Kropotkin is bourgeois outnumber tho which he is not. 

Insofar as individuals share available knowledge, their essments of prob- 

abilities should be consistent. 

This account is compatible with the idea of estimating likelihoods in terms of 

scenarios, which was proposed by Tversky and Kahneman (1973, p. 229), and it 

forms a bridge between the model theory and the heuristic approach to 

judgements of probability. Estimates of the relative proportions of the two sorts 
of models - those in which a conclusion is true and those in which it is false - will 



be rudimentary, biased and governed by heuristics. In assessing outcomes 

dependent on sequences of events, models must allow for alternative courses of 

events. They then resemble so-called “event trees”, which Shafer (1993) argues 

provide a philosophical foundation to probability and its relations to causality. 

Disjunctive alternatives, however, arc a source of difficulty both in deduction 

(see, for example, Johnson-Laird & Byrne, 1991) and in choice (see, for example, 

Sham & Tversky. 1992). 

5. Some empirical consequences of the theory 

The strength of an argument depends on the relation between the premises and 

the conclusion, and, in particular, on the proportion of possibilities compatible 

with the premises in which the conclusion is true. This relation is nor in general a 

formal or syntactic one, but a semantic one. It takes work to estimate the strength 

of relation, and the theory yields a number of predictions about making and 

assessing inductive inferences. The main predictions of the theory are as follows: 

First. arguments - cspccially in daily life -do not wear their logical status on 

their sleeves, and so individuals will tend to approach deductive and inductive 

arguments alike. They will tend to confuse an inductive conclusion, that is, one 

that could be true given the premises, with a deductive conclusion, that is, one 

that must be true given the premises. They will tend to construct one or two 

models. draw a conclusion, and be uncertain about whether it follows of 

necessity. 

Second, envisioning models. which each correspond to a class of possibilities. is 

a crude method. and. because of the limited processing capacity of working 

memory, many models are likely never to be envisaged at all. The process will be 

affected by several constraints. In particular, individuals arc likely to seek the 

most specific conclusion consistent with the premises (see Johnson-Laird, 1993), 

they are likely to seek parsimonious conclusions (see Johnson-Laird & Byrne. 

1991). and they arc likely to be constrained by the availability of relevant 

knowledge (Tversky & Kahneman, 1973). The model theory postulates a 

mechanism for making knowledge progressively available. Reasoners begin by 

trying to form a model of the current situation, and the retrieval of relevant 

knowledge is easier if they can form a single model containing all the relevant 

entities. Once they have formed an initial model, knowledge becomes available to 

them in a systematic way. They manipulate the spatial or physical aspects of the 

situation; that is. they manipulate the model directly by procedures corresponding 

to such changes. Next. they make more abstract conceptual manipulations; for 

example, they consider the properties of superordinate concepts of entities in the 

model. Finally, they make still more abstract inferences based on introducing 
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relations retrieved from models of analogous situations (cf. Gentner, 1983). 

Consider the following illustration: 

Arthur’s wallet was stolen from him in the restaurant. The person charged with 

the offense was outside the restaurant at the time of the robbery. What 

follows? 

Reasoners are likely to build an initial model of Arthur inside the restaurant when 

his wallet is stolen and the suspect outside the restaurant at that time. They will 

infer that the suspect is innocent. They may then be able to envisage the following 

sort of sequence of ideas from their knowledge about the kinds of things in the 

model: 

(1) Physical and spatial manipulations: 

The suspect leant through the window to steal the wallet. 

The suspect stole the wallet as Arthur was entering the restaurant, or ran 

in and out of the restaurant very quickly (creative inferences that, in fact, 

are contrary to the premises). 

(2) Conceptual manipulations: 

The suspect had an accomplice - a waiter, perhaps - who carried out the 

crime (theft is a crime, and many crimes are committed by accomplices). 

(3) Analogical thinking 

The suspect used a radio-controlled robot to sneak up behind Arthur to 

take the wallet (by analogy with the use of robots in other “hazardous” 

tasks). 

In short, the model theory predicts that reasoners begin by focusing on the 

initial explicit properties of their model of a situation, and then they attempt to 

move away from them, first by conceptual operations, and then by introducing 

analogies from other domains. It is important to emphasize that the order of the 

three sorts of operations is not inflexible, and that particular problems may elicit a 

different order of operations. Nevertheless, there should be a general trend in 

moving away from explicit models to implicit possibilities. 

Third, reasoners are also likely to be guided by other heuristics, which have 

been extensively explored by Tversky and Kahneman, and their colleagues. These 

heuristics can be traced back to Hume’s seminal analysis of the connection 

between ideas: “there appear to be only three principles of connexion between 

ideas, namely, Resemblance, Contiguity in time or place, and Cause or Effect” 

(Hume, 1748, Sec. III). Hence, semantic similarity between the premises and the 

conclusion, and the causal cohesiveness between them, will influence probabilistic 

judgements. Such factors may even replace extensional estimates based on 

models. 
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Fourth, individuals should be inferential satisficers; that is, if they reach a 

credible (or desirable) conclusion, or succeed in constructing a model in which 

such a conclusion is true, they are likely to accept it, and to overlook models that 

are counterexamples. Conversely, if they reach an incredible (or undesirable) 

conclusion, they are likely to search harder for a model of the premises in which it 

is false. This propensity to satisfice will in turn lead them to be overconfident in 

their conclusions, especially in the case of arguments that do have alternative 

models in which the conclusion is false. Individuals are indeed often overconfident 

in their inductive judgements, and Gigerenzer, Hoffrage, and Kleinbolting (1991) 

have propounded a theory of “probabilistic mental models” to account for this 

phenomenon. These are long-term representations of probabilistic cues and their 

validities (represented in the form of conditional probabilities). These authors 

propose that individuals use the single cue with the strongest validity and do not 

aggregate multiple cues, and that their confidence derives from the validity of this 

cue. They report corroboratory evidence from their experiments on the phenom- 

enon of overconfidence; that is, rated confidence tends to be higher than the 

actual percentage of correct answers. As Griffin and Tversky (1992) point out, 

however. overconfidence is greater with harder questions and this factor provides 

an alternative account of Gigerenzer et al.‘s results. In contrast, the model theory 

proposes that the propensity to satistice should lead subjects to overlook models 

in the case of multiple-model problems, and so they should tend to be more 

confident than justified in the case of harder problems. Overconfidence in 

inductive inference occurred in an unpublished study by Johnson-Laird and 

Anderson, in which subjects were asked to draw initial conclusions from such 

premises as: 

The old man was bitten by a poisonous snake. There was no known antidote 

available. 

They tend initially to infer that the old man died. Their confidence in such 

conclusions was moderately high. They were then asked whether there were any 

other possibilities and they usually succeeded in thinking of two or three. When 

they could go no further, they were asked to rate again their initial conclusions, 

and showed a reliable decline in confidence. Hence, by their own lights, they were 

initially overconfident, though by the end of the experiment they may have been 

underconfident as a result of bringing to mind remote scenarios. With easier 

one-model problems, the error and its correlated overconfidence cannot occur. 

But should subjects be underconfident in such cases, as is sometimes observed? 

One factor that may be responsible for the effect in repeated-measure designs is 

the subjects’ uncertainty about whether or not there might be other models in a 

one-model case. 

Finally, individuals are likely to focus on what is explicit in their initial models 

and thus be susceptible to various “focusing effects” (see Legrenzi. Girotto, & 
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Johnson-Laird, 1993). These effects include difficulty in isolating genuinely 

diagnostic data (see, for example, Beyth-Marom & Fischhoff, 1983; Doherty, 

Mynatt, Tweney, & Schiavo, 1979), testing hypotheses in terms of their positive 

instances (Evans, 1989; Klayman & Ha, 1987), neglect of base rates in certain 

circumstances (Tversky & Kahneman, 1982), and effects of how problems in 

deductive and inductive reasoning are framed (e.g., Johnson-Laird & Byrne, 

1989; Tversky & Kahneman, 1981). Focusing is also likely to lead to too great a 

reliance on the credibility of premises (and conclusion) and too little on the 

strength of the argument, that is, the relation between the premises and 

conclusion. Reasoners will build an initial model that makes explicit the case for a 

conclusion, and then fail to adjust their estimates of its likelihood by taking into 

account alternative models (see also Griffin & Tversky, 1992, for an analogous 

view). Conversely, any factor that makes it easier for individuals to flesh out 

explicit models of the premises should improve performance. 

6. Rules for probabilistic thinking 

An obvious potential basis for probabilistic reasoning is the use of rules of 

inference, such as: 

If q & r then s (with probability p) 

:. If q then s (with probability p’) 

Numerous AI programs include rules of this sort (see, for example, Holland, 

Holyoak, Nisbett, & Thagard, 1986; Michalski, 1983; Winston, 1975). The most 

plausible psychological version of this idea is due to Collins and Michalski (1989). 

They argue that individuals construct mental models on the basis of rules of 

inference, and that these rules have numerical parameters for such matters as 

degree of certainty. They have not tried to formalize all patterns of plausible 

inference, but rather some patterns of inference that make up a core system of 

deductions, analogies and inductions. They admit that it is difficult to use 

standard psychological techniques to test their theory, which is intended to 

account only for people’s answers to questions. It does not make any predictions 

about the differences in difficulty between various sorts of inference, and, as they 

point out (p. 7), it does not address the issue of whether people make systematic 

errors. Hence, their main proposed test consists in trying to match protocols of 

arguments against the proposed forms of rules. Pennington and Hastie (1993) 

report success in matching these patterns to informal inferences of subjects 

playing the part of trial jurors. But, as Collins and Michalski mention, one danger 

is that subjects’ protocols are merely rationalizations for answers arrived at by 

other means. In sum, AI rule systems for induction have not yet received decisive 

corroboration. 
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In contrast, another sort of rule theory has much more empirical support. This 

theory appeals to the idea that individuals have a tacit knowledge of such rules as 

the “law of large numbers” (see Nisbett, 1993; Smith, Langston, & Nisbett, 

1992). Individuals apply the rules to novel materials, mention them in justifying 

their responses. benefit from training with them, and sometimes overextend their 

use of them. The rules in AI programs arc formal and can be applied to the 

representation of the abstract logical form of premises. The law of large numbers, 

however, is not a formal rule of inference. It can be paraphrased as follows: 

The larger the sample from a population the smaller its mean is likely to 

diverge from the population mean. 

Aristotle would not have grasped such notions as sumple. mean and population, 

but he would have been more surprised by a coin coming up heads ten times in a 

row than a coin coming up heads three times in a row. He would thus have had a 

tacit grasp of the law that he could make use of in certain circumstances. The law 

has a rich semantic content that goes well beyond the language of logical 

constants, and it is doubtful whether it could be applied to the logical form of 

premises. On the contrary, it is likely to be applied only when one has grasped the 

content of a problem, that is, constructed a model that makes explicit that it calls 

for an estimate based on an example. 

Individuals are likely to hold many other general principles as part of their 

beliefs about probability. For instance, certain devices produce different out- 

comes on the basis of chance, that is, at approximately equal rates and in 

unpredictable ways; if a sample from such a device is deviant, things are likely to 

even up in the long run (gambler’s fallacy). Such principles differ in generality 

and validity, but they underlie the construction of many probabilistic judgements. 

The fact that individuals can be taught correct laws and that they sometimes err in 

over-extending them tells us nothing about the mental format of the laws. They 

may take the form of schemas or content-specific rules of inference. but they 

could be represented declaratively. Likewise, how they enter into the process of 

thinking - the details of the computations themselves - is also unknown. There is, 

however, no reason to oppose them to mental models. They seem likely to work 

together in tandem, just as conceptual knowledge must underlie the construction 

of models. 

7. Conclusions 

The principle thesis of the present paper is that general knowledge and beliefs, 

along with descriptions of situations, lead to mental models that are used to assess 

probabilities. Most cognitive scientists agree that humans construct mental 
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representations; many may suspect that the model theory merely uses the words 

“mental model” where “mental representation” would do. So, what force, if any, 

is there to the claim that individuals think probabilistically by manipulating 

models? The answer, which has been outlined here, is twofold. First, the 

representational principles of models allow sets of possibilities to be considered in 

a highly compressed way, and even in certain cases sets of sets of possibilities. 

Hence, it is feasible to assess probability by estimating possible states of affairs 

within a general framework that embraces deduction, induction and probabilistic 

thinking. This framework provides an extensional foundation of probability 

theory that is not committed a priori to either a frequency or degrees-of-belief 

interpretation, which are both equally feasible on this foundation. Second, the 

model theory makes a number of predictions based on the distinction between 

explicit and implicit information, and on the processing limitations of working 

memory. Such predictions, as the study of deduction has shown, are distinct from 

those made by theories that postulate only representations of the logical form of 

assertions. 
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