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Naive Probability: A Mental Model Theory of Extensional Reasoning
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This article outlines a theory of naive probability. According to the theory, individuals who are unfamiliar
with the probability calculus can infer the probabilities of events in an extensional way: They construct
mental models of what is true in the various possibilities. Each model represents an equiprobable
alternative unless individuals have beliefs to the contrary, in which case some models will have higher
probabilities than others. The probability of an event depends on the proportion of models in which it
occurs. The theory predicts several phenomena of reasoning about absolute probabilities, including
typical biases. It correctly predicts certain cognitive illusions in inferences about relative probabilities. It
accommodates reasoning based on numerical premises, and it explains how naive reasoners can infer
posterior probabilities without relying on Bayes's theorem. Finally, it dispels some common miscon-
ceptions of probabilistic reasoning.

The defence were permitted to lead evidence of the Bayes Theorem in
connection with the statistical evaluation of the DNA profile. Al-
though their Lordships expressed no concluded view on the matter,
they had very grave doubts as to whether that evidence was properly
admissible . .. their Lordships had never heard it suggested that a jury
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should consider the relationship between such scientific evidence and
other evidence by reference to probability formulae

—The Times (London), May 9, 1996, reporting the Court of Ap-
peal's judgment on Regina v. Adams.

You think about probabilities because what you do depends on
what you infer is likely to happen. If you speed on the freeway, are
you likely to be caught by the police? If you choose surgery for a
cancer, is it likely to be successful? If you put your money in the
local bank, is it likely to be safe? Psychologists have studied
thinking about probabilities, but they disagree about the process

(e.g., Gigerenzer, 1996; Kahneman & Tversky, 1996). Similarly,
like philosophers and statisticians, they disagree about the proper
interpretation of the probability calculus. It embodies several self-
evident principles, notably, the extensional notion that the proba-
bility of an event equals the sum of the probabilities of the
different ways in which the event can occur. What are these
probabilities? In theory, they can be interpreted as relative fre-
quencies (e.g., von Mises, 1957), partial logical entailments (e.g.,
Keynes, 1943), or degrees of belief (e.g., Savage, 1954). Each of
these, and other interpretations, has its defenders, and there is no
consensus.

Our concern is not the disagreements of experts but the com-
petence of naive individuals. We use the term naive to refer to

people who have not acquired an explicit mastery of the probabil-
ity calculus, but we do not impugn their intelligence. Many great
intellects—Aristotle, for example, and perhaps the judges in the
British Court of Appeal—reason about probabilities without ben-
efit of calculus. By definition, they are naive. The demarcation
between naive probabilistic reasoning and expert reasoning is not
clear cut, and a naive ability is a precursor to acquiring a knowl-
edge of the calculus. However, few people are real experts; nearly
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everyone goes wrong with certain problems (see, e.g., Tversky &
Kahneman, 1983). And, a computationally tractable system of
probabilistic reasoning is impossible. Problems soon outstrip the
computational power of any feasible system (Osherson, 1996).
Yet, naive individuals are able to reason about probabilities, and
they often reach correct conclusions.

Our goals are to formulate a new theory of naive probabilistic
reasoning and to examine its consequences. The theory purports to
explain how naive individuals reason about probabilities in an
extensional way, where we take extensional to mean inferring the
probability of an event from the different possible ways in which
it could occur. The probability calculus is accordingly a normative
theory of extensional reasoning about probabilities. This way of
reasoning aims to be deductive; that is, its conclusions must be true
given that the premises are true, though naive reasoners make
mistakes. It can be contrasted with nonextensional reasoning about
the probability of an event, which relies on some relevant heuristic,
index, or evidence, as, for example, when reasoners infer that
because an exemplar is typical of a category, it has a high prob-
ability of being a member of the category (D. Kahneman, personal
communication, January 26, 1994). Kahneman and his colleague,
the late Amos Tversky, obtained abundant evidence that many
such inferences depend on heuristics (see, e.g., Tversky & Kah-
neman, 1973, 1983). This reasoning is inductive; that is, its con-
clusions could be false even if their premises are true. Many
inferences in daily life depend on a mixture of extensional and
nonextensional reasoning. Nevertheless, we focus on extensional
reasoning in cases where probabilities are implicit in the situation
or expressed numerically.

Most psychological theories of probabilistic reasoning, such as
Tversky and Koehler's (1994) "support" theory, concern nonex-
tensional reasoning. However, there are theories of extensional
reasoning relating to Bayes's theorem and other advanced topics.
We describe these theories in due course, but only after we have
considered more elementary matters. The new theory has critical
implications for a number of assumptions that psychologists some-
times make:

1. Probabilistic reasoning is an inductive process.
2. It is seldom, if ever, extensional.
3. Extensional reasoning, insofar as it occurs, depends on a tacit

knowledge of the probability calculus.
4. It also depends on premises about the frequencies of events.
5. Cognitive illusions disappear when individuals reason exten-

sionally.
If the new theory is correct, then these assumptions are all
mistaken.

In fact, many inferences about probabilities are deductive (con-
trary to the first assumption). Suppose you carry out a binomial test
on the frequency of some event, say, you tossed a coin 10 times
and it came down heads on each occasion, and the test shows that
the chance probability of this observation, given an unbiased coin,
is less than 1 in 1,000. Your inference is deductive. Your thinking
becomes inductive only if you follow Fisher's (1932) procedure
and infer the falsity of the "null" hypothesis that the 10 heads
occurred by chance with an unbiased coin. This conclusion could
be false.

Naive individuals, contrary to the second assumption, do reason
about probabilities extensionally. Here is an example:

A certain sign of a particular viral infection—a peculiar rash—never
occurs in patients who do not have the infection, but some people with
the infection do not have the rash. Which is more likely to occur: the
rash or the viral infection?

The answer is that the viral infection is more likely to occur than
the rash, because the viral infection could occur without the rash,
whereas the rash cannot occur without the viral infection. This
inference is deductively valid; that is, its conclusion must be true
granted that its premise is true.

How do people reason extensionally? According to the third
assumption, they tacitly follow the probability calculus. Most
people, however, have never encountered the calculus, and so they
are unlikely to have acquired its principles. Our proposed theory of
naive probability provides an alternative explanation, accounting
for both the mental representations and the processes of exten-
sional reasoning. The theory, contrary to the fourth assumption,
allows that extensional reasoning can occur even if the premises do
not refer to frequencies. Likewise, contrary to the fifth assumption,
it predicts the existence of cognitive illusions in extensional
reasoning.

The plan of this article is as follows: We begin with an outline
of psychological theories of reasoning based on formal rules and
show how, in principle, those theories could accommodate the
probability calculus. We then describe the mental model theory of
reasoning and show how it forms the basis of a new theory of
probabilistic reasoning. We report some studies that corroborate
the theory's prediction that extensional reasoning can occur in the
absence of data about frequencies. The theory also predicts some
biases that should occur in extensional reasoning, and we describe
a further study corroborating these predictions. We then turn to
extensional inferences about relative probabilities. The theory cor-
rectly predicts the occurrence of cognitive illusions. In certain
cases, for example, reasoners infer that one event is more probable
than another, even though the event in question is impossible. We
show how the model theory accounts for conditional probabilities
and for Bayesian inferences to posterior probabilities. Finally, we
consider some pedagogical implications of the theory.

Formal Rule Theories and the Probability Calculus

Psychological theories of reasoning are often based on formal
rules of inference (see, e.g., Braine & O'Brien, 1991; Rips, 1994).
Rule theories, as we will henceforth refer to them, postulate that
reasoners match the logical forms of premises to relevant rules and
that the derivations of conclusions are akin to the steps of a proof.
These theories also postulate rules for each of the major sentential
connectives. For example, the rule of modus ponens, which applies
to if, is as follows:

If p then q

In general, the greater the number of steps in the formal derivation
of an inference, the harder the inference should be, though other
factors cause difficulty, for example, the availability of rules and
their complexity. Most of the evidence in favor of rule theories
derives from studies of deductive inferences that are based on
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sentential connectives (see Braine, Reiser, & Rumain, 1984; Rips,
1994).

Current rule theories apply to deductions yielding necessary
conclusions, but some systems of rules have been formulated for
limited sets of inferences about what is possible (Osherson, 1976)
and what is plausible (Collins & Michalski, 1989). In contrast, the
following problem concerns the relative probabilities of two
events:

If there is a red or a green marble in the box, then there is a blue
marble in the box.

Which is more likely to be in the box: the red marble or the blue
marble?

The problem has a valid answer: The blue marble is more likely to be
in the box than the red marble. Psychologists have not studied such
inferences, and rule theories have not been formulated to apply to
them. Yet, these theories could be extended to cope with relative
probabilities. Given the premise above, reasoners could make a sup-
position, that is, an assumption for the sake of argument:

There is a red marble in the box.

Next, they could use the following variant of modus ponens
postulated by certain theorists (e.g., Braine & O'Brien, 1991):

If p or q then r

P

in order to infer the conclusion

There is a blue marble in the box.

Likewise, from the supposition

There is a green marble in the box

they can derive the same conclusion as before from another variant
of the rule. A system of "bookkeeping" could keep track of the
respective possibilities; that is, whenever there is a red marble,
there is a blue marble, but not vice versa. It follows that a blue
marble is more likely to be in the box than a red marble.

Mathematical axiomatizations of the probability calculus de-
pend on an apparatus of sentential connectives or the equivalent
Boolean algebra of set theory. Three axioms formalize absolute
probabilities by providing a measure for probabilities: The first
axiom specifies that probabilities are real numbers greater than or
equal to zero. The second axiom specifies that the probability of a
tautology is one. The third axiom is the extensional principle that
the probability of a disjunction of two mutually exclusive alterna-
tives equals the sum of their respective probabilities. Conditional
probabilities, which are probabilities that depend on the truth of
some other proposition, can be defined in terms of the system, or
specified in a fourth axiom. This axiom asserts that the conditional
probability, p(A\B), that is, the probability of A given that B is
true, corresponds to the subset of cases of B in which A also holds:

Rule theories in psychology eschew axioms in favor of rules of
inference (see, e.g., Rips, 1994), and so the development of these
theories to deal with probability would express the axioms as rules.
For instance, the following extensional rule of inference,

If X and Y are independent, then p(X and Y)=p(X)p(Y),

could be used to infer the probability of conjunctions from the
probabilities of their conjuncts. For example, if the probabilities of
A and B are independent and both equal to 1/2, then the probability
of A and B equals 1/4. No rule theory has been proposed by
psychologists to deal with naive probability, so we do not pursue
the details further. For our purposes, it suffices to know that a rule
theory for probabilistic reasoning is at least feasible. One topic that
we must consider, however, is the vexed business of Bayesian
reasoning, because psychologists have proposed extensional theo-
ries for this domain.

Bayes 's Theorem and Studies of Bayesian Reasoning

Bayes's theorem is a valid equation in the probability calculus
that allows one conditional probability to be inferred from the
values of other probabilities. The simplest version of the equation
can be expressed in terms of a hypothesis, H,, and data, d:

p(H,ld)=
p(dlH,)p(H,)

P(d) (D

Thus, the posterior probability of a hypothesis, H,, given data, d,
depends on the prior probability of the data, the prior probability
of the hypothesis, and the conditional probability of the data given
the truth of the hypothesis. If a set of hypotheses are exhaustive
and mutually exclusive, then they are known as a "partition"; if
each member of a partition has the same probability, then the
probability distribution is "uniform." If there is a partition of n
hypotheses, then p(d) can be expressed in terms of the equation

p(d)=p(dlH,)p(H1)+p(dlH2)p(H2). . .+p(dlHJp(Hn). (2)

It follows that Bayes's theorem can be reexpressed as

P(H,ld) =
p(dlH,)p(H,)

p(dlH,)p(H;)

(3)

As a simple example of the use of Bayes's theorem, imagine that
one of two bags is selected at random: One bag contains 70 red
chips and 30 blue chips, and the other bag contains 30 red chips
and 70 blue chips. From the selected bag, a chip is drawn at
random, and it is, say, red. Hence, the probability that it is drawn
from the preponderantly red bag, according to Bayes's theorem in
Equation 3, is

P(Hrtdld)=7

(.7)05)
_= 7 (4)

p(AIB) =
p(A and B)

~P(B) '

Early studies of Bayesian inference used bags of chips or other
materials that isolated the problem from the participants' everyday
knowledge (e.g., Phillips & Edwards, 1966). The overwhelming
result was that naive reasoners were far too conservative; that is,
their estimates of the posterior probabilities were less extreme than



NAIVE PROBABILITY 65

those calculated according to Bayes's theorem. As Edwards and
Tversky (1967) commented, "Relative to Bayes's theorem, people
are consistently conservative information processors, unable to
extract from data anything like as much certainty as the data
justify" (p. 123). There were various schools of thought about the
source of the error. One view was that individuals were able to
grasp the impact of a single observation but had trouble aggregat-
ing the joint impact of a sample of several observations (see von
Winterfeldt & Edwards, 1986). In retrospect, it is clear that naive
individuals are unlikely to be carrying out the calculations required
by Bayes's theorem.

The Neglect of Base Rates

The debate about conservatism in Bayesian inference was soon
overtaken by a more contentious issue: the question of whether
individuals neglect the base rate of an event, that is, its prior
probability. The pioneering experiments by Kahneman and Tver-
sky (1973) showed that naive participants can estimate base rates
but that when they judge the probability of category membership,
they are governed more by nonextensional considerations, such as
their knowledge of the representativeness of an instance as within
a category. Indeed, in such circumstances, there is a strong corre-
lation between explicit judgments of representativeness and judg-
ments of probability. In one of Kahneman and Tversky's (1973)
studies, for example, the participants were given the following
cover story, which we here abbreviate:

A panel of psychologists .. . administered personality tests to 30
engineers and 70 lawyers.... On the basis of this information,
thumbnail descriptions of the 30 engineers and 70 lawyers have been
written. You will find on your forms five descriptions, chosen at
random from the 100 available descriptions. For each description,
please indicate your probability that the person described is an engi-
neer, on a scale from 0 to 100.

The cover story also explained that the participants would be paid
a bonus for assigning probabilities accurately, that is, in accor-
dance with a panel of experts. Another set of participants was
given the same story, except that the numbers were reversed so that
now there were 70 engineers and 30 lawyers. Within both sets of
participants, one group judged the probability that each description
was of an engineer, and the other group judged the probability that
each description was of a lawyer. The participants' judgments did
not show much effect of the prior odds. The mean estimate of the
probability of an occupation was 55% for the condition in which
the majority was in that occupation, and the mean estimate was a
probability of 50% in the condition in which the minority was in
that occupation. This difference was reliable but far from the size
that should have occurred if the participants were using a Bayesian
method. The moral is clear: Naive individuals rely on their knowl-
edge of typical engineers and typical lawyers in order to estimate
the probabilities of category membership. Only in the following
sixth .test did the participants take the base rate fully into account:

Suppose now that you are given no information whatsoever about an
individual chosen at random from the sample.

The probability that this man is one of the 70 engineers in the sample
of 100 is __%.

Many subsequent studies showed similar effects.
In a recent review of the literature, Koehler (1996) wrote: "We

have been oversold on the base rate fallacy in probabilistic judg-
ment from an empirical, normative, and methodological stand-
point" (p. 1). He argued that in many cases it is unclear whether
Bayes's theorem is the appropriate normative model. These cases
include problems that violate its assumptions, or at least are
ambiguous with respect to them, and problems where the reason-
ers' goals may differ from those of the normative models. In other
cases, he claimed, reasoners almost always take the base rate into
account, though perhaps not to a sufficient degree. He also tried to
isolate the conditions in which they are most likely to do so and
pinpointed several, including the presentation of problems in terms
of frequencies rather than probabilities.

Gigerenzer and his colleagues also argued that when problems
are expressed in frequencies based on naturally occurring samples,
cognitive illusions disappear and reasoners can make Bayesian
inferences (see, e.g., Gigerenzer & Hoffrage, 1995). Similarly,
Cosmides and Tooby (1996) proposed that evolution has led to the
development of a specific inductive module that can make Bayes-
ian inferences from frequency data. On this hypothesis of "fre-
quentism," extensional reasoning depends on an innate embodi-
ment of elements of the probability calculus. Perhaps people who
have been taught the rudiments of the probability calculus reason
in this way, but, as we suggested earlier, naive reasoners do not
appear to rely on the probability calculus. We therefore return to
frequentism after we have outlined two alternative approaches to
extensional reasoning.

Intuitive Beliefs About Probabilities

Shimojo and Ichikawa (1989) carried out a pioneering study of
errors in difficult Bayesian problems. They interviewed four grad-
uate students, who had some statistical training but no detailed
knowledge of Bayes's theorem, and elicited from them their intu-
itive beliefs (or "subjective theorems") about probabilities. Shi-
mojo and Ichikawa carried out three experiments with mainly
naive participants, whose task was to give estimates of probability
and reasons justifying them for a series of problems. These prob-
lems were either the following "three prisoners problem" or vari-
ations on it:

Three men, A, B, and C, were in jail. A knew that one of them was
to be set free and the other two were to be executed. But he didn't
know who was the one to be spared. To the jailer who did know, A
said, "Since two of the three will be executed, it is certain that either
B or C will be, at least. You will give me no information about my
own chances if you give me the name of one man, B or C, who is
going to be executed." Accepting this argument after some thinking,
the jailer said, "B will be executed." Thereupon A felt happier because
now either he or C would go free, so his chance had increased from
1/3 to 1/2. The prisoner's happiness may or may not be reasonable.
What do you think?

The correct answer to this problem, granted certain plausible
assumptions, is that the prisoner's chances of being executed
remain equal to 1/3. In the section Mental Models and the Peda-
gogy of Bayesian Reasoning, we explain how to solve this problem
and other Bayesian puzzles. There were three main intuitions
elicited by Shimojo and Ichikawa:
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1. "Number of cases": When the number of possible alterna-
tives is N, the probability of each alternative is UN. Reasoners who
hold this belief infer that Prisoner A's chances rise to 1/2 because
there are only two alternatives: either A or C will be executed.

2. "Constant ratio": When one alternative is eliminated, the
ratio of probabilities for the remaining alternatives is the same as
the ratio of prior probabilities for them. Reasoners who hold this
belief also infer that Prisoner A's chances rise to 1/2. In a variant
on the problem, A's chances of execution are 1/4, B's chances of
execution are 1/2, and C's chances of execution are 1/4 (see the
section Mental Models and the Pedagogy of Bayesian Reasoning).
Given that C is not to be executed, those who follow the constant-
ratio intuition infer that A's chances of execution are now in the
ratio 1/4 to (1/4 + 1/2), that is, 1/3. Those who follow the
number-of-cases intuition infer that A's chances rise to 1/2.

3. "Irrelevant, therefore invariant": If it is certain that at least
one of several alternatives will be eliminated, the information
specifying which alternative will be eliminated is irrelevant and
does not change the probabilities of the other alternatives.
Reasoners who hold this belief infer that A's chances of exe-
cution are unchanged by the jailer's message in both versions of
the problem.

Shimojo and Ichikawa (1989) reported that most participants
stuck to the same intuition throughout, but a few shifted from one
intuition to another. They argued that the participants were not
reasoning within the framework of Bayes's theorem, and so there
may be a module for intuitive reasoning that is independent of
formal mathematical reasoning. They pointed out that reasoners
often overlook the context of events and that the problem is highly
sensitive to the precise nature of the jailer's question (see also
Nickerson's, 1996, analysis of the unstated assumptions in Bayes-
ian problems). Thus, the appropriate partition is often unclear, and
Shimojo and Ichikawa raise the key question, What determines the
participants' partition of the problem?

Falk (1992) has also discussed the three prisoners problem. In a
reanalysis of Shimojo and Ichikawa's results, she showed that the
most prevalent intuition is "number of cases," and then the "irrel-
evant, therefore invariant" intuition. She renamed them as "uni-
formity" and "no-news, no-change," respectively. Only a tiny
proportion of the participants' answers were not based on either of
these two intuitions. Her own informal studies corroborate their
ubiquity. And uniformity, she argued, is seldom questioned and
generally prevails over no-news, no-change if the two should
clash. "To assume uniformity," she wrote, "when we think we
know nothing else but the list of possible outcomes, seems so
natural that just describing the phenomenon seems sufficient to
explain it" (p. 206). She suggested that it may reflect a preference
for symmetry and fairness.

With hindsight, what is missing from these pioneering analyses
is an account of how reasoners represent problems, particularly the
partition for a problem, of how they make simple extensional
inferences about probabilities, and of how they may err in such
cases. The new theory of extensional reasoning, to which we now
turn, aims to answer these questions. It accommodates the ideas of
Shimojo and Ichikawa and of Falk, but it aims to go beyond them
by giving a more general framework for extensional reasoning
about probabilities.

A Model Theory of Naive Probability

The Model Theory of Sentential Reasoning

Our account of naive probability is based on the theory of
mental models, which was originally developed to explain the
comprehension of discourse and deductive reasoning (Johnson-
Laird, 1983; Johnson-Laird & Byrne, 1991). The theory postulates
that when individuals understand discourse, perceive the world, or
imagine a state of affairs, they construct mental models of the
relevant situations. A mental model is defined as a representation
of a possibility that has a structure and content that captures what
is common to the different ways in which the possibility might
occur. For example, when individuals understand a conjunction
such as "There is triangle and there is circle," they represent its
meaning (its intension), from which they can construct a represen-
tation of what it refers to (its extension). The representation of the
extension takes the form of the mental model

O A

in which O represents a circle, and A represents a triangle. The
model captures what is common to any situation in which there is
a triangle and a circle; that is, it represents nothing about the size
of the objects, their spatial relation, or other such matters. How-
ever, the two objects are represented by two mental tokens, which
have properties that correspond to the properties of the two objects.
The construction of models from a description is thus part of the
process of verbal comprehension, and how this process occurs has
been considered in detail elsewhere (see, e.g., Garnham, 1987;
Johnson-Laird, 1983; Stevenson, 1993).

The theory postulates that reasoning is a semantic process rather
than a formal one, because reasoners build mental models on the
basis of their understanding of the premises and on any relevant
knowledge. They can formulate a conclusion that is true in these
models, and they can establish its validity by ensuring that there
are no models of the premises in which the conclusion is false.

A fundamental principle of the theory is that mental models
normally represent only what is true. In this way, there is a limit on
the load on working memory. The principle is subtle, because it
applies at two levels. First, individuals represent only true possi-
bilities; second, they represent those literal propositions in the
premises—affirmative or negative—that are true in the true pos-
sibilities. For example, an assertion of the form

There is a circle or there is a triangle, but not both

elicits two alternative models to represent the two true possibili-
ties:

where each row denotes a model of a separate possibility. Each
model represents only what is true in a particular possibility.
Hence, the model shown on the first line represents that it is true
that there is a circle, but it does not represent explicitly that it is
also false in this case that there is a triangle. Similarly, the second
model represents that there is a triangle, but it does not represent
explicitly that it is also false that there is a circle. The theory
postulates that reasoners try to remember the information about
falsity, but that these "mental footnotes" on models are soon likely
to be forgotten.

In contrast to mental models, fully explicit models represent the
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false components in each possibility. Thus, the fully explicit mod-
els of the exclusive disjunction above are as follows:

O
nO A

where "—T denotes negation. Thus, false affirmatives are repre-
sented by true negations in fully explicit models, and false nega-
tives are represented by true affirmatives in fully explicit models.
The two fully explicit models of the disjunction match the two
rows that are true in its truth table, that is, the second and third
rows in the truth table as depicted in Table 1.

The theory gives an analogous account of all the so-called "truth
functional" connectives, that is, those for which the truth value of
a sentence formed with the connective depends only on the truth
values of the clauses it connects. Thus, the following inclusive
disjunction is true if at least one of its disjuncts is true:

There is a circle or there is a triangle, or both.

It calls for three mental models:

O

O
A
A

which again represent only the true components of the true possi-
bilities. A conditional, such as

If there is a circle, then there is a triangle,

elicits one explicit model of the possibility in which its antecedent
and consequent are true. There are other possibilities, that is, those
in which the antecedent of the conditional (there is a circle) is
false, but individuals do not normally represent them explicitly.
The theory accordingly proposes that these possibilities are repre-
sented in a single implicit model, a model that has no explicit
content and that we symbolize with an ellipsis (three dots). Thus,
the conditional has two mental models, one explicit and the other
wholly implicit:

O A

where the ellipsis denotes the wholly implicit model. Readers will
notice the similarity to the model of the earlier conjunction. The
difference is that the conditional has an implicit model allowing
for possibilities in which the antecedent is false. A biconditional,

If, and only if, there is a circle, then there is a triangle,

has the same mental models as a conditional, but its implicit model
corresponds to the possibility in which both the antecedent and the
consequent of the conditional are false. If reasoners retain the mental
footnotes about what is false in the possibilities represented by an
implicit model, they can construct a set of fully explicit models for a

Table 1
A Truth Table for an Exclusive Disjunction

Circle Triangle Circle or triangle, but not both

True
True
False
False

True
False
True
False

False
True
True
False

conditional or biconditional. The evidence suggests that reasoners
soon lose access to these mental footnotes and to the existence of an
implicit model, especially with propositions that contain more than
one connective (see, e.g., Johnson-Laird & Savary, 1996).

Table 2 summarizes the mental models that are based on the five
main sentential connectives, and it also shows the corresponding
fully explicit models for these assertions in which the false cases
are represented as true negations. Readers may worry that the
theory is based on dubious concepts, such as mental footnotes and
ellipses, and on hidden assumptions that can be added or dropped
as needed to account for experimental results. In fact, the theory
postulates that individuals normally reason using mental models
but that, in simple cases, individuals can flesh out their models to
make them fully explicit. All the specific predictions about rea-
soning with sentential connectives derive from Table 2. Mental
footnotes, which are not shown in the table, indicate what is
exhaustively represented in the mental models, and the notion
underlies the computer programs modeling both prepositional and
syllogistic reasoning (see Johnson-Laird & Byrne, 1991). We have
sometimes used square brackets to represent mental footnotes, but
there is no need for them in the present article, and so we forgo
them. The ellipses represent wholly implicit models, that is, mod-
els that serve as "placeholders" representing other possibilities that
as yet have no explicit content. To explain certain tasks going
beyond deduction, such as Wason's (1966) selection task, we have
made additional assumptions. Likewise, in the present article, we
make additional explicit assumptions to explain naive probability.

There is much evidence in support of the model theory. Deductions
that call for a greater number of mental models are more difficult,
taking longer and leading to more errors. Erroneous conclusions tend
to correspond to individual mental models of premises (for a review,
see Johnson-Laird & Byrne, 1991). Reasoners tend to focus on what
is explicit in their models and thus to be susceptible to various
"focusing effects," including an influence of the verbal framing of
premises on deductive reasoning (see Legrenzi, Girotto, & Johnson-
Laird, 1993). A recent study (Girotto, Evans, & Legrenzi, 1996) has
shown that the difficulty of coping with multiple models is the main
source of "pseudodiagnosticity," that is, the tendency to prefer infor-
mation for the focal hypothesis over information about its alternative
(see Mynatt, Doherty, & Dragan, 1993).

The model theory offers a unified account of reasoning leading
to necessary conclusions and reasoning leading to conclusions
about possibilities. A conclusion is necessary—it must be true—if
it holds in all the models of the premises; a conclusion is possi-
ble—it may be true—if it holds in at least one model of the
premises. Recent evidence confirms the theory's prediction of a
key interaction (Bell & Johnson-Laird, 1998): It is easier to infer
that a situation is possible (which demands only a single model of
an example) than to infer that it is not possible (which demands its
nonoccurrence in all models), whereas it is easier to infer that a
situation is not necessary (which demands only a single model of
a counterexample) than to infer that it is necessary (which de-
mands its occurrence in all models).

The Model Theory of Naive Probability:
Absolute Probabilities

The mental model theory applies in a natural way to naive
probability. In particular, it accounts for extenskmal reasoning
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Table 2
Models for the Sentential Connectives

Connective Mental models Fully explicit models

A andB
A or else B

A or B or both

If A, then B

If, and only if A, then B

A
A

A

A
A

A

B

B

B
B
B

B

A
A

-A
A

-iA
A
A

-,A

A
-A

B
-iB

B
-iB

B
B
B
B

B
-,B

Note. See text for description, -i = negation; . . . = wholly implicit
model.

about probabilities, that is, reasoning that yields the probability of
an event from the different possible ways in which it could occur.
This account depends on three fundamental principles, the first of
which we have already encountered.

1. The truth principle: People represent situations by constructing
sets of mental models in which each model represents what is true in
a true possibility. In contrast, a set of fully explicit models represents
the mutually exclusive true possibilities completely.

Situations with a zero probability correspond to what is false, and
so the theory implies that they are not normally represented in
models.

2. The equiprobability principle: Each model represents an
equiprobable alternative unless individuals have knowledge or beliefs
to the contrary, in which case they will assign different probabilities
to different models.

This principle is a variant on the "number of cases" intuition
proposed by Shimojo and Ichikawa (1989). It differs from their
subjective theorem in two ways: First, it applies to mental models
of the partition; second, equiprobability is assumed only by de-
fault. An analogous principle of indifference or insufficient reason
has a long history in classical probability theory (see Hacking,
1975), and we spell out below the difference between indifference
and the equiprobability principle.

3. The proportionality principle: Granted equiprobability, the prob-
ability of an event, A, depends on the proportion of models in which

IA
the event occurs; that is, p(/4) = — , where nA is the number of

models containing A, and n is the number of models.

A corollary is the inclusion principle: If one event, A, occurs in
each model in which another event, B, occurs, then A is at least as
probable as B, and if, in addition, A occurs in some models in
which B does not occur, then A is more probable than B.

The equiprobability principle is similar to the classical principle
of indifference, which Howson and Urbach (1993) express in
terms of conditional probabilities, "If there are n mutually exclu-
sive possibilities hl,. . . ,hn, and e gives no more reason to believe
any one of these more likely to be true than any other, then P(ht\e)
is the same for all i" (p. 52), where P(/!je) is the conditional

probability of ft, given that the evidence, e, is the case. The
principle of indifference lies at the heart of Laplace's (1820/1951)
rule of succession—the notorious expression that if an event, A,
occurs r times in s trials (or repeated observations), then A's
probability on trial s + 1 is

r+ 1
s+2'

It was this formula that enabled Laplace to compute the odds that
the sun would rise on the morrow as 1,826,214 to 1 (see Howson
& Urbach, 1993, pp. 52 et seq.).

The problem with the principle of indifference, as these authors
point out, is that it yields inconsistencies depending on how one
chooses to partition possibilities. Suppose, for example, there are
three marbles—a red, a green, and a blue marble—and a box
contains the red marble, the green marble, or the blue marble, but
the red marble is always with the green or the blue marble, but not
both of them. One partition splits the possibilities into the red
marble, the green marble, or the blue marble and then splits the
cases of the red marble into one with the blue marble and one with
the green marble. Indifference then yields a probability of 1/3 for
selecting a box containing the red marble. Another partition splits
the possibilities into the red and green marble, the red and blue
marble, the green marble, and the blue marble; indifference now
yields a probability of 1/2 for selecting a box with the red marble.
The same difficulty applies to Shimojo and Ichikawa's (1989) and
Falk's (1992) accounts of intuitive beliefs about probabilities. The
principle of number of cases applies to alternatives, but the theo-
ries do not specify what counts as an alternative.

In contrast, the present principle of equiprobability applies to
partitions corresponding to the mental models that reasoners con-
struct. Table 2 embodies a theory of how models are based on
sentential connectives, and so it is these models that yield the
partition for a given description, which are then assumed to rep-
resent equiprobable alternatives. Given a box containing at least
one of the three marbles, red, green, and blue, and the description,

If the red marble is in the box, then either the green or else the blue
marble, but not both, is in the box too,

the theory postulates that reasoners should construct the following
mental models:

red
red

green
blue

though they are likely to forget the implicit model denoted by the
ellipsis. In any case, they should assume equiprobability and use
proportionality to infer a probability for a box with a red marble
(p = 2/3 if they remember the implicit model and p = 1 if they
forget it). The fully explicit set of models shows the real partition
for the problem:

red
red
ired
ired
ired

green
-.green

green
-igreen

green

-,blue
blue

-iblue
blue
blue
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Granted equiprobability over this partition, then proportionality
yields a probability of 2/5 for a box containing at least the red
marble.

The principle of equiprobability holds only by default. If indi-
viduals have knowledge or beliefs to the contrary, they will not
assume equiprobability. For example, they tend not to assume that
all the horses in a race are equally likely to win; they know that the
favorite is more likely to win. Indeed, what we mean by a default
assumption is one that can be abandoned in the face of evidence to
the contrary. Default assumptions, which have a long history in
cognitive science, play a critical role in the construction of mental
models (see Johnson-Laird & Byrne, 1991, chap. 9). We return to
the more subtle effects of knowledge and beliefs later in the article.

The three principles of naive probability combine to yield pre-
dictions about probabilistic reasoning. Individuals should con-
struct models of the true possibilities on the basis of the premises
(the truth principle). In the absence of contrary evidence, individ-
uals should assume that the models represent equally probable
alternatives (the equiprobability principle), and they should infer
that the probability of an event, A, equals the proportion of models
in which A occurs (the proportionality principle):

P(A\premises) = — ,
n

where P(A\premises) is the conditional probability of A given the
premises, nA is the number of models of the premises in which A
occurs, and n is the number of models of the premises. The twist
in this prediction is that equiprobability applies to mental models,
and mental models represent only what is true within the true
possibilities.

Numerical Premises

The three principles provide an account of both basic exten-
sional reasoning and inferences about relative probability. Relative
probabilities, such as

A is more likely than B

can be expressed without numerical values, and thus inferences
about them can be drawn by individuals in nonnumerate cultures.
Educated members of industrialized societies, however, are nu-
merate, and so they are at least familiar with numerical values for
probabilities even if they are naive about the calculus. With small
integral values, such as

The chances of a red marble in the box are 3 out of 4; otherwise, there
is a green marble,

they can represent the probability by the relative frequency of the
models,

red
red
red
green

and they can draw conclusions on the basis of proportionality.
When the numerical values are larger, the theory postulates a more
general procedure.

4. The numerical principle: If a premise refers to a numerical
probability, the models can be tagged with their appropriate numerical
values, and an unknown probability can be calculated by subtracting
the sum of the (n - 1) known probabilities from the overall proba-
bility of the n possibilities in the partition.

The procedure remains extensional but generalizes to any sort of
numerical values, including probabilities expressed in terms of
frequencies, fractions, decimals, or percentages (see also Steven-
son & Over, 1995, who also postulated tagging models with
probabilities). As an example, consider the problem

There is a box in which there is one and only one of these marbles, a
green marble, a blue marble, or a red marble. The probability that a green
marble is in the box is .6, and the probability that a blue marble is in the
box is .2. What is the probability that a red marble is in the box?

The premises are represented by the following annotated mental
models

green
blue

Probabilities
0.6
0.2

red

and so the probability that the red marble is in the box equals .2.
If there is a stated probability for one possible event, but not for

several alternative events, then is the equiprobability principle
likely to apply to them? For example, suppose that we drop one of
the stated probabilities from the previous problem:

There is a box in which there is one and only one of these marbles, a
green marble, or a blue marble, or a red marble. The probability that
a green marble is in the box is .6. What is the probability that a red
marble is in the box?

The theory commits us to the view that, by default, reasoners
should assume that the blue and red marble are equiprobable. This
tendency, however, is likely to be enhanced where the stated
probability obeys the equiprobability assumption; for example, the
probability of a green marble is .33 in the previous case.

The introduction of numbers into probabilistic problems compli-
cates matters. Reasoners can no longer rely on the basic extensional
principles alone (truth, equiprobability, and proportionality). More-
over, numbers call for calculations, and, most importantly, their dif-
ficulty depends in part on the particular numerical system. Consider,
for example, the following three calculations:

The probability of A =

the percentage probability of A =

the chances of A =

„ „.

(53.3%)

(8/15)

They are not equally easy; only the third calculation can be carried
out mentally. Yet all three calculations express equivalent results.
In general, extensional reasoning from numerical premises will be
affected by the relative difficulty of the numerical calculations.

The probability calculus, as we have seen, distinguishes be-
tween absolute probabilities and conditional probabilities. We use
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the same organization in what follows. We have shown how the
model theory applies in principle to inferences concerning absolute
probabilities, and in the next section, we present evidence in favor
of this account. We then consider the model theory's explanation
of biases in reasoning about absolute and relative probabilities.
Finally, we consider conditional probabilities, Bayesian reasoning,
and the theory's pedagogical implications.

Extensional Reasoning About Absolute Probabilities

Given the principles of basic extensional reasoning, the proba-
bility of an event should depend on the proportion of mental
models in which it occurs. There were no relevant empirical results
in the literature, and so we carried out two experiments to test this
central prediction of the theory of naive probability. What we
aimed to show in these studies was, first, that naive individuals
who have no knowledge of a situation will adopt the equiprob-
ability assumption and then use proportionality to infer the prob-
abilities of events. As we saw earlier, Shimojo and Ichikawa
(1989) and Falk (1992) postulated that naive individuals believe
that given N alternatives the probability of any one of them is UN.
Our second aim was accordingly to show that this principle of
equiprobability applies to mental models, not to the actual alter-
natives. The divergence should be most apparent in the case of
conditionals, which have two mental models but which are com-
patible with three actual possibilities (see Table 2).

Experiment 1: A Preliminary Study of
Extensional Reasoning

Our preliminary study tested whether naive reasoners spontane-
ously adopt the equiprobability principle. Because we wanted to
isolate the problems from the participants' expectations based on
general knowledge or beliefs, we used the same sort of contents as
the bookbag and poker chips of many other studies of probabilistic
inference (see, e.g., von Winterfeldt & Edwards, 1986). The pre-
mises were in the form of inclusive disjunctions, and a typical
problem was:

There is a box in which there is a black marble, or a red marble, or
both.

Given the preceding assertion, according to you, what is the proba-
bility of the following situation?

In the box there is a black marble with or without another marble.

Probability: %

Expert reasoners may refuse to answer on the grounds that the
problem is ill-posed; it is difficult, if not impossible, to assess the
probability of a single unique event, and even if the problem were
based on repeated events, the probability could be anywhere be-
tween 0% to 100% because there is no information about the
respective probabilities of the three possibilities. Naive reasoners,
if the model theory is right, should have no such scruples. The
premise yields three models, which represent the true components
of the true possibilities:

black
red

black red

These models are the components of the partition with nonzero
probabilities. Granted their equiprobability, the probability of a
black marble with or without another marble (e.g., the red one)
depends on the proportion of models in which the black marble
occurs, namely, 67%. So, if the model theory is correct, then
reasoners should tend to infer the following probabilities about
the contents of the box: probability of a black marble with or
without another = 67%, probability of a black marble and a red
marble = 33%, probability of a black marble without a red
marble = 33%, probability of neither a black marble nor a red
marble = 0%. It seemed possible, however, that naive reasoners
would either balk at the task—much as expert reasoners
should—or else make inferences in some other, perhaps hap-
hazard, way.

Method. The participants acted as their own controls and carried out
each inference on the basis of a separate premise with a different content.
The order of the problems was as they are stated in the preceding section.
This experiment and the subsequent ones were carried out in French with
native speakers. The four problems all concerned objects in a box, but each
problem was about different objects in different colors. The participants
were tested individually, and the instructions at the top of the first sheet
described how they were to make their estimates in terms of percentages:

With each of the following questions, we would like you to give
estimates of the probability of certain events. Your estimates must be
given in percentages (from 0% [impossible] to 100% [certain]) on the
basis of the following scale.

50% 100%
I-

Impossible Certain

Each problem was printed on a separate sheet, and the participants worked
through the problems in the fixed order and were not allowed to go back
to a previous problem. We tested 13 volunteers, who were students at the
University of Aix-en-Provence, native speakers of French, and unfamiliar
with the probability calculus.

Results and discussion. Table 3 presents the results. In order to
examine the data of all participants, and to allow for numerical
inexactitude, we analyzed how many of each participants' infer-
ences were within ±5% of the predicted values. We adopted this
analysis in all of our experiments. The a priori probability of
answering a question by chance within ± 5% of the predicted
value is 1/10, and so a participant who makes at least one such
inference out of the four trials is performing better than chance. In
fact, 2 out of the 13 participants inferred probabilities that matched
exactly the numerical predictions, 3 participants were within ±5%
of the predictions on three of their inferences, and all but 1 of
the 13 participants performed better than chance (Sign test, p <
.002).

The probability of A should be greater than, or equal to, the
probability of A and B, otherwise the inferences commit an
extensional version of the "conjunction fallacy"; that is, the
participants infer that the probability of a conjunction is greater
than the probability of one of its conjuncts (see Tversky &
Kahneman, 1983). This fallacy often occurs in nonextensional
reasoning about a conditional probability. Thus, its typical
demonstrations call for estimates of two probabilities, such as
p(A\C) and p(A and SIC), where C is a description of an
individual, say, Charles, A is a category such as "accountant,"
and B is a category such as "plays baseball as a hobby." The
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Table 3
The Predicted Percentage Inferences and the Means of the Observed Percentage Inferences in
Experiment 1 for Inclusive Disjunctions of the Form A or B, or Both

Results

Predicted percentages
Observed percentages

P(A)

66
56

p(A and B)

33
27

Types of conclusions

p(A and not-B)

33
33

p(not-A and not-B)

0
7

evidence shows that the conjunction fallacy derives from a
difference in the representativeness of C as an instance of A and
as an instance of B. In extensional reasoning, the model theory
predicts the conjunction fallacy if reasoners omit, or forget,
certain models of the premises. Thus, given a conditional if A,
then B, the fallacy would occur if a participant forgot the
implicit model in assessing p(A and B), which would yield a
probability of 100%, but did not forget the implicit model in
assessing p(A), which would yield a probability of 50% (see
the mental models in Table 2). In our experiment, comparable
oversights are unlikely with simple disjunctions, and indeed 12
out of 13 participants fitted the correct inequality (Sign test, p
< .002). The probability A should also be greater than, or equal
to, the probability of A and not-B, and it was for all 13
participants (p = .513, i.e., less than 1 in 8,000). Finally, 7
participants inferred the probability of A (e.g., a black marble)
as 50% instead of the predicted 67%. One reason may be that
they thought that the two possibilities, a black marble or red
marble, were equiprobable. In other words, they may have
neglected the description "with or without another marble," or
they may have thought that this description did not include the
red marble. We clarified the statement of the question in the
next experiment.

In general, the participants were happy to carry out the task and
did not balk at the inferences. They did indeed appear to assume
that each model was roughly equiprobable, as shown by the fact
that both the probability of A and B and of A and not-B were
inferred as around 33% by more than half the participants. These
results corroborated the principles of equiprobability and propor-
tionality, but they concerned only a single connective. Our next
task was to test the model theory's prediction for a broader range
of sentential connectives.

Experiment 2: Extensional Probabilities for
the Main Connectives

This experiment examined three connectives: exclusive or, in-
clusive or, and if. Because and does not allow any inferences that
are not definite, we used it only in two practice trials.

For exclusive disjunction, A or B but not both, the model theory
(see Table 2) predicts that individuals should construct two
models,

B

and so they should infer probabilities of 50% for at least A and for
A and not-B, and probabilities of 0%, for A and B and for neither
A nor B. For inclusive disjunction, A or B or both, the model

theory makes the predictions that we described for Experiment 1;
that is, individuals should infer a probability of 67% for at least A,
probabilities of 33% for A and B and for A and not B, and a
probability of 0% for neither A nor B.

The conditional premises are more critical for a comparison
between the mental model theory and the accounts of Shimojo and
Ichikawa (1989) and Falk (1992). A conditional if A, then B is
compatible with three distinct possibilities (see the fully explicit
models in Table 2), whereas it has only two mental models:

A B

Hence, according to the model theory, individuals should infer
probabilities of 50% for at least A and for A and B; however, they
are likely to construct other models when they are asked to infer
the probability of the corresponding state of affairs. That is,
individuals are most unlikely to hold in mind all the possible
models of the conditional. According to the theory, they will make
a mental footnote that A occurs only in the explicit model, and so
they should infer a probability of 0% for A and not-B. They should
be able to flesh out the implicit model to represent the state of
affairs:

They will contrast this model with the initial explicit model and
accordingly infer the probability of this new model as 50%. If they
omit or forget the implicit model—a common failing when there is
another connective in the same assertion (see, e.g., Johnson-Laird
& Savary, 1996)—then they will infer a probability of 100% for A
and for A and B; that is, they will treat the conditional as though
it were a conjunction. A conditional if A, then B can be, and often
is, interpreted as a biconditional. In this case, the two models
exhaust the set of possibilities,

A B

and so participants who make the biconditional interpretation will
infer a probability of 0% for B and not A. Otherwise, they will
construct the model

-,A B

and infer a probability of 50% (comparing this model with only the
initial explicit model). In summary, the model theory's predictions
for the conditional are that participants should infer probabilities of
50% for at least A, for A and B, and for neither A nor B and a
probability of 0% for A and not-B. The probability that they infer
for B and not-A will be either 0% (the biconditional interpretation)
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or 50% (the conditional interpretation). Because participants
should construct certain models only when they are asked certain
questions, they are likely to overestimate probabilities so that they
sum to greater than 1, particularly in the case of a conditional
interpretation.

Neither Shimojo and Ichikawa (1989) nor Falk (1992) described
how people represent alternatives, but they did not deny that
individuals have access to the actual possibilities. In the case of a
conditional, individuals should therefore infer probabilities of 33%
for at least A, for A and B, and for not-A and B and a probability
of 0% for A and not-B. In the case of a biconditional interpretation,
they should infer probabilities of 50% for A and B and not-A and
not-B and 0% for A and not-B and not-A and B. The possible
omission of the implicit model and the conditional rather than the
biconditional interpretation discriminate between the two theories.

Method. There were 13 experimental problems (4 for exclusive or, 4
for inclusive or, and 5 for if). The participants acted as their own controls,
and after two practice trials with and, they carried out all the experimental
problems. These were presented in a different random order to each
participant, with the constraint that no problem with a particular connective
was immediately followed by another problem with the same connective.
The format of the trials was the same as those in Experiment 1. The
statements of the four connectives were as follows:

A and B: There is a box in which there is a yellow card and a brown
card.

A or B, not both: There is a box in which there is a yellow card, or a
brown card, but not both.

A or B, or both: There is a box in which there is a yellow card, or a
brown card, or both.

If A then B: There is a box in which if there is a yellow card then there
is a brown card.

The five sorts of questions were as follows:

At least A: In the box there is at least a yellow card.

A and B: In the box there is a yellow card and a brown card.

A and not B: In the box there is a yellow card and there is not a brown
card.

B and not A: In the box there is a brown card and there is not a yellow
card.

Neither A nor B: In the box there is neither a yellow card nor a brown
card.

The formulation of the question about the probability of A was modified
from the version in Experiment 1 to at least A in order to simplify it.

The content of all 15 problems was distinct. Once again, we needed to
isolate it from the participants' knowledge, and so it was based on five
objects—marble (bille), cube (cube), ball (boule), card (carte), and chalk
(craie)—and 15 distinct pairs of colors from the following list: blue (bleu),
yellow (jaune), brown (marron), black (noir), green (vert), red (rouge).
Two separate allocations of the resulting contents were made to the 15
problems; half of the participants were tested with one allocation and half
were tested with the other allocation.

The participants were tested individually, and the instructions and pro-
cedure were identical to those of Experiment 1, except that each participant
worked through the problems in a different random order. We tested 22
volunteers from the same population as before.

Results and discussion. We deal with the results for each
connective separately, and, as before, we analyze how many in-
ferences were within ± 5% of the predicted values, so a participant
who makes at least one such inference out of four trials is per-
forming better than chance.

Table 4 summarizes the results for exclusive disjunction, A or B
but not both. Of the 22 participants, 8 inferred exactly the pre-
dicted numerical values, a further 9 made one departure from the
four predictions, and all participants performed better than chance
(Sign test, p = .522, i.e., less than 1 in 4 million).

Table 5 summarizes the results for inclusive disjunction: A or B
or both. In this case, 8 participants inferred exactly the predicted
numerical values, a further 5 made just one departure from the
predicted pattern, and only 1 out of the 22 participants failed to
perform better than chance (Sign test, p < .0005). There was no
apparent difference between p(A and B) and p(A and not-B): 14
ties, and the remaining 8 participants were split equally. Hence, the
results corroborated the pattern that we observed in Experiment 1.

The analysis of the results for the conditionals of the form if A,
then B is more complicated because of their potential ambiguity,
which concerns p(B and not-A). Table 6 therefore summarizes the
results for the other four inferences. In this case, 9 of the partici-
pants inferred exactly the predicted numerical values, a further 3
made just one departure from the predicted pattern, and all of them
performed better than chance (Sign test, p = .522, i.e., less than 1
in 4 million). As the theory predicted, some participants appeared
to forget the implicit model, and thus 4 participants inferred a
100% probability for at least A, and 8 participants inferred a 100%
probability for A and B. The model theory also predicted that
participants should tend to infer higher probabilities for A and B
than for neither A nor B; both are possible for conditional and
biconditional interpretations, but only the former corresponds to an

Table 4
The Predicted Percentage Inferences and the Means of the Observed Percentage Inferences in
Experiment 2 for Exclusive Disjunctions of the Form A or B but not Both

Results

* n = 22.

Types of conclusions

p(A) p(A and B) p(A and not-B) p(not-A and not-B)

Predicted percentages
Observed percentages
No. of participants3 within ±5%

50
45
16

0
6

19

50
53
18

0
16
16
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Table 5
The Predicted Percentage Inferences and the Means of the Observed Percentage Inferences in
Experiment 2 for Inclusive Disjunctions of the Form A or B or Both

Types of conclusions

Results P(A) p(A and B) p(A and not-B)

' n = 22.

p(not-A and not-B)

Predicted percentages
Observed percentages
No. of participants3 within ±5%

67
60

9

33
45
15

33
44
14

0
7

20

initially explicit model. The predicted difference occurred for 8
participants, and the remaining 14 participants were ties (Sign test,
p < .004). Every participant inferred a probability of 0% for A
and not-B, the only condition in the experiment where everyone
made the same response. The inferences for B and not-A reflect the
interpretation of the conditional: 12 participants inferred a proba-
bility of 0% (the biconditional interpretation), 4 participants in-
ferred a probability of 50% (the conditional interpretation), and the
remaining 6 participants inferred some other probability.

The inferences for if A, then B corroborated another predicted
pattern. Responses can be either for a conditional or biconditional
interpretation. In either case, we have inferences for all four
possibilities, and they should sum to 100%. A biconditional has
fewer explicit models than a conditional, and those participants
who made the biconditional interpretation tended to infer proba-
bilities that summed correctly to 100%, whereas those participants
who made a conditional interpretation tended to infer probabilities
that summed to more than 100%. If we classify as a biconditional
interpretation those patterns of responses that assign positive prob-
abilities to A and B and to neither A nor B and 0% probabilities to
the other two cases, then 7 out of 9 participants inferred probabil-
ities that summed to 100%. Likewise, if we classify as a condi-
tional interpretation those patterns of inferences that assign 0%
probability only to A and not-B, then 7 out of 8 participants
inferred probabilities that summed to more than 100%. Hence, as
predicted, the participants were more likely to make overestimates
when they had to contend with three models as opposed to only
two models (Fisher-Yates exact test, p < .005). They fail to bring
to mind all the models of the premises and so overestimate the
probability of the model that corresponds to the event for which
they are trying to infer a probability (cf. the subadditivity predicted
by Tversky & Koehler's, 1994, "support" theory of nonextensional
reasoning).

The relative difficulty of deductive reasoning with different
connectives has the following trend: if is easier than exclusive or,
which in turn is easier than inclusive or (Johnson-Laird & Byrne,
1991). This pattern reflects the number of explicit models that are
needed to make deductions. The present task is different in that it
calls for participants to consider possibilities that are not normally
represented explicitly, and, as we have seen, the participants had
some difficulty with them. The ambiguity of ;/ also complicates
matters. However, we can make a straightforward comparison
between inclusive and exclusive disjunction: The mean number of
inferences (out of 4) according to the predictions was 3.1 for
exclusive disjunction and 2.6 for inclusive disjunction; 9 partici-
pants performed better with exclusive disjunctions, 4 participants
performed better with inclusive disjunctions, and there were 9 ties
(Wilcoxon's T = 22, n = 13, z = 1.7, p < .05, one-tailed).

Overall, the results corroborated the theory of naive probability.
Participants appear to infer probabilities by constructing models of
the premises, adopting the equiprobability principle, and assessing
the proportion of models in which the events occur. Their infer-
ences from conditional premises of the form if A, then B were
particularly relevant. As the model theory predicted, the partici-
pants tended to infer that the probability of A and B was 50%.
Because 12 of the participants interpreted the premise as a bicon-
ditional, it is hard to decide between the model theory and the
theory of Shimojo and Ichikawa (1989) and Falk (1992); both
theories predict a probability of 50% for A and B in the case of a
biconditional. A more telling datum in favor of the model theory
is that 8 participants inferred the probability of A and B as 100%,
which is predicted from the omission of the implicit model of the
conditional. The participants could construct other models when
the questions called for them, but they then tended to compare each
new model with just the single prior explicit model.

Could it be that the participants in the experiment were merely

Table 6
The Predicted Percentage Inferences and the Means of the Observed Percentage Inferences in
Experiment 2 for Conditionals of the Form If A, Then B

Types of conclusions

Results P(A) p(A and B) p(A and not-B) p(not-A and not-B)

Predicted percentages
Observed percentages
No. of participants" within ±5%

50
58
14

50
68
12

0
0

22

50
38
12

' n = 22.
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seeking to oblige us, that the situation led them to make responses
in which they did not believe but that they thought the experi-
menter expected? We doubt it, because the participants clearly put
thought into their answers, which were often not the precise
proportions predicted by the model theory. Moreover, when we
have put similar questions to experts in the probability calculus,
they typically balk at the question or describe the range of possible
probabilities. However, because the participants knew nothing
about the circumstances in which the marbles, or other objects,
were placed in the box or withheld from it, how could they
experience intuitions about the requested probability? The fact is,
of course, that people do have intuitions about probabilities even
when they know nothing about the relevant circumstances. They
judge the probability of heads as roughly 1/2 even when they know
nothing about whether the toss or coin was fair. Another worry is
whether our sample of participants is representative of naive
individuals. As a reviewer of this article wrote, "It is difficult for
me to believe that a random sample of Chicagoans, for example,
would have responded to such an ill-defined question with much
more than a blank stare." However, Shimojo and Ichikawa (1989)
also observed that their participants from the University of Tokyo
believed that if there were N possible events, then the probability
of any one of them was l/N. Falk (1992) also reported that her
participants were strongly committed to it. The principle of
equiprobability is thus not unique to our studies. The reviewer may
well be right about Chicagoans. The moral that we draw is that
they, unlike students in Aix-en-Provence, Tokyo, and the Hebrew
University of Jerusalem, are not naive about the probability
calculus.

Another worry arises about problems that are based on a
premise of the form A or B or both. It describes three possibilities
in three constituents of the sentence, and so the participants might
have estimated A as having a probability of 1/3 purely on the basis
of a superficial linguistic analysis. We examine the feasibility of
this explanation next, and we return to the contrast between actual
alternatives and the mental model theory's prediction of biases.

Biases in Extensional Reasoning

The results of our previous studies can be explained by the
model theory and perhaps by the theory proposed by Shimojo and
Ichikawa (1989) and endorsed by Falk (1992). The results might
even be explained by extending a rule theory of the sort that we
described earlier. So, how can we test whether individuals rely on
mental models? The answer is that mental models predict the
existence of systematic biases in extensional reasoning because
models represent only what is true, not what is false. As readers
will recall, this principle of truth applies at two levels: Individuals
construct models that make explicit only true possibilities, and
they make explicit only those propositions that are true within
them. It is important to emphasize that what is omitted concerns
falsity, not negation. For example, given an inclusive disjunction,
not-A or B, reasoners should construct the following three models:

nA

-•A
B
B

possibility. Thus, B is false in the first model, and not-A is false in
the second model, but this information is represented in mental
footnotes that are easily forgotten. For certain premises, the loss of
these footnotes should produce biased extensional inferences. The
mental models yield different partitions from those based on fully
explicit models. By definition, premises that yield different an-
swers in these two cases are potential experimental problems in
which the participants' inferences should follow the mental mod-
els, whereas premises that yield the same answers in the two cases
are potential control problems in which the participants' inferences
should be based on the actual partition corresponding to the fully
explicit models. We wrote a computer program implementing the
construction of both mental models and fully explicit models, and
it searched systematically for both sorts of premises in the vast
space of possible premises.

Here is an example of an experimental problem that should
create a bias:

There is a box in which there is at least a red marble, or else there is
a green marble and there is a blue marble, but not all three marbles.

Given the preceding assertion, what is the probability of the following
situation?

In the box there is a red marble and a blue marble.

The mental models of the premise are as follows:

red
green blue

Reasoners should therefore infer that the probability of a red
marble and a blue marble is 0%. The fully explicit models of the
premises, however, take into account that where it is true that there
is a red marble, there are three distinct ways in which it can be
false that there is both a green marble and a blue marble:

red
red
red

-ired

green
-igreen
-i green
green

nblue
blue

nblue
blue

The unbiased inference based on the actual partition is that a red
marble and a blue marble, granted equiprobability, has a proba-
bility of 25%.

In general, we define an unbiased inference as one that applies
the equiprobability principle to the actual alternatives, which cor-
respond to the fully explicit models. The following control prob-
lem, for example, should elicit an unbiased inference, because its
mental models yield the same inference as its fully explicit models:

There is a box in which there is a grey marble and either a white
marble or else a mauve marble, but not all three marbles are in the
box.

Given the preceding assertion, what is the probability of the following
situation?

In the box there is a grey marble and there is a mauve marble.

The premise elicits the mental models

where each model represents only those literal propositions (affir-
mative or negative) in the premise that are true within each true

grey
grey

white
mauve
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and so participants should respond 50%. The fully explicit models
of the premise are as follows:

grey
grey

white
-iwhite

-imauve
mauve

They support exactly the same inference, and so it is unbiased,
granted the equiprobability principle. Experiment 3 was designed
to compare the model theory's predictions about biases with those
of the other theories of extensional reasoning.

Experiment 3: A Test of Bias in Extensional Reasoning

The experiment compared two sorts of problems: experimental
problems, in which the mental models predict systematic biases,
and matched control problems of a comparable complexity, in
which the mental models of the premises support the same infer-
ences as the fully explicit models. The model theory should predict
the inferences for both sorts of problems. However, if reasoners
base their inference on actual alternatives (cf. Falk, 1992; Shimojo
& Ichikawa, 1989), then the experimental and control problems
alike should yield unbiased inferences, that is, conclusions that
correspond to the fully explicit models.

Method. The experiment was based on 3 experimental premises and 3
matched control premises, and each of these 6 premises was used to elicit 3
different inferences, that is, a total of 18 problems preceded by 2 practice
problems. (In fact, the experiment compared 4 pairs of premises, but we
describe only 3 pairs because a design error vitiated the 4th pair.) The 3
inferences with each premise were made on separate trials with a different
content, and each trial consisted of the presentation of a single premise and
a single question about a probability (as in Experiment 2). The problems
were presented in a different random order to each participant, with the
constraint that no problem from a set of the 6 matching experimental and
control problems was ever immediately followed by a problem from the
same set.

The forms of the problems are summarized in Appendix A, together with
their mental models and the fully explicit models. The appendix table also
shows the predicted and the unbiased values of the probabilities. Because
the premises containing conditionals also include a disjunction, the implicit
model of a conditional should tend to be forgotten (Johnson-Laird &
Savary, 1996), and so, as the table shows, the predictions do not take
implicit models into account. One experimental problem had a predicted
value that was unbiased (see the last problem for Premise 3 in Appendix
A), but the rest had predicted values that were biased, whereas all the
predicted values for the control problems were unbiased. Each problem
was about different colored objects in a box. They were based on six
different objects: a flower (unefleur), a card (une carte), a cup (une tasse),
a ball (une boule), a chalk (une craie), and a marble (une bille). We devised
two separate sets of distinct triples of colors drawn from the following set:
black (noire), white (blanche), red (rouge), blue (bleue), green (verte), and
brown (marron). The six objects were assigned at random four times to the
triples of colors. The resulting contents were assigned in two separate
random allocations to the problems. Half of the participants were tested
with one of the resulting sets of contents, and half were tested with the
other of the resulting sets of contents.

The participants were tested individually. The instructions were identical
to those of Experiment 1, and at the top of the first sheet the instructions
described how the participants were to make their estimates in terms of
percentages from 0% (impossible) to 100% (certain). As before, each
problem was printed on a separate sheet, and the participants worked
through the problems in random order. We tested 25 new participants from
the same population as before.

Results and discussion. Appendix B presents the results of the

experiment for each of the nine pairs of matched experimental and
control problems. It shows for each problem the number of par-
ticipants (from n = 25) who made the predicted inference (with-
in ± 5%) and the number of participants who made the unbiased
inference (within ± 5%, on the assumption of equiprobability over
the actual partition corresponding to the set of fully explicit mod-
els). Overall, the participants made a mean of 5.6 unbiased infer-
ences for the nine control problems but only a mean of 1.1
unbiased inferences for the eight experimental problems (discount-
ing the problem in which the predicted value was unbiased), and
every single participant made more inferences that were unbiased
with the control problems than with the experimental problems (p
= .525, i.e., a probability of less than 1 in 33 million). Likewise,
all of the control problems elicited more unbiased inferences than
their corresponding experimental problems (p = ,5s, i.e., p <
.005).

In general, the participants' inferences matched the predictions
of the model theory reliably better than chance; that is, they
corresponded to the mental models of the premises. The mean
numbers of matches were 5.8 for the nine experimental problems
and 5.6 for the nine control problems. The chance probability of a
match is 1/10, and so any participant who makes two or more
matches for a set of nine problems is, conservatively, responding
at a better than chance level. All participants performed at a better
than chance level for both the experimental and the control prob-
lems (p = .525 in both cases).

The model theory's predictions were borne out for all 18 prob-
lems except for 1 control problem. For the control premise 1'

A and either B or else C, but not all three

only 6 participants inferred the unbiased probability of at least A
as 100%, and 10 participants made inferences of 50%. One pos-
sible explanation is that the particular question led the majority to
mis-parse the structure of the premise, treating it as equivalent to

A and B, or else C, but not all three,

which yields the models

Is it possible that the participants' inferences depended on a
reinterpretation of the premises according to the pragmatics of
daily life? In particular, given a premise for Problem 1, such as

There is a box in which there is at least a red marble, or else there is
a green marble and there is a blue marble, but not all three marbles,

the participants may have assumed that if there was a red marble
in the box, then there was no other marble there: This factor may
have played a part in performance with this particular problem.
But, consider a premise for Problem 3, such as

There is a box in which if there is a red marble in the box, then there
is either a green marble or else a blue marble, but not all three
marbles.

As the model theory predicts, the participants tended to overlook
the possibilities in which it was false that there was a red marble
in the box. The phenomenon may be compatible with the prag-
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matics of everyday usage, but pragmatic theories do not, at present,
predict that individuals represent only what is true.

The unbiased values differed between the control problems and
the experimental problems. However, if we consider the subset of
problems with the same unbiased values of 0% or 33%, of which
there are two experimental problems and five control problems,
there is still a reliable difference in performance. The participants
made a total of 6 unbiased inferences for the two experimental
problems (a mean of 3.0 out of 25 for each problem) but a total
of 86 unbiased inferences for the five control problems (a mean
of 17.2 out of 25 for each problem), and the difference was highly
reliable (Sign test, p < .0005). Hence, the imbalance in the
distributions of unbiased values does not explain why the control
problems elicited more unbiased inferences than the experimental
problems.

The experiment's purpose was to establish that reasoning relies
on mental models. It showed that mental models lead predictably
to biases for the experimental problems, but not for the control
problems. Are the results attributable merely to the complexity of
the problems—that is, are the biases simply a result of an increase
in the number of real alternatives? Certainly, the experimental
problems have more real alternatives than the control problems.
Mere complexity does not predict the participants' inferred prob-
abilities, however. The model theory predicts the difficulty of
inferences—the greater the number of models the harder the
task—but it also predicts the inferences drawn by the participants.
Hence, the results show that naive individuals reason extension-
ally, not from the actual partition of a problem (the fully explicit
models) but from the partition corresponding to its mental models.
The results corroborate the model theory and show that Shimojo
and Ichikawa's (1989) and Falk's (1992) accounts are viable only
if they assume that what is equiprobable are mental models.
Likewise, any extension of rule theories to naive probability must
similarly allow for the equiprobability of mental models.

Models and Illusory Inferences About
Relative Probabilities

The model theory predicts that naive reasoners infer the prob-
abilities of events from the proportions of mental models in which
these events occur, and the previous experiments have confirmed
this prediction. The theory also makes predictions about inferences
of relative probability, that is, that one event is more probable than
another. In these inferences, however, reasoners might rely on an
alternative to the principle of proportionality. They could use the
less risky principle of inclusion:

If A occurs in each model in which B occurs, but A occurs in some
model in which B does not occur, then A is more likely than B.

In other words, if the models in which A occurs contain the models
in which B occurs as a proper subset, then A is more likely than B.
This principle is valid provided that reasoners take into account all
the premise models with nonzero probabilities. It is also a special
case of the principle of proportionality, because if the models of A
include the models of B as a proper subset, then A occurs in a
greater proportion of the models than B does.

So, do people use inclusion or proportionality? The way to
address this question depends on an unexpected prediction. For

certain premises, mental models yield grossly erroneous conclu-
sions. The model theory accordingly predicts that naive reasoners
will infer from some premises that A is more probable than B
when, in fact, A is impossible, but B is not. It predicts in other
cases that naive reasoners will infer that A is equally probable with
B when, in fact, A is certain, but B is not. These premises should
give rise to illusory inferences; that is, most people should draw
the same conclusion, which should seem obvious and yet which is
wrong. Such illusory inferences, if they occur, may also provide
decisive support for the model theory because they are contrary to
current rule theories. These theories use only valid rules of infer-
ence (see, e.g., Braine & O'Brien, 1991; Rips, 1994), and so they
do not readily account for a phenomenon in which most people
draw the same invalid conclusion.

As an example of a potential illusion, consider the following
problem:

Suppose that only one of the following assertions is true about a
specific hand of cards:

There is a king in the hand or there is an ace in the hand, or both.

There is a queen in the hand or there is an ace in the hand, or both.

Which is more likely to be in the hand: the king or the ace?

Readers may care to answer the question and to make a note of
their answer for future reference. The mental models of the first
premise are

king

king
ace
ace

and the mental models of the second premise are

queen

queen
ace
ace

The rubric that only one of the two premises is true means that
either one premise is true or the other premise is true, but not both
of them. That is, the rubric calls for an exclusive disjunction of the
premises, and the mental models for an exclusive disjunction of the
form A or else B are (see Table 2)

B

and so the disjunction calls merely for all the models of the two
alternatives. Hence, the problem as a whole calls for the following
models:

king

king
queen

queen

ace
ace

ace
ace

Thus, a consequence of the principle of truth is that individuals
think about what it means for one premise to be true and what it
means for the other premise to be true, but they fail to take into
account that when one premise is true the other premise is false.



NAIVE PROBABILITY 77

They treat the other premise as though it has ceased to exist rather
than that it is false. If reasoners infer relative probabilities using
proportionality, then they should conclude that the ace is more
probable than the king, because the ace occurs in a greater pro-
portion of models than the king. However, if they infer relative
probabilities using inclusion, they will respond that the problem is
indeterminate, because the models containing kings neither include
nor are included by the models containing aces. Of course, rea-
soners may use proportionality but reject equiprobability, and so in
this case they would also respond that the problem is indetermi-
nate, that, for example, the probability of the king alone could be
greater than the probabilities of all the other models summed
together.

In fact, it is an egregious error to respond that the ace is more
probable than the king, or to respond that the problem is indeter-
minate. When the first disjunction is true, the second disjunction is
false; that is, there is not a queen and not an ace. Likewise, when
the second disjunction is true, the first disjunction is false, and
there is not a king and not an ace. The fully explicit models of the
premises are accordingly

king —iqueen —.ace

-iking queen -iace

(first disjunction true, second
disjunction false)

(first disjunction false, second
disjunction true).

The ace cannot occur in the hand, but the king can occur in the
hand, and so the king is more probable than the ace! This conclu-
sion follows logically from the premises, but the model theory
predicts that reasoners will fail to draw it because they are unable
to cope with falsity.

Here is another example of a potential illusion:

Suppose that only one of the following assertions is true about a
specific hand of cards:

If there is a jack in the hand, then there is a queen in the hand.

If there is a ten in the hand, then there is a queen in the hand.

Which is more likely to be in the hand: the queen or the jack?

The mental models of the disjunction of the two conditionals are

jack queen
ten queen

and so reasoners should tend to respond that the queen is more
probable than the jack, on the basis of either inclusion or propor-
tionality or both. Once again, however, this conclusion is wrong.
According to the rubric that only one premise is true, if the first
conditional is true, the second conditional is false, and so there is
a ten and not a queen. Likewise, if the second conditional is true,
the first conditional is false, and so there is a jack and not a queen.
(When people are asked to falsify conditionals, they make these
responses; see, e.g., Oaksford & Stenning, 1992.) The fully ex-
plicit models of the premises are accordingly

-ijack ten -iqueen (first conditional true, second
conditional false)

jack —iten —iqueen (first conditional false, second
conditional true).

Hence, the queen cannot occur in the hand, whereas the jack can,
and so the jack is more probable than the queen! An inclusive
interpretation of the disjunction or a biconditional interpretation of
the conditionals or both yield a tautology, and so nothing follows
about the relative probabilities of the two cards. As with the first
problem, the correct answer depends on taking into account the
false cases.

These cognitive illusions do occur, as Johnson-Laird and Savary
(1996) have shown experimentally. Overall, 21 out of the 24
participants in one experiment chose as more probable a card that
could not occur in the hand for one or both of the illusory
problems. In contrast, the participants performed competently with
control problems in which mental models supported the same
conclusion as fully explicit models. The results also implied that
individuals use proportionality rather than inclusion to assess
relative probabilities; they infer that one event is more probable
than another if it occurs in a greater proportion of models than does
the other event. A second experiment corroborated a variety of
other illusions, including those that depend on biconditionals as the
major connective. The procedure was also more sensitive because
the participants made independent estimates of the probabilities of
each pair of cards, responding by clicking a mouse to mark their
estimates on separate scales presented on a computer screen. The
experiment showed that illusions could be created in a minimal
way by assertions containing only two sentential connectives, as in
the following scenario:

If one of the following assertions is true about a specific hand of cards,
then so is the other assertion:

There is a jack in the hand if, and only if, there is a queen in the hand.

There is a jack in the hand.

Most of the participants erroneously inferred that the two cards had
the same probability of being in the hand, though in fact the queen
is certain to be in the hand, but the jack is not.

According to the model theory, the illusions arise because
reasoners cope with truth but not with falsity. For the control
problems, this failure does not matter because reasoners will still
reach the right conclusion even if they do not consider falsity. For
the experimental problems, however, the failure leads to system-
atic errors. The experiment also ruled out some alternative expla-
nations, including the hypothesis that the illusions are based on the
frequency of mention of cards in the premises or that they arise
from misinterpretations of the sentential connectives. These alter-
natives can account for a few illusions, whereas the model theory
accounts for all of them. Of course, rule theorists could invoke a
different invalid formal rule to deal with each of the different
illusions, but such an account would be post hoc. And, if reasoners
were guided by such rules, their capacities for rational thinking
would be inexplicable. In contrast, the model theory assumes that
reasoners are rational in principle but that they err in practice
because their working memories are limited and they can usually
cope only with truth.

Models and Conditional Probabilities

Basic extensional reasoning concerns inferences about the ab-
solute or relative probabilities of events. These inferences are
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within the competence of naive reasoners, but many other infer-
ences are beyond them. For example, they do not answer the
following question correctly:

An unbiased coin is tossed 20,000 times, and a cumulative record is
kept of the outcomes. At any point in the sequence, there will be more
heads than tails, more tails than heads, or an equal number of heads
and tails. How many times is the lead likely to change from heads to
tails, or vice versa?

The answer is that, no matter how long the series, the most
probable number of changes of lead is zero (see Feller, 1957, p.
68). Such technical aspects of probability are bound to transcend
common knowledge. What lies on the border of naive ability is
reasoning about conditional probabilities. The reason is twofold.
First, reasoners need to understand that a problem calls for an
inference about a conditional probability. Many problems, as
Nickerson (1996) has emphasized, are ambiguous, conceptually
obscure, and rest on unstated assumptions. Second, reasoners need
to establish the appropriate relation in models, which often calls
for fleshing them out into a fully explicit form. We examine these
two factors in turn.

The first source of difficulty is understanding that a conditional
probability is needed in order to solve a problem. Consider, for
example, the following puzzle (Bar-Hillel & Falk, 1982):

The Smiths have two children. One of them is a girl. What's the
probability that the other is a girl?

Naive reasoners—and some not so naive reasoners—respond that
the probability is about 1/2. They assume the problem calls for
models of the absolute probability of a girl (i.e., the other child is
either a girl or a boy). They may qualify their answers with
"approximately" if they know that the frequencies of the two sexes
are not quite identical. The puzzle appears to call for the proba-
bility that a child is a girl, but it really calls for a conditional
probability, p(other child is girllone child is a girl). The partition of
possibilities for two children is as follows:

Firstborn Secondborn

girl
girl
boy
boy

girl
boy
girl
boy

• Granted that either the firstborn or the secondborn is a girl, we
can eliminate the last of these four possibilities. It follows that
the probability that the other child is a girl is 1/3 (see Nicker-
son, 1996, for the subtleties in assumption that can influence
this analysis).

The second source of difficulty is the need to represent the
relation corresponding to a conditional probability. This problem is
a special case of the general difficulty of constructing fully explicit
models, which overtaxes the processing capacity of working mem-
ory. The same problem occurs in representing conditional asser-
tions that make no reference to probabilities, such as

If the DNA matches, then the suspect is guilty.

Such a conditional is represented by one explicit and one implicit
model (see Table 2)

DNA matches guilty

and reasoners need to make a mental footnote that the antecedent
(the DNA matches) is false in those cases represented by the
implicit model. The converse conditional,

If the suspect is guilty, then the DNA matches,

yields the models

guilty DNA matches

Because the two sets of models have the same explicit content,
naive reasoners often take the two conditionals to be equivalent to
one another. They also make the analogous inference that all A are
B is equivalent to all B are A (see Evans, Newstead, & Byrne,
1993, for a review of illicit conversions). Of course, if a condi-
tional is interpreted as a biconditional, then its conversion is valid.
Otherwise, its conversion is invalid, and the key to blocking the
inference is to flesh out the models in a fully explicit way, using
negations that are true to represent the false cases. The conditional

If the DNA matches, then the suspect is guilty

has the fully explicit models,

DNA matches
-iDNA matches
-iDNA matches

guilty
guilty

-iguilty

These models do not support the converse conditional,

If the suspect is guilty, then the DNA matches,

because the second model is inconsistent with this assertion. Three
fully explicit models, however, place a considerable load on work-
ing memory, and so individuals have difficulty in resisting the
inference.

The same difficulty occurs with conditional probabilities, as
exemplified by the following problem, which may have stumped
the British Court of Appeal (see the epigraph to this article):

The suspect's DNA matches the crime sample. If the suspect is not
guilty, then the probability of such a DNA match is 1 in a million. Is
the suspect likely to be guilty?

People tend to say "Yes." The numerical principle of the theory
(see the earlier section on Numerical Premises) postulates that they
can represent the conditional probability p(DNA matcheslnot
guilty) = 1 in a million in the following way:

nguilty DNA matches
Frequencies

1
999,999

where the given assumption is stated first in the explicit model.
They will confuse this probability with its converse, p(not
guiltylDNA matches) = 1 in a million. Hence, they will infer that
the probability that the suspect is not guilty, given that the DNA
matches, is very small. Once again, the true partition depends on
fleshing out the models in a fully explicit way. The premise
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p(DNA matcheslnot guilty) = 1 in a million establishes only the
following frequencies:

-.guilty
-.guilty

DNA matches
-.DNA matches

Frequencies
1

999,999

A conditional probability depends on a subset relation in models, and
these models establish the subset within the "not guilty" models in
which the DNA matches. This subset relation does not tell us anything
about the probability that the suspect is guilty given a DNA match,
p(guiltylDNA matches). This conditional probability depends on the
numerical values of the following subset relation:

DNA matches
DNA matches

guilty
-iguilty

Thus, suppose that the frequencies for all the true possibilities are
as follows:

-.guilty
-.guilty
guilty

DNA matches
-.DNA matches
DNA matches

Frequencies
1

999,999
9

where the frequency of cases of guilty and -^DNA matches is zero.
In this case, the probability that the suspect is not guilty given a
DNA match is quite high, that is, 1/10. In other words, the data
support the conclusion

If the DNA doesn't match, then the suspect is almost certainly not
guilty. (There are no counterexamples in the data.)

But, they do not support the conclusion

If the DNA matches, then the suspect is almost certainly guilty. (There
is 1 chance in 10 of innocence.)

The confusion between one conditional probability and another is
thus inherited from the general problem of distinguishing one
subset relation from another in models that normally make explicit
only what is true.

The DNA problem is just one example of many that confuse
naive reasoners (see, e.g., Eddy, 1982). Ironically, one case con-
cerns statistical tests of significance. Suppose you carry out, say, a
binomial test that yields the following conditional probability of
the data given the "null" hypothesis of chance: p(datalnull hypoth-
esis) = .005. This result is deductively valid granted the assump-
tions of the test. However, one can make no valid inference from
this result about the probability that the null hypothesis is false. In
particular, it does not imply p(null hypothesisldata) = .005, con-
trary to the claims of some researchers (see Gigerenzer & Hof-
frage, 1995, who point out the error).

Certain problems combine both the need to grasp that a problem
calls for a conditional probability and the need to flesh out models
explicitly. These problems typically concern Bayesian inference,
and so we consider them in the next section.

Models and Bayesian Inference

Naive individuals, as we have argued, have difficulty with condi-
tional probabilities. Previous theories of extensional reasoning have
explained why naive individuals go wrong in trying to solve difficult

Bayesian problems. In particular, such reasoners do not appear to use
Bayes's theorem, as expressed by Equation 1 or its cognates, but
rather they rely on various beliefs (see the earlier section Intuitive
Beliefs About Probabilities, which discusses Shimojo & Ichikawa,
1989, and Falk, 1992). These accounts are consistent with the model
theory, which specifies the nature of the mental representations that
reasoners are likely to rely on. Yet, naive reasoners are able to infer
posterior probabilities for certain sorts of problems. The model theory
transcends these earlier accounts because it offers an explanation of
how, in these cases, naive individuals can infer posterior probabilities
without relying on Bayes's theorem. We describe the key principle
and then examine the implications for two contentious matters: the
alleged neglect of base rates and the doctrine of frequentism that we
outlined earlier. In the subsequent section, we consider the implica-
tions of the model theory for the pedagogy of Bayesian reasoning.

The logical skeleton of Bayesian reasoning is as follows:

There is a set of alternatives that have different consequences. Given
information about the occurrence of one of these consequences, rea-
soners draw a conclusion about one of the alternatives.

The simplest version of this skeleton occurs when the given
information entails a categorical conclusion:

Pat has either the disease or a benign condition. If she has the disease,
then she is likely to have a certain symptom. If she has a benign
condition, then she will definitely not have the symptom. In fact, she
has the symptom. So, does she have the disease?

The initial premises yield the following models of the possibilities:

disease symptom
disease -.symptom
benign —isymptom

The categorical premise that Pat has the symptom eliminates the
latter models to leave only a single model,

disease symptom

from which it follows that Pat has the disease.
Probabilities often enter into such inferences where the premises

concern frequencies. For example,

According to a population screening, 4 out of 10 people have the
disease, 3 out of 4 people with the disease have the symptom, and 2
out of the 6 people without the disease have the symptom. A person
selected at random has the symptom. What's the probability that this
person has the disease?

Naive individuals can build equiprobable models:

disease
disease
disease
disease

-idisease
-idisease

symptom
symptom
symptom

-.symptom
symptom
symptom

where the implicit model represents individuals who have neither
the disease nor the symptom. Alternatively, reasoners can build
numerical models:
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disease
disease

-idisease

symptom
-isymptom
symptom

Frequencies
3
1
2
4

Either set of models establishes that the probability that a person
has the symptom is 5/10 and that the probability that a person has
the disease given the presence of the symptom is 3/5. The posterior
probability can be computed from either set of models without
having to use Bayes's theorem. A simpler algorithm suffices,
which we capture in the final principle of the model theory.

5. The subset principle: Granted equiprobability, a conditional prob-
ability, p(AIB), depends on the subset of B that is A, and the propor-
tionality of A to B yields the numerical value. Otherwise, if the models
are tagged with their absolute frequencies (or chances), then the
conditional probability equals the frequency (chance) of the model of
A and B divided by the sum of all the frequencies (chances) of models
containing B. In computing the ratio of the subset relation, reasoners
can err in assessing either the numerator or, more likely, the
denominator.

Naive reasoners, and experts who treat probabilities as degrees
of belief, are happy to assign probabilities to unique events (see,
e.g., Kahneman & Tversky, 1996), even though such probabilities
raise deep philosophical problems. For example, the truth condi-
tions of the assertion

The chances that Pat has the disease are 4/10

are mysterious because the assertion is consistent with either Pat
having the disease or not. Psychologically speaking, however, the
assertion is about the chances of various possible scenarios. The
model theory allows that such probabilities can be represented in
models, and that the assertion can be represented by either a model
of equiprobable possibilities or a model with numerical tags on the
possibilities.

Bayesian inference about either unique events or repeated
events should be easier when models directly represent probabil-
ities according to the three principles of basic extensional reason-
ing (truth, equiprobability, and proportionality). For example,

The chances that Pat has the disease are 4/10. If she has the disease,
then the chances are 3/4 that she has the symptom. If she does not
have the disease, then the chances are 2/6 that she has the symptom.

Reasoners can build a simple set of models of the possibilities as
above. If they are asked what is the probability that Pat has the
symptom, they should be able to respond, "5/10." However, a
problem may arise if they are asked for the posterior conditional
probability:

Pat has the symptom. So, what are the chances that she has the
disease?

Some reasoners may be able to grasp the appropriate subset
relation and compute that the chances are 3/5, but others may focus
on the model

disease symptom 3

and then compute the probability that Pat has. a symptom and the
disease, that is, 3/10. Girotto and Gonzalez (in press) observed
exactly this sort of error. Its antidote is to force reasoners to
consider separately the denominator and the numerator of the
posterior probability. The researchers asked the participants to
complete the following sort of sentence by adding the two missing
numbers:

Pat is tested now. Out of the entire 10 chances, Pat has chances of
having the symptom; among these chances, chances will be as-
sociated with the disease.

This instruction elicited the correct answer (among the five
chances of having the symptom, three chances are associated with
the disease) from 53% of the participants in comparison with only
8% correct in a control problem.

The problem about Pat calls for the conditional probability,
p(diseaselsymptom), and the proportionality of one set (disease) to
the other (symptom) in the models themselves is 3/5. The set of
models is easy to build because it concerns chances expressed in
simple integer ratios, such as "4 out of 10," the numerator of this
base rate equals the denominator of the given conditional proba-
bility, and the integral values yield trivial numerical inferences. In
contrast, the following problem violates all of these principles:

According to a population screening, a person has a 40% probability
of having the disease, a 75% probability of having the symptom if she
has the disease, and a 33% probability of having the symptom if she
does not have the disease. Pat is tested now. She has the symptom.
What is the probability that she has the disease?

A diagram of the problem shows the difficulty of envisaging the
correct mental models:

disease

-idisease

Probability
40%

Conditional probability
symptom 75%

-isymptom 25%
symptom 33%

-isymptom 67%

Even if individuals envisage such models, it is not obvious how to
calculate the posterior probability. The numerical version of the
subset principle applies only to absolute frequencies or chances,
not to conditional probabilities, and so the only route to the answer
appears to be to use Bayes's theorem (see equation 3). Naive
reasoners are neither familiar with the theorem nor easily able to
carry out its computations.

The Neglect of Base Rates

What light does the model theory throw on the alleged neglect
of base rates, which we discussed earlier in the paper? When a
problem concerns two binary variables, A and B, the partition calls
for the construction of four models:

A
A

B
nfi

B

Once reasoners know the probabilities for each possibility in a
partition, then they know everything that is to be known from a
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probabilistic standpoint; that is, they can work out any conditional
probability and the probability of any assertion about the domain
based on truth-functional connectives, for example, the probability
of A or B or both. Unfortunately, naive reasoners do not appreciate
the need to fix such probabilities, and, as we have seen, four
models is at the limit of their abilities. Consider, for example, the
following problem (translated from the original French):

A test has been discovered. All people affected by a given disease
have a positive reaction to this test. However, 10% of people who are
not affected by this disease have a positive reaction too. Marie has
tested positive. What is the probability that she is actually affected by
the disease?

In a pilot study (conducted in collaboration with Michel Gonza-
lez), we observed that naive participants tend to infer a probability
ranging from 10% to 90%. They appeared to construct the follow-
ing models:

disease test positive
—idisease test positive

Percentage conditional probability
100%

10%

Some individuals merely assume that the two models are equiprob-
able (and infer an answer of 50%), others take the mean of the two
conditional probabilities (and infer an answer of 55%), and still
others subtract one conditional probability from the other (and
infer an answer of 90%). Few individuals, however, realize that the
problem is ill-posed. We may have been oversold on the base rate
fallacy, but naive reasoners can fail to notice that a problem does
not even state a base rate (see also Hammerton, 1997).

The "Frequentist" Hypothesis

The frequentist hypothesis postulates that human beings possess
an inferential module embodying the probability calculus and
operating on frequency data (Cosmides & Tooby, 1996; cf. Gig-
erenzer & Hoffrage, 1995). Cosmides and Tooby carried out a
series of experiments in which they compared various statements
of a Bayesian problem. Some versions stated the problem in terms
of absolute frequencies, and other versions stated it in terms of
percentage probabilities (cf. Casscells, Schoenberger, & Graboys,
1978). There was a much higher success rate for problems stated
with frequencies than for problems stated with percentage proba-
bilities, and Cosmides and Tooby concluded that base-rate neglect
disappears and good Bayesian reasoning emerges when problems
are posed in frequentist terms. Gigerenzer and Hoffrage (1995)
drew the same conclusion from their experiments.

Cosmides and Tooby (1996), wrote

Frequentist mechanisms could not elicit Bayesian reasoning unless
our minds contained mechanisms that embody at least some aspects of
a calculus of probability. This means that the more general conclusion
of the literature on judgment under uncertainty—that the human mind
does not embody a calculus of probability, but has instead only crude
rules-of-thumb—must also be re-examined. This conclusion was
based largely on subjects' responses to single-event probability prob-
lems. But if those inductive reasoning procedures that do embody a
calculus of probability take frequency representations as input and
produce frequency representations as output, then single-event prob-
ability problems cannot, in principle, reveal the nature of these mech-
anisms, (p. 62)

In response, Howson and Urbach (1993) commented,

A more accurate conclusion is that their respondents are competent at
whole number arithmetic, which is anyway hardly surprising in view
of the fact that they are often university students. But with probabi-
listic reasoning, and especially with reasoning about frequency prob-
abilities, Cosmides and Tooby's results have very little to do at all,
despite their dramatic claims, (p. 422)

It is indeed crucial to show that the difference between frequencies
and probabilities transcends mere difficulties in calculation and
that difficulties with problems about unique events are not attrib-
utable merely to difficulties in numerical calculation. In fact, data
in the form of frequencies by no means guarantee good Bayesian
reasoning. Girotto and Gonzalez (in press) reported that not a
single participant inferred the right response to the following
Bayesian problem (translated from the original French):

According to a recent epidemiological survey:

Out of 100 tested people, there are 10 infected people.

Out of 100 infected people, 90 people have a positive reaction to the
test.

Out of 100 non-infected people, 30 have a positive reaction to the test.

Imagine that the test is given to a new group of people. Among those
who have a positive reaction, how many will actually have the
disease? out of

Intuitions about evolution are an interesting heuristic for gener-
ating hypotheses about how the mind solves ill-posed problems,
that is, problems that would be insoluble without innate constraints
on the process, such as the stereoptic recovery of depth informa-
tion from disparate visual images (Marr, 1982). However, it is
hard, if not impossible, to test intuitions about the mental processes
of our evolutionary ancestors (Lewontin, 1990). Hence, the claim
that frequencies trigger an inductive module needs to be examined
on its own merits. The real burden of the findings of Gigerenzer
and Hoffrage (1995) is that the mere use of frequencies does not
constitute what they call a "natural sample." Whatever its prove-
nance, as they hint, a natural sample is one in which the subset
relation can be used to infer the posterior probability, and so
reasoners do not have to use Bayes's theorem. A separate question
is whether problems that concern unique events guarantee bad
Bayesian reasoning. In fact, as the problem about Pat showed,
reasoners can infer posterior probabilities, for unique events pro-
vided that the probabilities are stated in simple numerical terms,
such as "3 chances out of 5," and that they allow easy numerical
calculations in the use of the subset principle.

Mental Models and the Pedagogy of Bayesian Reasoning

Shimojo and Ichikawa (1989) report that even when people are
taught Bayesian principles they still find them counterintuitive.
Their main pedagogical recommendation is to try to integrate
Bayes's theorem into the intuitive system by way of Equation 2
(see the section Bayes's Theorem and Studies of Bayesian Rea-
soning). Likewise, Falk (1992) argues that the expedient way to
grapple with Bayesian puzzles is to carry out these steps:
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1. Uncover the hidden assumptions and check whether they are
warranted.

2. Explicate the random process that generated the data.
3. Apply Bayes's theorem.

Indeed, it is remarkable that many pedagogical discussions of
Bayesian problems, such as the three prisoners puzzle, treat them
as though the only road to success is by way of Bayes's theorem
(see Shimojo & Ichikawa, 1989, and Falk, 1992, for relevant
references). As the model theory shows, however, naive reasoners
can infer posterior probabilities without having to carry out the
computations required by Bayes's theorem. It follows that they
should be able to solve puzzles, such as the three prisoners prob-
lem, provided that they are framed appropriately. It should also be
possible to develop a pedagogical method to make the correct
posterior probabilities seem intuitive. Our aim in this section is to
explore these possibilities.

A famous example of a Bayesian brainteaser is the eponymous
"Monty Hall" problem, which has the same structure as the three
prisoners puzzle (see, e.g., Falk, 1992; Nickerson, 1996). A TV
quiz show host (Monty Hall) asks a guest to choose one of three
doors, only one of which hides a prize. The guest makes a choice
of, say, the door on the left. Before the door is opened, the host,
who knows the location of the prize, opens one of the two remain-
ing doors, say, the middle door, to reveal, as always, that it does
not hide the prize, and then offers the guest the chance of switching
to the other unopened door. Most guests stick with their first
choice. According to the model theory, they begin with the fol-
lowing models of the possibilities:

left door middle door right door
prize

prize
prize

They choose the left door. The host opens the middle door to
reveal that the prize is not there, and so they eliminate the relevant
model. They are left with the following models of possibilities:

chosen door
prize

right door

prize

The prize is either behind the door they have chosen or behind the
unopened door, and so there appears to be no advantage in switch-
ing choices. This account accommodates the view that naive
individuals believe that when one alternative is eliminated, the
remaining possibilities are equiprobable or have the same ratio as
the ratio of their prior probabilities (Falk, 1992; Shimojo &
Ichikawa, 1989). Insofar as a naive individual holds such beliefs,
they could be emergent properties of this manipulation of models.

The model theory suggests a way to reach the right answer
without using Bayes's theorem. This method is as follows:

1. Represent the initial situation.
2. Make explicit the relevant conditional relations on the basis

of the assumptions and processes that generated the data.
3. Construct a diagram of the equiprobable possibilities (a

partition akin to a set of mental models).
4. Use the subset principle.

Let us apply this method to the Monty Hall problem. The first step
is to represent the initial possible locations of the prize. They are

shown in the left door—middle door—right door diagram earlier
in this section. Hence, the guest has a probability of 1/3 of
choosing the door with the prize, assuming that the location of the
prize is chosen at random. Suppose that the guest chooses the
left-hand door. The second step is to represent the conditional
relations:

If the prize is behind the chosen left-hand door, then the host opens
either the middle door or the right-hand door, presumably at random
with equal probabilities.

If the prize is behind the middle door, then the host must open the
right-hand door.

If the prize is behind the right-hand door, then the host must open the
middle door.

The third step is to construct a diagram of equiprobable possibil-
ities. What complicates matters is the first of these conditionals. It
can be represented as follows:

chosen door
prize
prize

middle door
open

right door

open

In order to ensure equiprobability, each of the other two condi-
tionals must be represented by two models to match the two
models for the first conditional. The second conditional calls for
these two identical models in the diagram:

chosen door middle door
prize
prize

right door
open
open

The third conditional calls for these two identical models in the
diagram:

chosen door middle door
open
open

right door
prize
prize

The set of equiprobable models as a whole is therefore

chosen door
prize
prize

middle door
open

prize
prize
open
open

right door

open
open
open
prize
prize

The fourth step is to apply the subset principle to the models in the
diagram. There are four cases out of the six models in which
switching from the chosen door to the closed door yields the prize,
and there are two cases out of the six in which switching to the
closed door loses the prize. In other words, switching choices
yields the prize with a probability of 2/3, whereas sticking with the
original choice yields the prize with a probability of 1/3. Hence, it
pays to switch. The same reasoning applies mutatis mutandis for
whichever door hides the prize. The problem, however, is that
naive reasoners are unlikely to realize that in order to ensure
equiprobability they need to construct two identical models for
each of the cases where the prize is not behind the chosen door.
The cause of the difficulty in our view is the load on working
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memory, which leads naive reasoners not to construct fully explicit
models. They think, "If the prize is behind the door I have chosen,
then the host chooses another door." They need to think, "If the
prize is behind the door I have chosen, say, the left-hand door, then
the host chooses either the right-hand door or the middle door."

A study by Macchi and Girotto (1994) showed that merely
spelling out the conditional relations does not help naive individ-
uals to infer the correct probabilities. Naive individuals are still
inclined to start with the models of the three possibilities, then to
eliminate the case where the opened door hid the prize, and finally
to treat the two remaining cases as equiprobable. However, Macchi
and Girotto found that performance was reliably better with the
following variant of the puzzle (translated from the original
Italian):

There are three boxes, A, B, and C. Only one of them contains a prize.

Depending on its location, either a red or green light comes on.

If the prize is in Box A, either the red or the green light comes on.

If the prize is in Box B, the red light never comes on.

If the prize is in Box C, the red light always comes on.

The red light comes on. Which is more likely—that the prize is in
Box A or in Box C?

In this case, naive reasoners more readily grasp the need to
construct two models for the case in which the prize is in Box A
and thus realize that the probability of the red light for Box A is
half the probability of the red light for Box C. This improvement
in performance is difficult to explain if individuals are bound to
reason using a module that is based on faulty intuitions about
probabilities.

We return finally to the problem of the three prisoners, which
we discussed earlier. We analyze a very difficult variant intro-
duced by Shimojo and Ichikawa (1989) so that we can demonstrate
the power of diagrams that represent equiprobable possibilities:

Three men, A, B, and C, were in jail. One of them is to be set free, and
the other two to be executed. A had reason to believe that their
chances of being freed were, A = 'A, B = 1A, and C = '/z. After their
fates had been decided, A, who didn't know the outcome of the
decision, asked the jailer, who did, "Since two of the three will be
executed, it is certain that either B or C will be, at least. You will give
me no information about my own chances if you give me the name of
one man, B or C, who is going to be executed." Accepting this
argument, the jailer said, "B will be executed." Thereupon A felt
happier because now either he or C would go free, so his chance had
increased from 'A to '/2. The prisoner's happiness may or may not be
reasonable. What do you think?

The participants in the experiment generated a variety of estimates
of the probability that A will go free given the jailer's statement
that B will be executed, and few of their estimates were correct.
Contrary to their intuitions, the jailer's news is bad for A, because
the probability that he will go free reduces to Vs.

To show how the pedagogical method based on the model
theory works, we use it to solve the puzzle. The first step is to
represent the initial situation of the probabilities of each prisoner
going free (A = 1A, B = 1A, and C = l/i) in equiprobable models:

A
free
free

free
free

free
free
free
free

The second step is to formulate the conditional relations:

If A is to be freed, then, assuming a random choice, the jailer will
choose at random between B or C as the victim to name.

If B is to be freed, then the jailer must name C as the victim.

If C is to be freed, then the jailer must name B as the victim.

The third step is to use this information to complete the construc-
tion of the equiprobable models

A B C jailer names t h e person t o b e executed a s
free B
free C

free C
free C

free B
free B
free B
free B

The fourth step is to use the subset principle. The probability that
A goes free is the one chance out of the five possibilities in the
diagram in which the jailer named B as the person to be executed.

The use of equiprobable models and the subset principle is
simpler than the tree diagrams that are so common in textbooks
because the models contain no explicit numerical information and
the subset principle can be applied directly to them. In theory, the
method can be used for inferring posterior probabilities for many
problems. In practice, such diagrams can become too large to be
tractable. However, once naive individuals have grasped the un-
derlying principles, they can be taught to use numerically tagged
diagrams. The problem just described, for example, can be repre-
sented in the following way, using integers as frequencies that sum
to the common denominator (in this case, 8):

A B C jailer names t h e person
to be executed as frequency

free B 1
free C 1

free C 2
free B

Once again, the final calculation is a straightforward application of
the subset principle. The probability that A goes free, given that
the jailer named B to be executed, is 1/(1 + 4). The numerical
method is similar to the more standard treatments in texts.

General Discussion

Our major goal has been to advance a new theory of naive
extensional reasoning about probability. This theory depends on
five principles:
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1. Truth: People represent situations by constructing a set of
mental models in which each model represents what is true in a
true possibility.

2. Equiprobability: Each model represents an equiprobable al-
ternative unless individuals have knowledge or beliefs to the
contrary, in which case they will assign different probabilities to
different models.

3. Proportionality: Granted equiprobability, the probability of
an event depends on the proportion of the models in which it
occurs.

4. Numerical representation: If a premise refers to a numerical
probability, models can be tagged with the appropriate numerical
values, and an unknown probability can be calculated by subtract-
ing the sum of the (n - 1) known probabilities from the overall
probability of the n possibilities in the partition.

5. Subsets: Granted equiprobability, a conditional probability,
p(ALB), depends on the subset of B that is A, and the proportionality
of A to 6 yields the numerical value. Otherwise, if the models are
tagged with their frequencies (or chances), then the conditional
probability equals the frequency (or chance) of the model of A and
B divided by the sum of all the frequencies (or chances) of models
containing B.

In short, as our experiments confirmed, individuals construct
models of true possibilities, assume equiprobability by default, and
infer probabilities from proportionality. Laplace's (1820/1951)
principle of indifference, as we saw, ran into insuperable difficul-
ties because when one is totally ignorant there is more than one
partition of events. In our experiments, however, the partitions
were fixed by the premises and the mental models that individuals
constructed from them. When naive reasoners are told, for exam-
pie,

If there is a red marble in the box, then there is either a green marble
or else a blue marble in the box, but not all three marbles,

they are likely to envisage the following partition (see Problem 3
in Appendix A):

red
red

green
blue

It is possible that reasoners represent the partition using Euler
circles or Venn diagrams, if they have been taught them, but they
rapidly forget the implicit model representing the possibilities in
which the antecedent of the conditional is false. As our results
show, reasoners assume that the two models above represent
equiprobable alternatives, and so they tend to infer that the prob-
ability of at least a red marble in the box is 100%. Likewise,
reasoners infer that it is impossible for there to be a green and a
blue marble in the box. Thus, the results bear out the principle of
truth: Mental models represent only what is true. In contrast, the
actual alternatives (see the fully explicit models for Problem 3 in
Appendix A) show that the probability of a red marble is 33%
(assuming equiprobability over the actual alternatives), and they
also show that it is possible for there to be both a green and a blue
marble. Hence, where mental models and the real alternatives
diverge, then naive reasoners tend to follow their mental models.
In this sense, the present theory accommodates the earlier accounts
of Shimojo and Ichikawa (1989) and Falk (1992) but shows that
these theories should be based on mental models rather than actual
alternatives.

In our experiments, we used problems about marbles in boxes.
Such materials are often used in studies of probabilistic reasoning
to insulate problems from the participants' general knowledge or
beliefs (see von Winterfeldt & Edwards, 1986). The trouble is that
general knowledge is readily triggered by any materials to which
it seems relevant. Consider, for example, the following conditional
(from an anonymous reviewer):

If dirixil acid is present on Europa, then there is life on Europa.

If people have no knowledge of these matters, then, according to
the model theory, they should infer a probability of 50% for dirixil
acid and life on Europa (see the mental models of the conditional
in Table 2). However, people who know that Europa is one of
Jupiter's moons probably have some beliefs about the likelihood of
life there. We, for instance, would assign a low probability to life
on Europa. The following conditional (from the same reviewer)
concerns two sorts of dirixil acid:

If either dirixil-1 or dirixil-2 acid is present on Europa, then there is
life on Europa.

What the model theory predicts in this case is that naive reasoners
should infer that the following two assertions have the same
probability:

There is dirixil-1 acid on Europa and there is life on Europa.

There is dirixil-2 acid on Europa and there is life on Europa.

Nonextensional reasoning from beliefs—perhaps about the lack of
life on the Earth's moon—is likely to yield a low probability for
each of these two propositions; however, extensional reasoning
from the models of the conditional are likely to yield equal
probabilities for both propositions. This mixture of extensional and
nonextensional reasoning is typical in daily life.

What are probabilities? Are they degrees of belief, partial en-
tailments, limits on relative frequencies, or some other entity? As
we pointed out at the beginning of this article, there is no consen-
sus about such matters among probabilists. We deliberately
avoided the debate about the proper interpretation of probabilities.
Do our participants have an internal conviction that, say, the
probability of a blue marble in the box is 50%? We are confident
that they are not just saying so to oblige the experimenter, or that
they made responses in which they did not believe because they
thought the experimenter expected them. The participants in Ex-
periments 1 and 2 were clearly thinking hard, and their inferences
were often not the precise round numbers predicted by the model
theory. The problems in Experiment 3 were more complex, and it
would be odd for individuals to have two sets of intellectual
machinery for probabilities: one for generating the inferences
expected by the experimenter and the other for generating infer-
ences in which they believe. Moreover, when naive reasoners
encounter such tasks in real life, such as in the Monty Hall puzzle
(see the previous section), they do indeed assign equal probabili-
ties to their mental models of the partition. Marilyn vos Savant, the
author of the "Ask Marilyn" column in Parade magazine, pub-
lished a correct analysis of the problem. Such is the power of
equiprobability, as Falk (1992, p. 203) noted, that vos Savant
received thousands of letters from readers, many of them from
universities and research institutes, and about 90% of them insist-
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ing that she was wrong. Bar-Hillel and Falk (1982) corroborated
these readers' judgments experimentally. Yet, when naive reason-
ers have knowledge to the contrary, they do abandon equiprob-
ability. They do not believe that the presence of life on Europa is
as equally probable as its absence. Obviously, they abandon
equiprobability when the premises stipulate different explicit prob-
abilities. In such cases, proportionality is also suspended, and
mental models can be tagged with numerical values. Naive rea-
soners will still be able to infer probabilities provided that the
arithmetical calculations are not too taxing.

The model theory dispels five misconceptions about probabilis-
tic reasoning. The first misconception is that it is necessarily an
inductive process. As we have shown, many inferences about
probabilities are deductively valid, particularly if background
knowledge is taken into account as an additional set of premises.
The second misconception is that naive reasoning is seldom, if
ever, extensional. However, following D. Kahneman (personal
communication, January 26, 1994), we have argued that naive
reasoners make both extensional and nonextensional inferences
about probabilities. The third misconception is that extensional
reasoning depends on a tacit knowledge of the probability calculus,
perhaps embodied in an innate inferential module. The results of
the present experiments provide strong support for our alternative
theory of naive probability. The fourth misconception is that
extensional reasoning occurs only when premises concern the
natural frequencies of events. Our studies show that individuals
can reason extensionally when premises concern neither frequen-
cies nor probabilities. Reasoning about conditional probabilities is
a borderline ability for naive individuals, because it calls for
models to be fleshed out in a fully explicit way. One way to
overcome this problem, especially in Bayesian reasoning, is to
allow reasoners to make extensional inferences from simple sets of
models in which the numerical results emerge from the subset
algorithm. The fifth misconception is that cognitive illusions occur
only in nonextensional reasoning and disappear in extensional
reasoning. "Subadditivity" is a well-known phenomenon of non-
extensional reasoning in which estimates of the probability of an
implicit disjunctive category, such as "accidents," is less than the
sum of its explicit disjuncts, such as "accidents in the home" and
"accidents outside the home." According to Tversky and Koehler's
(1994) support theory, the description of an event in greater detail
recruits more evidence in favor of it and thus leads to a higher
judged probability (see also Miyamoto, Gonzalez, & Tu, 1995).
Extensional reasoning, too, can yield subadditivity. Given an in-
clusive disjunction of the form A or B, or both, for instance,
participants in Experiment 2 inferred that the probability of at least
A is 60% (see Table 5), which is much less than the sum of their
inferences for its two components, A and B (45%), and A and not
B (44%). The model theory predicted subadditivity on the grounds
that reasoners have difficulty in calling to mind all the possible
models of premises.

The most striking cognitive illusions in extensional reasoning
arise from the failure of reasoners to cope with falsity. As the
model theory predicts, they succumb to gross illusions about
relative probabilities. From certain premises, they infer as the more
probable of two events one that is, in fact, impossible; from other
premises, they infer as the less probable of two events one that is,
in fact, certain (Johnson-Laird & Savary, 1996). These erroneous
conclusions corroborate the model theory but count against any

account that embodies the probability calculus in any current
psychological theory that is based on formal rules, because these
theories rely only on valid rules (see, e.g., Braine & O'Brien, 1991;
Rips, 1994).

A naive grasp of probability provides the mental foundations for
expertise on the topic. Such expertise depends on knowledge of a
variety of matters. One important component is a knowledge of
combinations and permutations. For example, if a coin is tossed
twice, which is more likely to occur: Two heads or one head and
one tail? Naive individuals reason that there are three possibilities:
two heads, two tails, or one head and one tail, and so conclude that
the two outcomes are equally likely. In contrast, experts know that
it is necessary to take permutations into account, and that there are
accordingly four possible outcomes—two heads, two tails, a head
followed by a tail, and a tail followed by a head—and so the
correct answer is that one head and one tail is more likely, because
it can be obtained in two distinct ways, whereas two heads can be
obtained in only one way. Whether expertise of this sort is con-
ceptual or a result of observation is a moot point (cf. Hacking,
1975). Another component of expertise is a knowledge of numbers
and arithmetic, a factor that is easily overlooked, as we have seen,
in studies of probabilistic reasoning. Still another component is the
explicit acquisition of the laws of probability, such as Bayes's
theorem. Underlying the ability to acquire these technical matters,
in our view, are the simple principles of extensional reasoning
based on mental models.

The import of our results is clear: They substantiate the model
theory of naive probability. This theory is based on a small number
of simple, but powerful, principles. Reasoners make extensional
inferences about probabilities from mental models representing
what is true. They assume by default that each model represents an
equiprobable alternative. They also infer the probability of an
event from the proportion of models in which it occurs. In cases
where the premises include numerical statements of probability,
reasoners build the same sorts of models, tag them with numerical
probabilities, and, if possible, use simple arithmetic to calculate
probabilities. Extensional problems that cannot be solved in these
ways are likely to be beyond the ability of naive reasoners.
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Appendix A

The 18 Problems of Experiment 3, Their Mental Models and Fully Explicit Models, Predicted
Values, and Unbiased Values

Experimental problems
1. A or both B and C, not all three
A A ^B

B C A B
A -,B

-,A B

Conclusions
p(A and C)
p(B and C)
p(at least A)

Predicted
value

50%

2. A or else if B then C, not all three
A A B

B C -A B
-,A -,B
-A -iB

Conclusions
p(A and B)
p(empty box)
p(A alone)

Predicted
value

50%

B A
A

-,A
-,A
-,A
-,A

B

B

-C
-C

C
C

Control problems
1.' A and either B or else C, not all three
A B A B -C
A C A -,B C

Unbiased
value

25%
25%
75%

Conclusions
p(A and C)
p(B and C)
p(at least A)

Predicted unbiased
value

100%

C
C

2.' A or else B or else C, but no more than one
A A -,B -iC

B -A B -C
C -,A -,B C

Unbiased
value

25%
25%

3. If A then either B or C, not all three
-,C

C
-,c

,B C
B C
iD —iC_

Conclusions
p(A and B)
p(empty box)
p(A alone)

3.' A or else B, and C, not all three
A C A -,B C

B C -,A B C

Predicted unbiased
value

33%

Conclusions
p(B and C)
p(at least A)
p(at least B)

Predicted
value

0%
100%
50%

Unbiased
value

17%
33%
50%

Conclusions
p(A and B)
p(at least A)
p(at least B)

Predicted unbiased
value

0%
50%
50%

Note. The mental models predict unbiased values for the control problems. The predicted value was also the unbiased one
for the third experimental problem that was based on Premise 3.

Appendixes continue
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Appendix B

Results of Problems in Experiment 3

Experimental problems
1. A or both B and C, not all three

No. predicted No. unbiased
A and C: 18 2
B and C: 17 0
at least A: 17 0

2. A or else if B then C, not all three
No. predicted No. unbiased

A and B: 19 0
empty box: 17 1
A alone: 14 5

3. If A then either B or C, not all three
No. predicted No. unbiased

B and C: 14 0
at least A: 12 1
at least B: 16 16a

Control problems
1.' A and either B or else C, not all three

No. predicted and unbiased
A and C: 14
B and C: 11
at least A: 6

2.' A or else B or else C, but no more than
one

A and B:
empty box:
A alone:

No. predicted and unbiased
24
20
11

3.' A or else B, and C, not all three
No. predicted and unbiased

A and B: 20
at least A: 17
at least B: 17

Overall means: 16.0 2.8 15.6

Note. This Appendix shows the numbers of participants who made inferences within ±5% of the predicted
values, and within ±5% of the unbiased values for the experimental problems. N = 25.
a The unbiased inference was also the predicted one for this problem (see Appendix A).
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