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Reply to the commentators on a model
theory of induction

PHILIP N. JOHNSON-LAIRD
Department of Psychology, Princeton University, New Jersey 08544, USA

Introduction

The target article had three goals: to distinguish between induction, deduction and
creation; to outline a taxonomy of sorts of induction; and to develop a new theory of
inductive reasoning based on mental models. The commentators have raised a rich and
stimulating set of issues, and I am grateful to them for forcing me both to reconsider
certain matters and also to think for the first time about others. They point out
omissions and weaknesses in the mental-model theory, but the aim of this reply is to
show that their objections are not decisive. It will establish that some of their worries are
groundless or due to misunderstandings, some can be accommodated by the existing
theory, and some call for extensions of the theory that the paper will outline. The model
theory is still viable and offers a plausible explanation of inductive reasoning.

The reply will finesse at least two issues. The first concerns concepts. Newstead
asks how concepts relate to one another, and how the model theory deal with 'fuzzy'
concepts and prototypes. Garnham similarly asks how individuals construct new con-
cepts, or new versions of old concepts in a scientific revolution. Elsewhere, I have
recently tried to deal with these matters Qohnson-Laird, 1993), and I spare readers a
repeat of my efforts here. The second matter is Bara's claim that the key to understand-
ing mental processes is the study of their development in childhood. The claim is
plausible. But intellectual development may be a process of conceptual change rather
than a passage from one sort of thinking to another in a sequence of distinct stages (see
e.g. Carey, 1985). If so, developmental studies may not be the key to understanding
mental processes. In any case, the innate endowment required for inductive learning and
a sketch of conceptual development can also be found in Johnson-Laird (1993).

The broad plan of the reply is to deal in the first part with commentators' reactions
to the proposed theoretical distinction between induction, deduction, and creation, and
to the use of semantic information in setting up a taxonomy of thinking. The second
part of the paper takes up the single most blatant, though deliberate, omission in the
target article—the model theory's treatment of probability and the strength of induc-
tions. The third part of the paper considers the relations between models and rules (or
schemas) for induction. The paper finally draws some general conclusions about the role
of models in thinking.
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74 PHILIP N. JOHNSON-LAIRD

1. The taxonomy of thinking

The target article proposed a taxonomy of thinking based on the concept of semantic
information. The theory applies only to thoughts with a prepositional content, and the
taxonomy depends on the five possible semantic relations between premises and
conclusion:

(1) The premises and conclusion rule out exactly the same states of affairs.
(2) The conclusion rules out fewer states of affairs than the premises, i.e. it throws

some semantic information away.
(3) The premises and conclusion rule out disjoint states of affairs.
(4) The premises and conclusion rule out overlapping states of affairs.
(5) The conclusion goes beyond the premises to rule out some additional state of

affairs over and above what they rule out.

The first two of these relations are valid deductions, i.e. cases where if the premises are
true then the conclusion must be true too. As Smith observes, however, people do
indeed boggle at deductions that merely throw semantic information away, e.g. an
inference of the form:

A.
/. A or B, or both.

Such steps occur as part of other more general deductions that maintain information
and also in making more specific an inductive generalization, e.g. an inference of the
form:

If C then A.
/. If C then (A or B, or both).

The third relation occurs in the step from premises to a conclusion that contradicts
them. The fourth possibility is a creative relation in which some premises are abandoned
and other new information is added. The fifth possibility is truly inductive, i.e. it
embraces all the traditional cases of induction such as the generalization from a finite set
of observations to a universal claim.

Several commentators raised objections or queries about the taxonomy and seman-
tic information. The semantic information conveyed by a proposition is defined by the
states of affairs that it rules out as impossible. A measure of semantic information can
be formulated according to the following principle:

where I(A) is the semantic information in A, and p(A) is the probability that A is true
(see Johnson-Laird, 1983, p. 34 et seq.). As this definition shows, there is a close relation
between the taxonomy and probabilistic reasoning (more on this point in Part 2).

Green clarifies the taxonomy's implications by drawing a distinction between
semantic information and psychological information. Semantic information depends
solely on the states of affairs that propositions rule out, and thus deductions do not
increase semantic information. Yet psychologically speaking, the conclusion of a deduc-
tion may be psychologically informative by making explicit what is merely implicit in the
premises. Explicit information is immediately available for further processing. Implicit
information is not so available: it can be made explicit but the process takes time and
effort. Green also argues that both deduction and induction can be creative. The issue
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 75

here is the nature of the processes yielding the conclusion, and whether it would be
revealing to characterize it as "creative". On the whole, processes that merely make
explicit what was implicit are unlikely to satisfy the criteria of creativity (see Johnson-
Laird, 1993, Ch. 3). The discovery of a deductive proof, however, may be highly
creative: such a discovery does not itself depend on purely deductive steps, but may also
call for inductions and creative conjectures. A mental process that makes an inductive
step could arguably be creative because it adds new information, but since it changes
nothing in its starting point, one might prefer to reserve the notion of creativity for more
radical changes in conceptual content.

Over and Manktelow suggest that the analysis in terms of semantic information is
too rigid. They argue that the definition of induction as the increase of semantic
information is too narrow: even if the premises are held with certainty, induction should
not utterly eliminate models, because it can be probabilistic. As we have seen, however,
semantic information is more than merely compatible with notions of probability: its
measure is defined in terms of probability. Over and Manktelow also remark that too
strict a conception of semantic information leads to difficulties in the case where
premises and conclusion rule out disjoint situations (the third relation in the list above).
They claim, contrary to the target article, that there is a rational process of thought that
exemplifies this relation: a pragmatic inference from a denial, as in the inference from
an individual A's assertion:

There is no reason to think I'm a crook,

to the conclusion:

There is a reason to think A is a crook.

In the right context, as they say, the inference is non-demonstrative but rational.
However, it is not an instance of premise and conclusion ruling out disjoint states of
affairs. The inference does not have the form:

P-
/. not p.

but rather the following form:

A asserts not p.
.-. p.

Both the premise and the conclusion could be true (as many hold about Nixon's
celebrated remark, "I am not a crook"). What would be an inference exemplifying the
third relation is:

There is no reason to think that A is a crook.
/. There is a reason to think that A is a crook.

Immediate inferences of this sort, as the target article argued, do seem unlikely to occur.
Of all the commentators, Mosconi expressed the deepest misgivings about the

taxonomy, and it may be instructive to consider them in detail. He begins with a point
that is well-taken: everyday language has no terms for deduction and induction, and he
asks why. The answer according to the model theory is because they are very similar
mental processes—the only essential difference is that induction adds information to
models whereas deduction maintains it. He points out that the taxonomy appears to
reduce forms of thought other than deduction and induction to a residual class. That is
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7 6 PHILIP N. JOHNSON-LAIRD

certainly not the intention: in fact, creative thinking is most important, but it also
happens to be the variety of thought about which least is known. Mosconi also points
out that creativity need not depend on premises. That, too, is true (cf. musical creativity
in which the starting point is not a set of premises but a repertoire of elements that can
be used to create rhythms, melodies, chord sequences, and so forth, see Johnson-Laird,
1993). What must be emphasized is that the analysis in the target paper concerns only
thinking that concerns propositional content. But perhaps Mosconi has a more subtle
point to make. He writes:

In situations of problem-solving, the solution (which is often only a 'con-
clusion' in the sense that it is the final act of a process) may derive from, or
fundamentally consist of a reinterpretation or transformation of the initially
given elements or the terms of the problem; this is not the case in deduction
or induction, because this would simply mean another deduction or induction.

The passage seems to imply that an analysis of problem solving in terms of semantic
information is inappropriate, because the notion does not apply to the reinterpretation
or transformation of information given in the statement of a problem. The claim needs
arguing, because problems in cryptarithmetic, mechanics, and the repertory of exper-
imental psychology (Tower of Hanoi, missionaries and cannibals, etc.) are all perfectly
amenable to an analysis in terms of semantic information. Indeed, this insight underlies
much of the development of AI approaches to problem solving as a form of deductive
theorem-proving from PLANNER onwards (see e.g. Newell, 1990). The target article
claims that each step in solving a problem with a propositional content falls into one of
the five categories. The claim may be wrong, but its refutation calls for a demonstration
that a step in solving a problem falls outside the five categories.

Mosconi offers the following view of deduction:

In reasoning (and we can take the case of the deductive process), the premises
are made with the aim of being able to draw a conclusion from them. For this
to be reasonably possible, each premise must bear an independent (or more
properly, different) item of information. The premises must be informative
both in themselves and when they are considered in relation to each other. In
other words, the propositions taken as premises must be synchronously accept-
able.

He then argues that these conditions are not fulfilled by the target article's example of
an individual who knows:

The battery is dead or the voltmeter is faulty, or both.

who then tests the voltmeter and discovers that it is not faulty, and so draws the valid
conclusion:

The voltmeter is not faulty and the battery is dead.

Mosconi's claim is that the premises must be informative in themselves and when they
are considered in relation to one another. However, he owes us an account of what he
means by 'informative'. My best construal is as follows:

(1) The premises should not be inconsistent taken either individually or together.
(2) No premise should follow validly from others.

But this claim is psychologically unrealistic. You do not always have the opportunity to
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 77

choose your premises, and you are sometimes confronted with premises that are
inconsistent. You can argue from premises that you do not believe (as in demonstrating
their inconsistency), or from premises that are purely hypothetical. And if you were to
try to abide by Mosconi's account, your premises should be synchronously acceptable,
but you cannot know whether a set of premises is synchronously acceptable unless you
have tested their acceptability, and this test usually calls for reasoning: you have to
reason before you can reason—a desideratum that leads to a slippery recursive slope that
may never 'bottom out', in which reasoning will be indefinitely postponed by the further
need to reason about what premises to reason from. A simpler view, in contrast, is that
the propositions which individuals take as premises do not have to be synchronously
acceptable.

In his analysis of the deduction about the battery, Mosconi writes:

Once we know that 'the voltmeter is not faulty', we can no longer say that 'the
battery is dead or the voltmeter is faulty' ..., and therefore we cannot use these
two propositions as premises. The second item of information (that the
voltmeter is not faulty) eliminates one term in the disjunction, which can no
longer be said in synchrony with the new proposition.

But, how do we know that the second item of information eliminates one term in the
disjunction? The answer, of course, is that we deduce this consequence. The model
theory proposes that the step depends on combining the models of the disjunctive
premise with the model of the categorical premise to yield a single resulting model from
which the conclusion can be read off:

The battery is dead.

The process of deduction allows us to reach a useful conclusion that makes explicit a
state of affairs that is only implicit in the premises. We therefore need to distinguish
between the basis for deductions and the conventions for asserting propositions. On the
one hand, individuals often make inferences of the form:

p or q, or both,
not p.

.-. q.

which violate Mosconi's prescription. 'Trouble-shooting' and diagnosis of faults are
replete with such cases. On the other hand, Mosconi is right that once one knows a
proposition of the form:

not p.

it would throw semantic information away and thus violate Gricean conventions of
discourse to assert:

p or q, or both.

Mosconi also has difficulties with the example of a specific induction:

The battery is dead or the voltmeter is faulty.
The voltmeter is faulty.
The battery is not dead.

He finds it difficult to imagine that anyone would make this inference without having
any new information. It is not clear what information he thinks is required, because he
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7 8 PHILIP N. JOHNSON-LAIRD

is evidently happy to make an analogous leap from specific observations to a general
conclusion.

Analogy, abduction, and what the taxonomy may overlook

When one examines the conventional chapter-headings of a text on thinking, as
Garnham remarks, they reflect the traditional ways in which research has been done
rather than underlying theoretical divisions. The taxonomy proposed in the target article
is supposed to reflect an underlying theory at the molecular level. Thus, a person
carrying out a task at the molar level, such as solving a problem, may carry out a
sequence of steps, some of which are deductions, some inductions, some creations. The
danger with a theoretically-driven taxonomy is that it may overlook some 'species' of
thought, which would cast doubt not only on the taxonomy but also on the underlying
theory. Green refers to two species of thought that are not mentioned in the target
article—abduction and analogy—and so we should consider whether they can be
accommodated within the taxonomy.

Abduction has a slightly confused history, but most authors, following Peirce
(1958), use the term to refer to the process of generating explanations. An example is
the step, say, from observing bees with a particularly potent sting to the hypothesis that
the cause is a change in the bee's genetic structure—a step that may be an induction
intended to explain an observed property. Green argues that abduction is based on what
is possible whereas induction is based on what is probable, and that abduction supplies
premises from background knowledge rather than from what is observed. These claims
may be correct—certainly, the key step in abduction is to provide a hypothesis
explaining an observation, whereas an induction may merely generalize an observation.
In both cases, however, there is an inferential step that increases semantic information,
and it is unclear that abduction has to be based on what is possible and induction on
what is probable. In either case, reasoners may prefer the probable to the possible.

Analogy is more problematic for the proposed taxonomy. It has long been dis-
tinguished as a special sort of thinking, and to subsume it under the heading of
induction appears to abandon its special status. However, Green suggests that analogical
thinking can be explained in terms of mental models in at least two ways. The
traditional way is to suppose that a reasoner recovers a source model and then transfers
some structural relations from it to the target model in order to solve a problem (see e.g.
Gentner, 1983). An alternative way, which is due to Imre Schlesinger, is to combine
induction and deduction, e.g.:

It is wrong to let people suffer. [premise]
.\ It is wrong to let living creatures suffer. [by induction]

Animals are living creatures. [premise]
/. It is wrong to let animals suffer. [by deduction]

Both approaches are feasible, though the second appears to be based on simple
conceptual relations and so is unlikely to account for more profound scientific analogies,
such as Bohr's explanation of atoms by analogy with the solar system.

Semantic information and quantifiers

Garnham asks how the notion of semantic information (and thus the elimination of
models) applies to quantified domains. The theory has been worked out in some detail
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 7 9

but this section will sketch only the main results. Where quantifiers range over infinite
sets of individuals, it is impossible to calculate semantic information on the basis of
cardinalities, but it is possible to ascertain a partial rank order of generalization: one
assertion is a generalization of another if it eliminates certain states of affairs over and
above those eliminated by the original assertion. In the monadic predicate calculus,
there are two generalization hierarchies in which each successive assertion is a general-
ization of the previous one:

(3x)(Gx v Hx): There are some x that are G or H.
(3x)(Hx): There are some x that are H.
(3x)(Gx A Hx): There are some x that are G and H.

a n d (Vx)(Gx v Hx): Any x is G or H.
(Vx)(Hx): Any x is H.
(Vx)(Gx A Hx): Any x is G and H.

The inverse of these hierarchies hold for the negations of these assertions.
There is also a hierarchy of generalization for assertions containing multiple

quantifiers. Suppose, for instance, that their is a finite domain of discourse consisting of
two disjoint sets of entities: a set of m entities with property D (e.g. 'drugs') and a set
of n entities with property A (e.g. 'ailments'), where m may equal n, and that there is
a binary relation, C, (e.g. 'cures') that can hold between ordered pairs of entities drawn
from the two sets (e.g. drug i cures ailment j). The apparatus of restricted quantification
enables us to write (3DX) in order to signify that there is an x with property D. The
semantically weakest assertion about the domain is:

(3Dx)(3Ay)(Cxy): Some drug cures some ailment

The number of possible states of affairs in this finite domain is equal to 2™1, and hence
the informativeness, I, of this assertion equals 2 ~mn assuming that each state of affairs
is equally possible. The only state of affairs that the assertion rules out is the one where
no drugs cure any ailments. Universal generalization strengthens the assertion, and there
are two possible generalizations depending on which existential quantifier is generalized:

(VDx)(3Ay)(Cxy): Every drug cures some ailment,
where I = 1 - ( 2 n - l)m (2~mn)

and

(VAy)(3Dx)(Cxy): Every ailment is cured by some drug,
where I = 1 - (2m - l)n (2"mn)

The informativeness of these two assertions depends on the sizes of the two sets. If, say,
there ae 3 drugs (m = 3) and 5 ailments (n = 5), the informativeness of the first assertion
is about 0.09, whereas the informativeness of the second assertion is about 0.49. Where
there are few drugs and many ailments, it is thus more informative to discover that every
ailment is cured by a drug than to discover that every drug cures some ailment—from
a medical standpoint, the former may also be more important too.

The next step in generalization can be brought about by shifting an existential
quantifier from within the scope of a universal quantifier to immediately outside it. (This
operation, as the target article mentioned, does not appear to have been exploited by any
AI programs.) The first of the previous cases thus becomes:
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80 PHILIP N. JOHNSON-LAIRD

(SAVXVDXXCXV): Some ailment is cured by every drug,
where 1= ( 2 m - l)n (I'™), i.e. about 0.51 in the
present case. /

The assertion rules out all of the states of affairs that the earlier assertion eliminates
together with some additional states of affairs. The second of the two previous cases can
be similarly generalized to:

(3Dx)(VAy)(Cxy): Some drug cures every ailment,
where 1 = ( 2 n - l)m (2'™), i.e. about 0.91 in the
present case.

One final assertion is a universal generalization of both of these cases:

(VDx)(VAy)(Cxy): Every drug cures every ailment,
where 1=1 - 2 ~ m n , i.e. about 0.9999 in the present
case.

The inverse hierarchy occurs for the negations of these assertions. Similar hierarchies of
generalization can be generated for quantifications of ternary relations, and so on. It
would be an interesting exercise to determine whether logically-untrained individuals
have an intuitive grasp of the relative informativeness of these assertions.

2. Probability and the strength of inductive inferences

The most frequent complaint made by the commentators was that the target article
made no reference to the relation between induction and probability—indeed, the
theory offered no account of probabilities (Cohen, Over & Manktelow, Newstead), it
should be augmented by explanations of probabilistic reasoning (Hunt) and of proba-
bilistic claims based on induction (Green), and it should account for the strength of
inductions (Smith).

The omission struck Cohen as remarkable. He writes: "To present an account of
induction that speaks only of classificatory outcomes, not of comparative or quantitative
ones, is like presenting a theory of mechanics in which objects are either at motion or
at rest, rather than a theory in which objects are moving at a measurable velocity relative
to a chosen reference-point". Yet, the omission is justifiable. There are good philosoph-
ical precedents for discussing induction without alluding to probabilities—indeed,
neither Hume's (1748) classical riddle of induction nor Goodman's (1965) new riddle
depends on probabilities. Moreover, the goal of the target article was to give an account
of everyday inductive thinking—the sort of inductions that are made by everyone from
Aristotle to aboriginals, whether or not they know anything of the probability calculus.
As far as one can tell, these inductions are part of a universal human competence: they
do not depend on any overt mastery of quantities or even of natural numbers. Hence,
the goals of a psychology of induction are, at least initially, quite different from those of
a philosophical account. Aristotle's notion of probability amounts to the following: a
probability is a thing that happens for the most part, and conclusions that state what is
probable must be drawn from premises that do the same (see Rhetoric, I, 1357a). In
comparison to, say, Pascal's account this notion is appallingly crude, but it corresponds
to about the level of competence a psychological theory of induction should initially
aspire to explain. Of course many individuals do encounter the probability calculus at

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
1:

50
 2

4 
Fe

br
ua

ry
 2

01
3 



REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 81

school; few master it. A simple observation shows an inadequate grasp of the fundamen-
tals. One poses the following problem:

There are two events, A and B, which each have a probability of a half. What
is the probability that A and B both occur?

Many people respond: a quarter. In this case, the appropriate 'therapy' is to invite them
first to imagine that A is a coin landing heads and B is the same coin landing tails, i.e.
p(A & B) = 0, and then to imagine that A is a coin landing heads and B is a coin landing
with the date uppermost, i.e. p(A & B) = 0.5. At this point, most people began to grasp
that there is no definite answer to the question posed in the puzzle—joint probabilities
depend on the dependence of one event on the other. Other phenomena show that
intelligent individuals do not know how probabilities combine according to logical
operations. Indeed, we are all likely to go wrong in thinking about probabilities: the
calculus is a piece of technology that few people completely master.

Another reason for treating induction separately from probability is that many
probabilistic inferences are deductive rather than inductive (cf. Aristotle's view). Here,
for example, is a piece of probabilistic reasoning:

p(A) = 0.5
p(B/A) = 1 (i.e. the conditional probability of B given A is 1)
p(B/not A) = 0

/. p(B) = 0.5

The inference is a deduction. It makes explicit what is implicit in the premises, and it
does not increase their semantic information. Here is a more mundane example inspired
by Over & Manktelow's discussion:

If my son smokes, he is in danger of damaging his health.
My son smokes.

Suppose you know the first of these premises for certain, but your degree of belief in the
second premise falls short of full certainty. What, Over and Manktelow ask, should you
infer? How will you infer it? And what degree of confidence should you assign to the
conclusion? In fact, the following inference is a valid deduction, which can be drawn
with certainty:

If my son smokes, he is indanger of damaging his health.
My son probably smokes.

/. My son is probably in danger of damaging his health.

Over & Manktelow claim that mental models can be used only to represent alternative
states of affairs that are treated as equally likely. In fact, as we will see, there is no reason
to suppose that when you compare models you take them to be equally likely. To
illustrate the point, consider another example suggested by Newstead's comment that
probabilistic inference may be hard to incorporate into the model theory:

Most archers are broad-shouldered.
Robin is one of the archers.
Probably, Robin is broad-shouldered.

Again, this inference is a deduction, not an induction, and it is easily accommodated
within the theory. The key step is to construct models that represent proportions in
order to cope with quantifiers such as 'most' (see Johnson-Laird, 1983, p. 137). Next,
following Aristotle, assertions of the form: probably S, are treated as equivalent to: in
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82 PHILIP N. JOHNSON-LAIRD

most possible states of affairs, S. Thus, a model of the assertion that most archers are
broad-shouldered takes the form:

[a] b
[a] b
[a] b
[a]

where the set of archers is exhaustively represented. When the information from the
second premise is added to this model, one possible state of affairs is:

r [a] b
[a] b
[a] b
[a]

in which Robin is broad-shouldered. Another possibility is:

[a] b
[a] b
[a] b

r [a]

in which Robin is not broad-shouldered. In most possible states of affairs, however,
Robin will be broad-shouldered. Hence, one can deduce: probably Robin is broad-
shouldered. This same method accounts for the inference about the smoker. Individuals
who are capable of one-to-one mappings but who have no access to cardinal or ordinal
numbers will still be able to make this inference. They have merely to map each possible
state of affairs in which S occurs one-to-one with each possible state of affairs in which
S does not occur: if there is a residue, then it corresponds to the more probable
category.

Over and Manktelow suggest that model elimination as the basis of induction is too
narrow. They write: "Even if premises are held with certainty, such reasoning should not
utterly eliminate alternative models. The alternatives should only be believed or held
probable to a different (lesser) degree". Newstead similarly remarks that it is difficult to
see how models can represent information other than in an all-or-none fashion. There
are a number of misconceptions that need to be separated here. Induction does not
necessarily lead to the elimination of a model—it is a process of adding information to
models, which sometimes leads to the elimination of a model. Similarly, as the previous
example shows, the process of adding information to a model may lead to alternative
possibilities and thus to a probabilistic conclusion.

Of course, certain inductions are probabilistic too. So what underlies these infer-
ences and renders them strong or weak? Johnson-Laird (in press) outlines a model-
based theory of probabilistic induction and shows how the strength of an inference is
accounted for within this theory. The next section will outline these ideas, and
subsequent sections will use them to answer commentators' specific questions.

Models, strength, and inductive probability

Although, by definition, inductive arguments are all logically invalid, they differ in their
strength—some are highly convincing, others are scarcely credible, at least in relation to
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 83

a given background of knowledge. The manifest differences in strength are an important
clue about the psychology of inductive inference. If we could understand what deter-
mines the strength of an induction, we would have made progress towards a psycholog-
ical theory of what the mind computes in inference, i.e. a theory at the 'computational'
level. We need to distinguish between the strength of an argument—the degree to which
its premises, if true, support the conclusion, and the degree to which the conclusion is
likely to be true—a notion for which we need a theoretically neutral term: 'probability'
suggests an immediate tie to the probability calculus, and so we will refer instead to the
'credibility' of propositions. An argument can be strong but its conclusion incredible
because the argument is based on incredible premises, e.g. a valid argument based on
false premises can lead to a false conclusion. Hence, we will distinguish between the
credibility of the premises and the strength of the argument, and we will propose that
in principle the credibility of a conclusion should depend on both the credibility of the
premises and the strength of the argument. As we shall see, individuals are liable to
neglect the second of these components.

Readers will have noted that we talk of both inductive inference and inductive
argument. They are one and the same thing, but the two terms bring out the point that
the informal arguments of everyday life, which occur in conversation, newspaper
editorials, and scientific papers, often hinge on inductive inferences. The strength of
such arguments depends on the relation between the premises and the conclusion. But
the nature of this relation is deeply puzzling. The puzzle is so great that many theorists
have abandoned logic altogether in favor of their own idiosyncratic methods of assess-
ment (see e.g. Toulmin, 1958; and many other discussions of informal argument).
Other accounts rely on human beings to determine which assertions support which
other assertions (e.g. Thagard, 1989). And still others use rules to which they assign a
numerical parameter corresponding to certainty (see Part 3).

Osherson, Smith and Shafir (1986) in a ground-breaking analysis explored a variety
of accounts of inductive strength that boil down to three main hypotheses: (1) an
inference is strong if, given an implicit assumption, schema, or causal scenario, it is
logically valid, i.e. the inference is an enthymeme (cf. Aristotle); (2) an inference is
strong if it corresponds to a deduction in reverse, such as an argument from specific
facts to a generalization of them (cf. Hempel); and (3) an inference is strong if the
predicates (or arguments) in premises and conclusion are similar (cf. Tversky and
Kahneman: as Smith rightly observes the issue of strength must relate to these authors'
research into heuristics). Each hypothesis has its strengths and weaknesses, but their
strong points can be captured in the following proposals, which we will develop in two
stages. First, we will specify an abstract characterization of what in principle has to be
computed in order to determine the strength of an inference (i.e. a theory at the
'computational' level); and, second, we will specify how in practice the mind assesses the
strength of an argument (i.e. a theory at the 'algorithmic' level).

The relation between premises and conclusion is a semantic one, and it can be
characterized abstractly by adopting the semantic approach to logic (see e.g. Barwise &
Etchemendy, 1989). A set of premises, including implicit premises provided by general
knowledge, lend strength to a conclusion according to two principles, which depend on
considering all infinitely many possible states of affairs consistent with the premises:

(1) The conclusion is true in at least one of the possible states of affairs in which the
premises are true, i.e. the conclusion is at least consistent with the premises. If there is
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8 4 PHILIP N. JOHNSON-LAIRD

no such state of affairs, then the conclusion is inconsistent with the premises: the
inference has no strength whatsoever, and indeed there is valid argument in favor of the
negation of the conclusion.
(2) Possible states of affairs in which the premises are true but the conclusion false (i.e.
counterexamples) weaken the argument. If there are no counterexamples, then the
argument is maximally strong—the conclusion follows validly from the premises. If there
are counterexamples, then the strength of the argument is equal to the proportion of
states of affairs in which the premises and conclusion are true.

This account has several advantages.
First, it does not throw the "logical" baby out with the bath water. What underlies

deduction is the semantic principle of validity: an argument is valid if its conclusion is
true in any state of affairs in which its premises are true. The present account does not
abandon this principle merely because inductive inferences are invalid and so cannot be
captured by valid formal rules of inference. By definition, an induction increases
semantic information and so its conclusion must be false in possible cases in which its
premises are true. Hence, inductions are reverse deductions, but they are the reverse of
deductions that throw semantic information away.

Second, if each possible state of affairs is assumed to be equi-possible, then the
addition of a measure of the cardinality of the relevant sets of states of affairs provides
an extensional foundation for probabilities, i.e. the strength of an inductive argument is
equivalent to the probability of the conclusion given the premises. But the two abstract
principles are not equivalent to the probability calculus: the human inferential system
can attempt to estimate the relevant proportion without necessarily using the probability
calculus. Likewise, the assumption that possible states of affairs provide a foundation for
probabilities has no strong implications for the correct interpretation of the probability
calculus, which is a matter for self-conscious philosophical reflection. The assumption
is compatible with interpretations in terms of limiting frequencies of events, in terms of
equi-possibilities based on physical considerations, and in terms of subjective degrees of
belief (cf. e.g. Hintikka's, 1962, analysis of beliefs in terms of possibility). Hence, an
argument (or a probability) may concern either a set of events or a unique event. Over
and Manktelow claim: 'subjective probability is explained in terms of degree of belief,
with the greatest degree being certainty'. But, individuals who are innumerate may not
assign a numerical degree of certainty to their conclusion, and even numerate individu-
als may not have a tacit mental number representing their degree of belief. Individuals'
beliefs do differ in subjective strength, but it does not follow that such differences call
for a numerical system of subjective probabilities. An alternative conception of 'degrees
of belief might be based on analogue representations (cf. Hintzman, Nozawa &
Irmscher, 1982), or on a system that permitted only partial rankings of strengths, such
as one that recorded the relative ease of constructing different classes of models.

Third, the account is entirely compatible with semantic information. As we have
seen, the semantic information conveyed by a proposition, A equals 1 — p(A), where
*p(A)' denotes the probability of A. If A is a complex proposition containing conjunc-
tions, disjunctions, etc., its probability can be computed in the usual way according to
the probability calculus. Induction with probabilities remains a matter of increasing
semantic information (pace Over & Manktelow).

Fourth, the account shows how the model theory extends from deduction to
everyday reasoning and argumentation—a matter raised by both Garnham and Green.
One feature of such informal argumentation is that it typically introduces both a case for
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 85

a conclusion and a case against it—a procedure that is so unlike a logical proof that
many theorists have supposed that logic is useless in the analysis of everyday reasoning
(see e.g. Toulmin, 1958, for a highly influential account). The strength of an argument,
however, can be straightforwardly analyzed in the terms described above: informal
argumentation is typically a species of induction, which may veer at one end into
deduction and at the other end into a creative process in which one or more premises
are abandoned.

The disadvantage of the account is that it is obviously impossible for the mind to
consider all the infinitely many states of affairs consistent with a set of premises. So how
does this account translate into a psychological mechanism for assessing the strength of
an argument? It is this problem that the theory of mental models is designed to solve
(see Johnson-Laird, in press).

The essence of the theory is that inference depends on constructing a model based
on comprehension and general knowledge, formulating a conclusion that holds in the
model if none is provided, and searching for alternative models of the premises that
render the putative conclusion false. A model has a structure that corresponds to the
structure of states of affairs, but represents a class of states of affairs—a class that may
have potentially an infinite number of members (Barwise, 1993). The strength of an
influence depends, as we have seen, on the relative proportions of two sorts of states of
affairs: those in which the conclusion is true and those in which it is false. Reasoners can
estimate these proportions by constructing models of the premises and attending to the
proportions with which the two sorts of models come to mind, and perhaps to the
relative ease of constructing them. For example, given that someone fell (without a
parachute) from an airplane flying at a height of 2000 feet, then they probably died. The
inference is strong, but not irrefutable. One may have heard of cases to the contrary, or
can imagine them—the individual falls into a large haystack, or a deep snow drift. But,
in constructing models (of classes of possibilities), those in which the individual is killed
will occur much more often than those in which he survives (cf. the inference above
about whether Robin, the archer, is broad-shouldered). This account is entirely compat-
ible with the idea of estimating likelihoods in terms of scenarios, which was proposed by
Tversky and Kahneman (1973, p. 229), and it forms a bridge, as Smith requested,
between the model theory and the heuristic approach to judgements of probability.
Estimates of the relative frequencies of the two sorts of models—those in which the
conclusion is true and those in which it is false—will be rudimentary, but they should
be less biased by the sorts of factors to which Smith alludes than estimates of probability
based on the typicality of a single exemplar (Kahneman, personal communication).

The strength of an argument depends on the relation between the premises and the
conclusion, and, in particular, on the proportion of possibilities compatible with the
premises in which the conclusion is true. This relation is not in general a formal or
syntactic one, but a semantic one. It takes work to establish the proper relation, and the
theory makes a number of predictions about making and assessing inductive inferences.
First, arguments—especially in daily life—do not wear their logical status on their
sleeves, and so individuals will tend to approach deductive and inductive arguments
alike. They will tend to confuse an inductive conclusion, i.e. one that could be true given
the premises, with a deductive conclusion, i.e. one that must be true given the premises.
Second, envisioning models, which each correspond to a class of possibilities, is a crude
method, and, because of the limited processing-capacity of working memory, many
models are likely never to be envisaged at all. The process will be affected by the
constraints that were mentioned in the target article: specificity, parsimony, and
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8 6 PHILIP N. JOHNSON-LAIRD

availability of relevant knowledge. Third, individuals are likely to be inferential
satisficers, i.e. if they reach a credible conclusion, or succeed in constructing a model in
which such a conclusion is true, they are likely to accept it, and to overlook models that
are counterexamples. Conversely, if they reach an incredible conclusion, they are likely to
search harder for a model of the premises in which it is false. Fourth, the propensity to
satisfice will in turn lead them to be overconfident in their conclusions, especially in the
case of arguments that do have alternative models in which the conclusion is false. Fifth,
the process of assessment—the construction of models—relies on heuristics. These
heuristics, which have been extensively explored by Tversky and Kahneman, can be
traced back to Hume's seminal analysis of the connection between ideas: 'there appear
to be only three principles of connexion between ideas, namely, Resemblance, Contiguity
in time or place, and Cause or Effect' (Hume, 1748, Sec. III). Hence, as Smith points
out, one cue is the semantic similarity between the premises and the conclusion, and
another cue is the causal cohesiveness between them. They are also likely to rely more
on the credibility of premises (and conclusion) than on the strength of the argument, i.e.
the relation between the premises and conclusion. Sixth, individuals are likely to focus
on what is explicit in their initial models and thus to be susceptible to various 'focusing
effects' (see Legrenzi, Girotto & Johnson-Laird, 1993). Finally, the construction of an
explanatory model provides an argument of greater strength than a mere inductive
generalization, because an explanation demonstrates the impossibility of the cause not
leading to the consequence. In the next section, we will use the present theory to answer
the commentators' specific questions about predictions.

Some queries about the model theory's predictions

Cohen writes: 'we want to know whether inductive support for the generalization that
all As are B increases with the number of As that are known to be Bs and, if so, whether
or not the rate of increase is constant, whether or not the rate of increase is affected by
relevant differences between the instances, and whether or not this kind of relevance is
itself a matter of degree'. Newstead also asks how many instances are needed for a
generalization. According to the model theory, no number of observations of As that are
Bs suffices for the generalizations that all As are Bs if one can readily envisage As that
are not Bs. Other things being equal, these proportions should be reflected in individu-
als' judgements about the relation between As and Bs. Of course, as the target article
pointed out, reasoners bring so many assumptions to inductive reasoning that a single
instance may suffice for a strong conclusion. One experience of a wheel clamp on your
car may lead to the generalization that you are likely to be clamped again if you park on
double yellow lines in London.

The model theory answers another of Cohen's questions: how do logical operations
on a hypothesis, such as conjunction, disjunction, contraposition, affect the value of
inductive support? The classic case is Tversky and Kahneman's (e.g. 1983) demon-
stration of the 'conjunction fallacy', i.e. a violation of the elementary principle that p(A
& B)=£p(B). For example, a woman who is described as 31 years old, liberal, and
outspoken, is judged more likely to be a feminist bankteller than a bankteller. Smith
argues cogently:

The description of the woman might lead to a model of her that includes the
additional information that she has feminist beliefs; because this model pro-

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
1:

50
 2

4 
Fe

br
ua

ry
 2

01
3 



REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 87

vides a closer match to feminist bankteller than to bankteller, the former
alternative is favored as an inference.

There is whole battery of 'focusing' effects that can be explained by the model
theory. Consider, for instance, a task used by Beyth-Marom and Fischhoff (1983). They
presented subjects with the following scenario: "You have met Air Maxwell at a party
to which only university professors and business executives were invited. The only
thing you know about Mr Maxwell is that he is a member of the Bear's Club". At this
point one group of subjects had to assess the probability of Maxwell being a university
professor, while a second group had to decide whether it was more probable that he
was a university professor than a business executive. They also rated the relevance of
several questions which they could ask in order to make their judgements. Most subjects
in both groups rated as relevant the proportion of professors who were members of
the club. In contrast, significantly fewer subjects in the first group than in the
second group rated as relevant the proportion of executives who were members of the
club. The difference demonstrates an inability to grasp which data are diagnostic. It
is akin to the "pseudo-diagnosticity" bias postulated by Doherty, Mynatt, Tweeney
and Schiavo (1979). Their subjects had to decide whether a pot came from island
A or to island B. Once they formed an hypothesis about the origin of the pot—say,
island A—they focused on information concerning that hypothesis (how many
features of the pot were present in the pots of island A) and ignored the alternative
hypothesis (how many features of the pot were present in the pots of island B).
The phenomena seem to be a consequence of the way in which subjects build mental
models. When the judgement is between two alternatives, as for the second group
in Beyth-Marom and Fischhoffs experiment, reasoners build two alternative
models (professor and executive) and hence ask for information about them. When
subjects are focused on a specific target (professors, pot A), they construct only a
single model and so fail to consider relevant information concerning alternative
hypotheses.

The inevitable tendency to focus on what is explicit in models also accounts for the
'positive test' strategy, i.e. the preference for testing positive instances of a hypothesis
(Klayman & Ha, 1987). It may also contribute to 'framing' effects in decision making
(see e.g. Tversky & Kahneman, 1981): equivalent descriptions of the same decision
leading to different initial models can elicit different patterns of choice. Comparable
effects should also occur in estimates of the probabilities of various events. Consider, for
example, the following two descriptions:

(A) If there is a short circuit then there's an increase in power.
(B) There's a short circuit only if there's an increase in power.

In which case is there more likely to be both a short circuit and an increase in power?
Likewise, in which of these two cases is it more likely that one or other of the two events
does not occur?

(C) If there isn't a cut in spending, then there's an increase in consumption.
(D) If there is a cut in spending, then there isn't an increase in consumption.

Even psychologists are apt to be confused about these matters. In fact, the first pair of
descriptions are logically equivalent, but the model theory predicts that first will be
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8 8 PHILIP N. JOHNSON-LAIRD

judged to lead to the two events more often than the second. The initial models of the
conditional A are as follows:

[s] P

where s denotes a short circuit and p denotes the increase in power, and so the models
make explicit only the joint occurrence of the two. The initial models for the "only i f
description B make explicit the negative contingency that without the increase in power
there is no short circuit Qohnson-Laird & Byrne, 1991).

[s] P
- i s [~ip]

Yet, the two sets of models are exactly the same when the implicit models are fleshed
out. The theory predicts that subjects should be indifferent between C and D, because
their initial models contain one positive and one negative element. The description in
C yields the initial models:

where s denotes a cut in spending and c denotes an increase in consumption. The
description in D yields the initial models:

[s] - i c

In fact, one or other of the two events is more likely not to occur in case D than in case
C, but the difference emerges only when the models are fleshed out explicitly. C yields:

—is c
s c
s I c

in which one of the two events always occurs. D yields:

s —ic
is c

~ls —l c

in which there is one contingency in which neither of the two events occur. In short,
subjects should find it difficult to consider all the alternative models corresponding the
different descriptions. They will make their judgements on the basis only of the initial
models, and so they will erroneously prefer option A to option B where there is in reality
no difference between them, and they will fail to prefer option D to option C where
there is in reality a genuine difference between them.

For the same reason, logically-untrained individuals should not readily grasp that a
conditional and its contrapositive express propositions with the same truth conditions.
In seeking or assessing evidence for the claims, they will accordingly act in rather
different ways given the model theory's assumption that the process is governed by what
is explicit in models. They will not be tempted to treat 'all ravens are black' as
equivalent to 'all non-black entities are non-ravens'.

Cohen raises one final question: how can a theory of induction based on models
deal with Goodman's (1965) new riddle of induction? The essence of the riddle can be
paraphrased as follows Qohnson-Laird, 1988, p. 235): You observe a series of cases of
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 89

smallpox and notice that each patient had a prior contact with someone suffering from
the disease. You draw the inductive conclusion:

If anyone is in contact with a case of smallpox they are likely to catch the
disease.

(Of course, you do not know whether there are individuals who had the contact but
failed to develop the disease.) But, as Goodman's riddle makes clear, your evidence also
supports the conclusion:

If anyone is in contact with a case of smallpox, then until the year 2000 they
are likely to catch the disease, and thereafter they are likely to catch measles.

This inference is silly, but why? You may say: because we know that diseases no more
change their spots than leopards do. But how do you know that? You may say: because
all your observations support this claim. But, of course, all your observations are equally
consistent with the claim that both leopards and diseases will change their spots in the
year 2000. It seems, as Goodman concludes, we have no way to distinguish between
'law-like' generalizations and 'accidental' ones, and certainly no way in which to do so
in terms of logical form. Goodman goes on to develop a solution in terms of a
knowledge of past regularities (and of how they are described linguistically) and in
particular the 'projectability' of predicates. The psychological problem, however, is
perhaps simpler: people generalize on the basis of their previous knowledge of entities
and their properties (regardless of whether they are justified in doing so by Goodman's
principles). Indeed, as the target article points out, the price of induction is imperfec-
tion—the fads of pseudo-science, superstitions, and 'magical' thinking, which with
hindsight are almost as ridiculous as those generalizations in which entities change their
properties in the year 2000.

Individuals are often over-confident in their inductive judgments, and Over and
Manktelow contrast the model theory unfavorably with the theory of 'probabilistic
mental models' propounded by Gigerenzer, Hoffrage and Kleinbolting (1991), which
they take to be of far more use in accounting for over-confidence. In fact, probabilistic
mental models are intended to account for inductive answers to questions, i.e. choices
between alternatives, but they are certainly not designed to explain either induction or
probabilistic inference in general. Moreover, they presuppose that individuals build up
a knowledge of probabilistic cues and their validities (in the form of conditional
probabilities), and that they choose answers and judge their confidence using the single
cue with the strongest validity and without any aggregation of multiple cues. The
principle prediction of the theory is that confidence derives from the validity of the
strongest cue, and the authors report corroboratory evidence from their experiments on
the phenomenon of over-confidence, i.e. rated confidence tends to be higher than the
actual percentage of correct answers. As Griffin and Tversky (1992) point out, however,
over-confidence is greater with harder questions and this factor provides an alternative
account of Gigerenzer et al. 's results.

What does the present theory have to say about over-confidence in induction? The
propensity to satisfice (see the previous section) should lead subjects to overlook models
unwittingly in the case of multiple-model problems, and so they should tend to be more
confident than justified in the case of these problems. With easier one-model problems,
the error and its correlated over-confidence cannot occur. Once again, this account is
largely in agreement with the heuristic approach. Griffin and Tversky (1992) distinguish
between the size of an effect (e.g. the difference in means) and its significance (e.g. as
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9 0 PHILIP N. JOHNSON-LAIRD

dependent on sample size). They argue that individuals fail to combine the two
according to statistical principles, but rather concentrate on size and then fail to adjust
it adequately for significance. According to the model theory, individuals build an initial
model that makes explicit the case for a conclusion, and then fail to adjust their
estimates of its likelihood by taking into account alternative possibilities. In the unpub-
lished study by Johnson-Laird and Anderson, which was mentioned in the target article,
subjects were asked to draw initial conclusions from such premises as:

The old man was bitten by a poisonous snake. There was no known antidote
available.

They tend initially to infer that the old man died. Their confidence in this conclusion
was moderately high. They were then asked whether there were any other possibilities
and they usually succeeded in thinking of two or three. When they could go no further,
they were asked to rate again their initial conclusions, and showed a reliable decline in
confidence. Hence, by their own light, they were initially overconfident. The theory
certainly predicts that over-confidence should be a function of difficulty, because easy
problems depend on only a single model. But should subjects be underconfident in such
cases, as is sometimes observed? One factor that may be responsible for the effect in
repeated-measure designs is the subjects' uncertainty about whether or not there might
be other models in a one-model case.

In summary, the model theory is neither neutral on the questions the commentators
raise nor is it empirically untestable. At the computational level, it is compatible with a
normative account based on the probability calculus (see Carnap, 1950; Hesse, 1974),
and it allows for the development of the calculus as a formal exercise of mathematical
thinking. The theory at the algorithmic level, however, does not imply that statistically-
naive individuals compute numerical probabilities explicitly, or that they combine them
according to the rules of probability calculus.

Constraints on models

The target article postulated that induction is a process of adding information to
models, and that the process is constrained by a number of factors: existing data,
specificity (keeping the model as specific as possible), parsimony, the availability of
background knowledge. Hunt asks: how are candidate assertions to be added to models
generated in the first place? Strictly speaking, it is information rather than assertions per
se that is added to models, and this information derives from the constraints: induction
is a constraint-satisfaction process. Hunt goes on to suggest that schema application and
Bayesian reasoning may also have roles to play. The schemas that one has, say, for
detective stories (as in Hunt's example) or any other domain, can be subsumed under
the general principle of background knowledge. Hunt also suggests that people examine
the most probable causes first. But how do they recover or assess the most probable
cause? Once again, the process is likely to hinge on the availability of knowledge. Mental
models (unlike computer implementations of the theory) are semantic representations,
and the theory recognizes the importance of knowledge in reasoning. Yet, reasoning is
more than just knowledge: the present author is less tempted than Hunt to hand
cognitive psychology over to anthropologists!

Bara accepts the general thesis of the model theory, but expresses strong reserva-
tions about the availability heuristic. Which notions are the available ones in a particular
context? Surely available knowledge has also to be relevant and pertinent? What is the
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 91

mechanism that activates a specific piece of general knowledge? In fact, the model
theory postulates that the mechanism relies on a series of model-based strategies for
making knowledge progressively available. This hypothesis provides a vital, but hitherto
missing, part of the theory of informal inference. Reasoners begin by trying to form a
model of the current situation, and the retrieval of relevant knowledge is easier if they
can form a single model containing all the relevant entities. They do not rely on a
linguistic description of the situation, which could use only 'key' words that occur in it
as a basis for retrieval. Such a system would probably be unworkable and psychologically
implausible, triggering either too much knowledge or not enough. Once reasoners have
formed an initial model, knowledge becomes available to them in a systematic way.
They manipulate the spatial or physical aspects of the situation, i.e. they manipulate the
model directly by procedures corresponding to such changes. Next, they make more
abstract conceptual manipulations, e.g., they consider the properties of superordinate
concepts of entities in the model. Finally, they make still more abstract inferences based
on introducing relations retrieved from models of analogous situations (cf. Gentner,
1983). Consider the following illustration:

Arthur's wallet was stolen from him in the restaurant. The person charged with
the offense was outside the restaurant at the time of the robbery. What follows?

Reasoners are likely to build an initial model of Arthur inside the restaurant when his
wallet is stolen and the suspect outside the restaurant at that time. They will infer that
the suspect is innocent. They may then be able to envisage the following sort of
sequence of ideas:

(1) Physical and spatial manipulations:

The suspect leant through the window to steal the wallet.
The suspect stole the wallet as Arthur was entering the restaurant, or the thief
ran in and out of the restaurant very quickly [ideas that, in fact, are contrary
to the premises—as informal inferences quite often tend to be].
The suspect used a device on a long pole to reach in through the window to
steal the wallet.

(2) Conceptual manipulations:

The suspect had an accomplice—a waiter, perhaps—who carried out the crime
[theft is a crime, and many crimes are committed by accomplices].

(3) Analogical thinking:

The suspect used a radio-controlled robot to sneak up behind Arthur to take
the wallet [by analogy with the use of robots in other "hazardous" tasks].

In short, the theory predicts that reasoners begin by focusing on the initial explicit
properties of a model, and then they attempt to move away from them, first by
conceptual operations, and then by introducing analogies from other domains. It is
important to emphasize that the order of the three sorts of operations is not inflexible,
and that particular problems may elicit a different order of operations. Nevertheless,
there should be a general trend in moving away from the explicit model to more remote
possibilities.
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9 2 PHILIP N. JOHNSON-LAIRD

3. Are there rules for induction?

This question is raised by several of the commentators, notably by Girotto, Hunt and
Smith. Hunt describes his AI program, the reactive library, that draws inductions such
as:

Strychnine facilitates learning in rats.
Strychnine facilitates learning in mice.
Strychnine facilitates learning in rodents.

Such inferences depend on a hierarchy of class-inclusion relations, and are based on the
rule of drawing the least general conclusion that subsumes the facts. Hunt argues that
human induction depends on more than just such rules: it depends on individuals'
theories of the world. The point is well-taken. As I wrote in the target article: "induction
is a search for a model that is consistent with observation and background knowledge".
Indeed, I went on to argue:

The most important constraint on induction I have left until last for reasons
that will become clear. It is the use of existing knowledge. A rich theory of the
domain will cut down the number of possible inductions; it may also allow an
individual to generalize on the strength of only a single instance.

Hunt in paying credit where it is due attributes the idea to Murphy and Medin (1985),
but they in turn pay credit to Miller and Johnson-Laird (1976), who argued that
concepts themselves embody proto-theories. In any case, Hunt is right to emphasize that
knowledge, especially in the organized form of strong theories or models, exerts an
essential constraint on inductive reasoning.

Collins and Michalski (1989) have developed a more sophisticated version of
rule-based induction: they argue, like Holland, Holyoak, Nisbett and Thagard (1986)
that individuals construct models on the basis of rules of inference, and that these rules
have numerical parameters governing such matters as certainty. They have not tried to
formalize all patterns of plausible inference, but rather some patterns of inference that
make up a core system of deductions, analogies, and inductions. The main novelties of
their approach are the use of a formal language that allows relations between variables
to be stated (e.g. the latitude of a place is inversely related to its average temperature),
and the use of parameters that express such matters as the certainty of a statement, the
typicality of an instance of a member of a set, and so on. Their system includes a set
of eight rules for transforming one statement into another on the basis of class-inclusion
information of the sort to be found in a semantic network. Hence, the inference:

The flowers of England include daffodils and roses.
.\ The flowers of Europe include daffodils and roses.

is made by such a transform given that the semantic network represents the relevant
facts that Europe generalizes England in the context of climate, and that climate
determines flora. The formal specification of this transform is as follows:

d(a) = r [flowers (England) = {daffodils, roses ...}]
a' GEN a in CX (a', D(a')) [Europe generalizes England in the context of

climate]
D(a') < > d(a') [Climate determines what flowers grow]
.\ d(a')=r [flowers (Europe) = {daffodils, roses ...}]
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 93

People are supposed to make such inferences provided they have no contrary infor-
mation, but the certainty of a conclusion can depend on the values of seven parameters.
Every statement transform depends on a mutual dependency (as shown by the double-
headed arrow), and the greater the conditional likelihood between the variables, the
greater the certainty in the inference. The other parameters include similarity between
concepts, the typicality of the argument as a member of its superset, e.g. England of
Europe, the frequency of a reference set within the argument set, and the multiplicity
of the referent and of the argument.

Collins and Quillian also propose a further nine rules of inference for making
inferences from propositions that mutually imply one another and from mutual depen-
dencies between variables. Here is an example based on one such rule concerning a
mutual implication (in the first premise);

If a place has a warm climate, a heavy rainfall, and a flat terrain, then it can
grow rice.
Florida is a place.
Florida has a warm climate.
Florida is flat.
Uncertain whether Florida has a heavy rainfall.
Therefore, if Florida has a heavy rainfall, it can grow rice.

Apart from the parameters concerning certainty, the same inference can be made as a
valid deduction in the propositional calculus without the need for a special rule of
inference tailor-made for it. Hence, a general theory of reasoning with quantifiers and
connectives obviates the need for this and other deductive transforms in Collins and
Quillian's account, provided that it offers an account of the strength of an argument.

Collins and Michalski (1989, p. 40) state that it is difficult to use standard
psychological techniques to test their theory. The theory is intended to account only for
people's answers to questions. It does not make any predictions about the differences in
difficulty between various sorts of inference, and, as they point out (p. 7), it does not
address the issue of whether people make systematic errors. Hence, their main proposed
test consists in trying to match protocols of arguments against the proposed forms of
rules. Pennington and Hastie (1993) report success in matching these patterns to
informal inferences of subjects playing the part of trial jurors. But, as Collins and
Michalski mention, one danger is that subjects' protocols are merely rationalizations for
answers arrived at by other means. Another difficulty is that there are no definitive
criteria for what counts as a match between a protocol and a rule of inference. Anyone
who has had experience in translating everyday language into a logical notation knows
that it is all too easy to analyze everyday expressions into many different formal patterns.
In sum, AI rule systems for induction are under development, but so far they have not
received any very striking empirical corroboration.

In contrast, as Smith says, another sort of rule theory has much more empirical
support. This theory appeals to the idea that individuals have a tacit knowledge of such
rules as the 'law of large numbers'. Girotto argues that the empirical evidence appears
strongly to support the use of such rules, and thus constitutes a challenge to the model
theory. Individuals apply the rules to novel materials, mention them in justifying their
responses, benefit from training with them, and sometimes overextend their use of them.
'All these pieces of evidence,' Girotto writes, 'seem to support rule-theories of evidence'
(see also Smith, Langston, and Nisbett, 1992). It is instructive, however, to compare
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94 PHILIP N. JOHNSON-LAIRD

these rules with those to be found in AI systems. Here is an example of an inductive AI
rule (see Fig. 1 in the target article):

If p & q then s
.". If p then s

This rule is formal and can be applied to the representation of the abstract logical form
of premises. The law of large numbers can be paraphrased as follows:

The larger the sample from a population the smaller the tendency for the
sample mean to diverge from the population mean.

Although Aristotle may not have grasped at once such notions as sample mean and
population, he would probably have been more surprised by a married couple having 10
children who were all girls than by a couple with three children who were all girls. He
would thus have had a tacit grasp of the law, which he could make use of in certain
circumstances. The law of large numbers, however, is not a formal rule of inference. It
has a rich semantic content that goes well beyond the language of logical constants, and
it is doubtful whether it is applied to the logical form of premises. On the contrary, the
law is only likely to be applied when one has grasped the content of a problem, i.e.
constructed a model of it. Yet, the law is a general principle that can be applied to many
different situations.

There are many other general principles of general knowledge, e.g. to multiply by
10 add 0 to the decimal numeral, to get out of certain mazes keep turning left, drive on
the left in Japan. They differ in generality and in validity, but they certainly exist. The
fact that individuals can be taught such rules and that they sometimes err in overextend-
ing them tells us nothing about their format. They may take the form of schemas or
content-specific rules of inference, but they could be represented declaratively. Likewise,
how they enter into the process of thinking—the details of the computations them-
selves—is also not known. There is, however, no reason to oppose them to mental
models. They seem likely to work together in tandem, just as conceptual knowledge
underlies the construction of models.

4. Conclusions

Girotto argues generously that the model theory presents the most complete account of
human deduction, and Garnham points out that it was never intended to be just a
theory of this domain. It may provide real hope, he argues, for a theoretical framework
that will impose order on the study of thinking and reasoning. Similarly, Green
emphasizes that different sorts of reasoning should be able to operate in the same mental
workspace: induction may, as Aristotle argued, provide the premises for a deduction.
Problem solving and everyday reasoning may bring together all the different varieties of
thought. What the target article introduced was a taxonomy of the different steps in
thought with a propositional content. Mental models may be states in a problem-
space—the conception that Garnham advocates, and that both Herb Simon (personal
communication) and the late Alan Newell (1990) have defended. Paradoxically, given
the interdependence of process and representation, it has proved to be much harder to
pin down cognitive processes than cognitive representations. Production systems and
even certain parallel network systems have universal Turing machine power, and hence,
as Garnham reminds us, their explanatory power often depends on the specific accounts
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REPLY TO THE COMMENTATORS ON A MODEL THEORY OF INDUCTION 9 5

framed within them. The evidence from deductive reasoning strongly supports a system
based on mental models. What this reply to the commentators has tried to show is that
mental models are an equally feasible framework for induction.

References

BARWISE, J. (1993) Everyday reasoning and logical inference. (Commentary on Johnson-Laird & Byrne:
Deduction) Behavioral and Brain Sciences, 16, pp. 337-338.

BARWISE, J. & ETCHEMENDY, J. (1989) Model-theoretic semantics. In POSNER, M.I. (Ed.) Foundations of
Cognitive Science (Cambridge, MA, MIT Press).

BEYTH-MAROM, R. & FISCHHOFF, B. (1983) Diagnosticity and pseudo-diagnosticity. Journal of Personality and
Social Psychology, 45, pp. 1185-1195.

CAREY, S. (1985) Conceptual Change in Childhood (Cambridge, MA, MIT Press).
CARNAP, R. (1950) Logical foundations of Probability (Chicago, Chicago University Press).
COLLINS, A.M. & MICHALSKI, R. (1989) The logic of plausible reasoning: A core theory. Cognitive Science, 13,

pp. 1-49.
DOHERTY, M.E, MYNATT, C.R., TWENEY, R.D. & SCHIAVO, M.D. (1979) Pseudodiagnosticity. Acta Psycholog-

ica, 43, pp. 111-121.
GENTNER, D. (1983) Structure-mapping: A theoretical framework for analogy. Cognitive Science, 7,

pp. 155-170.
GIGERENZER, G., HOFFRAGE, U. & KLEINBÖLTING, H. (1991) Probabilistic mental models: A Brunswikian

theory of confidence. Psychological Review, 98, pp. 506-528.
GOODMAN, N. (1965) Fact, Fiction, and Forecast, Second edition (Indianapolis, New York, Bobbs-Merrill).
GRIFFIN, D. & TVERSKY, A. (1992) The weighing of evidence and the determinants of confidence. Cognitive

Psychology, 24, pp. 411-435.
HESSE, M. (1974) The Structure of Scientific Inference (London, Macmillan).
HINTIKKA, J. (1962) Knowledge and Belief: An Introduction to the Logic of the Two Notions (Ithaca, Cornell

University Press).
HINTZMAN, D.L., NOZAWA, G. & IRMSCHER, M. (1982) Frequency as a nonpropositional attribute of memory.

Journal of Verbal Learning and Verbal Behavior, 21, pp. 127-141.
HOLLAND, J . H . , HOLYOAK, K . J . , NISBETT, R . E . & THAGARD, P. (1986) Induction: Processes of Inference, Learning

and Discovery (Cambridge, MA, MIT Press).
HUME, D. (1748/1988) An Enquiry Concerning Human Understanding (La Salle, Illinois, Open Court).
JOHNSON-LAIRD, P.N. (1983) Mental Models (Cambridge, MA, Harvard University Press).
JOHNSON-LAIRD, P.N. (1988) The Computer and the Mind (London, Fontana) (Second edition, 1993).
JOHNSON-LAIRD, P.N. (1993) Human and Machine Thinking (Hillsdale, NJ, Lawrence Erlbaum Associates).
JOHNSON-LAIRD, P.N. (in press) Mental models and probabilistic thinking. Cognition.
JOHNSON-LAIRD, P.N. & BYRNE, R.M.J. (1991) Deduction (Hillsdale, NJ, Lawrence Erlbaum Associates).
KLAYMAN J. & HA, Y.-W. (1987) Confirmation, disconfirmation and information in hypothesis testing.

Psychological Review, 94, pp. 211-228.
LEGRENZI, P., GIROTTO, V. & JOHNSON-LAIRD, P.N. (1993) Focussing in reasoning and decision making.

Cognition, 49, pp. 37-66.
MILLER, G.A. & JOHNSON-LAIRD, P.N. (1976) Language and Perception (Cambridge, MA, Harvard University

Press).
MURPHY, G.L. & MEDIN, D.L. (1985) The role of theories in conceptual coherence. Psychological Review, 92,

pp. 289-316.
NEWELL, A. (1990) Unified Theories of Cognition (Cambridge, MA, Harvard University Press).
NISBETT, R.E. (Ed.) (1993) Rules for Reasoning (Hillsdale, NJ, Lawrence Erlbaum Associates).
OSHERSON, D.N., SMITH, E.E. & SHAFIR, E. (1986) Some origins of belief. Cognition, 24, pp. 197-224.
PEIRCE, C.S. (1958) Selected Writings: Values in a Universe of Chance (New York, Doubleday).
PENNINGTON, N. & HASTIE, R. (1993) Reasoning in explanation-based decision making. Cognition, 49, pp.

123-163.
SMITH, E.E., LANGSTON, C. & NISBETT, R.E. (1992) The case for rules in reasoning. Cognitive Science, 16,

pp. 1-40.
THAGARD, P. (1989) Explanatory coherence. Behavioral and Brain Sciences, 12, pp. 435-502.
TOULMIN, S.E. (1958) The Uses of Argument (Cambridge, Cambridge University Press).
TVERSKY, A. & KAHNEMAN, D. (1973) Availability: A heuristic for judging frequency and probability. Cognitive

Psychology, 5, pp. 207-232.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
1:

50
 2

4 
Fe

br
ua

ry
 2

01
3 



96 PHILIP N. JOHNSON-LAIRD

TVERSKY, A. & KAHNEMAN, D. (1981) The framing of decisions and the psychology of choice. Science, 211,
453-458.

TVERSKY, A. & KAHNEMAN, D. (1983) Extensional versus intuitive reasoning: The conjunction fallacy in
probability judgment. Psychological Review, 90, pp. 293-315.

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
1:

50
 2

4 
Fe

br
ua

ry
 2

01
3 


