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Abstract 

In synthetic reasoning, individuals assemble elementary 
components into effective systems, such as the working 
mechanism of an unknown device. This paper proposes a new 
theory of this ability, and reports two experiments investigating 
how individuals reverse engineer Boolean circuits with two 
inputs and an output. Experiment 1 supported the theory’s 
prediction that the complexity, and hence difficulty, of synthetic 
reasoning problems should depend on the number of 
possibilities in which the assembled system works, the number 
of components in that system, and the relations between the 
component parts. Experiment 2 generalized this finding, and 
showed that individuals develop two distinct strategies. 

Introduction 
Synthetic reasoning is a sequence of mental steps that 
individuals follow in assembling elementary components into 
an effective system. When you explain an everyday event, 
you synthesize your existing causal knowledge with new 
information in order to explain the event. When you figure 
out how a device works, you infer from the functions of each 
of the device’s components the overall mechanism. Synthetic 
reasoning calls for both deduction and induction, especially 
the form of induction that generates explanations, i.e., 
“abduction”. It occurs both in daily life and science. But, how 
do people do it? 
 Cognitive scientists have investigated a variety of aspects 
of synthetic reasoning in both psychology and artificial 
intelligence (e.g., Johnson & Krems, 2001). Klahr and 
colleagues have studied how individuals discover the function 
of a control on a toy robot (see, e.g., Klahr & Dunbar, 1988; 
Klahr, 2000). The participants write programs that control the 
robot, to try to discover the function of the control. The main 
finding was that individuals differ in whether they focus on 
hypotheses about the control or on possible experiments. AI 
researchers have proposed accounts of ‘abductive’ reasoning 
in which individuals generate explanations (for a review, see 
Paul, 1993). These accounts, however, presuppose a pre-
existing set of putative explanations, i.e., they have finessed 
the problem of how individuals use knowledge to synthesize 
explanations. For example, the ‘set-cover’ approach selects 
subsets of existing hypotheses, e.g., Allemang, Tanner, 
Bylander, & Josephson (1987). Similarly, the ‘explanatory-
coherence’ account relies on a handcrafted connectionist 

model that represents competing hypotheses, e.g., Thagard 
(2000). 
 Hence, despite a sizable literature in explanatory reasoning 
and abduction, the underlying mental processes of  synthetic 
reasoning remain largely unknown. We therefore formulated 
a theory of synthetic reasoning, and carried out two 
experiments to test it. The next section describes our theory 
and illustrates our test-bed of Boolean systems. A Boolean 
system, such as an electrical circuit of switches, has a “logic” 
equivalent to negation, conjunction, and disjunction. This 
logic also applies to concepts (e.g., Shepard, Hovland, & 
Jenkins, 1961), to sentential connectives (e.g., Johnson-Laird, 
Byrne, & Schaeken, 1992), and to learning algorithms in 
artificial intelligence (e.g., Kearns & Vazirani, 1994). No-one 
knows for certain what makes Boolean problems difficult. 
Our theory, however, makes clear predictions about their 
difficulty. 

A Theory of Synthetic Reasoning 
In order to construct a working model of a system, you need 
to understand what the system does and how its components 
work. Our theory postulates that individuals construct mental 
models of systems, i.e., representations in which the structure 
of the model corresponds to the structure of the system 
(Gentner & Stevens, 1983; Johnson-Laird, 2001). But, how 
do individuals construct such a model? Like any sort of 
thinking – with the possible exception of mental arithmetic – 
the process of synthetic reasoning has to be treated as non-
deterministic (Hopcroft & Ullman, 1979). As in deductive 
reasoning (van der Henst, Yang, & Johnson-Laird, 2002) and 
problem solving (Lee & Johnson-Laird, 2004), reasoners 
should develop different strategies as they learn to synthesize 
systems of the same sort. There are two main sorts of 
strategies that they are likely to develop: they may focus one 
at a time on the possibilities in which the system either does 
or does not produce an output, or they may focus on each of 
the input components one at a time and try to account for its 
effects on the output. To grasp the difference between the two 
strategies, consider the following problem in which 
individuals have to assemble an electrical circuit containing 
two binary switches, a battery, a light bulb, and some wires. 
In this circuit, the light comes on when one or both of the 
switches are up. Thus, the circuit has four different 
possibilities: 
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Switch A Switch B Light 
Up Up On 
Up Down On 
Down Up On 
Down Down Off 

 
In the first sort of strategy, individuals try to account for each 
possible outcome one at a time. In deductive reasoning, 
individuals typically focus on what is true, but not what is 
false (see, e.g., Johnson-Laird & Savary, 1999). Hence, they 
should be more likely to consider first the positive 
possibilities in which the light comes on, rather than the 
possibilities in which it does not come on. They accordingly 
construct a circuit that accounts for the first positive 
possibility (e.g., when both switches are up, and the light 
comes on), and then modify the circuit to account for the 
remaining possibilities. In the second strategy, they consider 
the effects on the light of each switch separately. For 
example, they notice that when one switch is up, the light 
always comes on, and so they construct a circuit with only 
one switch that connects the ciruit. Then, they work out how 
to insert another switch into the circuit so as to account for all 
the possibilities. Both strategies ultimately require individuals 
to make sure that all the components yield the correct 
outcomes. 
 This theory of strategies predicts that three factors should 
affect the difficulty of synthetic problems. The first factor is 
the number of variable components that the system contains. 
A variable component is a component that has more than one 
state, e.g., a switch. This factor is similar to Halford’s concept 
of relational complexity, which he regards as sufficient to 
account for complexity (see, e.g., Halford, Wilson, & Philips, 
1998). The prediction, say, that a system with two 
components should be easier to synthesize than one with two 
hundred components hardly warrants an experimental test. 
 A second factor is the number of positive possibilities, i.e., 
the possibilities in which the light comes on. Many studies of 
reasoning have demonstrated such effects (see, e.g., Johnson-
Laird, 2001). Hence, we can predict that the or problem in the 
table above should be harder to synthesize than an and 
problem with only one positive possibility. 
 The third factor is more subtle. It is the dependence of the 
input components on one another in yielding the output. In 
the case of the or problem above, each switch acts 
independently of the other to switch the light on. In the case 
of an and problem (see below), each switch acts 
independently of the other to switch the light off. In contrast, 
an or-else problem (see below) is a dependent one. In this 
problem, the light comes on only when one or-else the other, 
but not both of the switches, is up. Hence, the effect of one 
switch depends on the other switch’s position. This notion of 
dependence is similar to Vapnik’s (1998) notion of a non-
linear system. But, unlike linearity versus non-linearity, 
dependence is a gradeable notion. Imagine a system 
controlled by three switches. If one particular switch makes 
the light come on in, say, three out of the four positive 
possibilities, the switch is relatively independent of the others. 

Hence, the problem should be easier than one in which none 
of the switches has this privileged effect.  
 Granted that individuals tend to focus on the system’s 
possibilities or on its input components, independent systems 
should be easier to reverse engineer than dependent ones. In 
sum, three factors should determine the difficulty of 
synthesizing a system, at least a Boolean system: the number 
of variable input components, the number of positive 
possibilities, and the relative independence of the input 
components. To test the theory, we carried out two 
experiments calling for the reverse engineering of Boolean 
systems. 

Experiment 1 
Experiment 1 examined the reverse engineering of three sorts 
of Boolean electrical circuit. On each trial, the participants 
saw a “black box” with two switches and a bulb. The 
computer displayed the four possible switch settings and 
whether or not the bulb came on. Figure 1 presents such a 
problem. The participants’ task was to design the circuit 
connecting the switches that yielded these contingencies. In 
the and problem, the bulb came on only when both switches 
were up (as in Figure 1). In the or problem, the bulb came on 
when one or other switch was up or both of them were. In the 
or-else problem, the bulb came on only when one or other of 
the switches was up, but not both. Figure 2 shows the 
minimal solutions of the three problems in the experiment. 
 

 
Figure 1: The presentation of the and problem in Experiment 
1. This picture shows the four different combinations of the 
switch positions and their effects on the bulb. It comes on 
only when both switches are up. 
 
The theory predicts that the two independent problems (and 
and or) should be easier than the dependent problem (or-
else), because dependence plays havoc with the two strategies 
that we described earlier. You cannot focus on one input 
component at a time. The theory also predicts that the and 
problem (one positive possibility) should be easier than the or 
problem (three positive possibilities). The ease of each 
problem should be reflected in the accuracy of the circuits, 
fewer separate drawings to produce a correct solution, and a 
faster time to produce it. 
 

 
Figure 2: The minimal Boolean electrical circuits for and, or, 
and or-else problems. The circles represent bulbs, the 
rectangles represent batteries, and  the switches are binary. 
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Method and Procedure 
We tested 18 Princeton University students individually. The 
experimenter explained that their task was to design a circuit 
for a “black box” that contained the following components: a 
battery, a bulb, two binary switches, and as many wires as 
necessary. Each switch had one input terminal and either one 
or two output terminals, so that the switch could make or 
break one or two circuits. The experimenter explained: a 
switch can function in two ways. A “simple” switch uses one 
output terminal and closes or breaks a single circuit; whereas 
a “complex” switch has two output terminals so that in one 
position it closes one circuit whilst breaking the other circuit, 
and in the other position it has the opposite effect. The 
experimenter illustrated with examples how both sorts of 
switches worked. The aim of a circuit was to produce the 
effects of the switches’ positions on the light. The participants 
carried out a practice trial for a black box with one switch and 
one bulb. The experimenter answered the participants’ 
questions, and then proceeded to the experiment proper. The 
participants drew diagrams of the circuits and they were 
encouraged to draw as many as they needed on the answer 
sheet. The experimenter told them that they had seven 
minutes to solve each problem, and that they would be timed. 
The instructions and the problems were presented using the 
PowerPoint program, and each participant received the three 
problems in one of the six possible orders. 

Results and Discussion 
Figure 3 presents the number of correct responses and the 
overall mean latencies. The figure shows the predicted trend: 
the and problem yielded more correct solutions than the or 
problem, which in turn yielded more correct solutions than 
the or-else problem (Page’s L = 237.0, z = 3.50, p <.01). 
Likewise, the predicted trend occurred in the times to solve 
the problems (Page’s L = 234.5, z = 3.08, p <.005). The mean 
numbers of diagrams that the participants drew to reach a 
solution or to exceed the time limit were 1.1, 2.4, and 3.8 
diagrams for the and, or, and or-else problems respectively, 
and this trend was also reliable (Page’s L = 194.0, z = 3.67, p 
<.0005). The results accordingly corroborated the theory. 

 

 
Figure 3: Mean latencies (of both accurate and inaccurate 
responses) and numbers of accurate responses in the three 
problems of Experiment 1. 

Experiment 2 
The aim of Experiment 2 was to examine the strategies that 
individuals developed as they reverse engineered Boolean 
problems. It also aimed to generalize the results to a new 
domain of water flow systems. The task in this domain was to 
assemble a water flow system from the following 
components: a pump that supplied the water, two faucets, a 
turbine, and pipes that were either straight or L-shaped. 
Figure 4 shows the presentation of the and problem. The task 
was to design a system that ensured that the turbine ran only 
with the appropriate positions of the faucets. The three 
problems in this domain were isomorphic to those in 
Experiment 1; Figure 5 presents correct minimal solutions. 
The theory predicts that the participants should employ the 
two principal strategies that we described earlier, either 
focusing on one input component (i.e., binary switch) at a 
time, or one outcome possibility at a time. It also predicts the 
same trend of difficulty for both the electrical and water flow 
problems. Even though the participants receive no feedback, 
the second block of problems should be easier than the first 
block.  
 

Figure 4: The presentation of the and problem in a water 
flow system in Experiment 2. This picture shows the four 
different combinations of the faucets’ positions and their 
effects on the turbine. It comes on, as shown in red, only 
when both faucets are up. 
 

 
Figure 5: The minimal Boolean water flow solutions for the 
and, or, and or-else problems. The ellipses represent turbines, 
the rectangles represent water pumps, and the faucets are 
binary. 

Method and Procedure 
We tested 20 Princeton University students with two blocks 
of three problems. One block contained the three electrical 
circuit problems; and the other block contained the three 
water flow  problems. The order of the two blocks, and the 
order of the problems within each block, were counter-
balanced over the participants. The procedure was the same 
as in Experiment 1, with a training trial before each block of 
problems. However, in this experiment, the participants had 
to think aloud as they solved the problems, they had 11 
minutes to solve each problem, and they had to describe the 
strategies that they had used in a post-experiment interview.  
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We recorded their protocols with a portable cassette tape 
recorder. 

Results and Discussion 
The numbers of correct solutions corroborated the predicted 
trend in both domains: the and problem yielded more correct 
solutions (20 in both domains) than the or problem (9 in both 
domains), which in turn yielded more correct solutions than 
the or-else problem (5 in both domains, Page’s L = 269.0, z = 
4.59, p <<.001; it was also highly reliable for each domain 
separately). Figure 6 presents the mean times that the 
participants spent on the problems, whether the solution was 
correct or incorrect. These trends were highly reliable (Page’s 
L = 272.5, z = 5.14, p <<.001). The trend was also reliable in 
the number of diagrams that the participants drew (means, 
excluding the final diagram, were 0.88, 4.28, and 4.88 for the 
and, or, and or-else problems respectively, Page’s L = 270.0, 
z = 4.74, p<<.001). No reliable differences occurred in either 
accuracies or latencies between the two domains, or even 
between the two blocks of trials. 
  

 
Figure 6: Mean latencies (of both accurate and inaccurate 
responses) for the three problems in each domain in 
Experiment 2. 
 
 An analysis of the participants’ protocols showed that they  
indeed developed two main strategies for synthesizing the 
systems. These strategies were also borne out by their post-
experimental interviews. They did not necessarily use the 
same strategy for all problems, and some participants even 
switched from one strategy to another whilst they were 
solving a problem. 
 As predicted, the first strategy was to consider each input-
output possibility separately. The participants first 
synthesized a solution for one possibility, and then tried to 
modify this solution to capture the other possibilities. Figure 7 
illustrates how one participant (No.3) used this strategy to 
solve the water flow or problem. She started with the 
possibility in which both switches were up and the turbine 
was running, and constructed a working model for this 
possibility (1). She modified this model to capture the 
possibility in which faucet A was up and faucet B was not, 
and the turbine was running. She accordingly added a 
branching pipe between the two faucets, which she connected 

to the other end of faucet B so that the system would still be 
closed when switch B was not up (2). She repeated this step 
to account for the third possibility in which faucet A was not 
up and faucet B was up, and the turbine was running. This 
solution, however, was incorrect, because the turbine would 
still come on when both switches were not up. 
 

 
Figure 7:  An example of the strategy of building a model to 
account for one possibility first, and then modifying to 
account for the other possibilities (see text). 
 
 The second strategy was to focus on the effects of a single 
switch or faucet. Figure 8 shows how a participant (No.16) 
used this strategy to solve the electrical or problem. She first 
focused on the fact that the bulb always came on when switch 
A was up. She drew a complete circuit with only switch A 
(2). She then considered the possibilities in which switch A 
was down (3), and added switch B to the model (4). Then, she 
worked out which output terminals in the circuit 
corresponded with which switch positions, changing her mind 
about what the “up” position of switch A (5-6) and the “up” 
position of switch B (6-8) should be. Finally, she drew out the 
resulting model in full as a correct solution (9). 
 

Figure 8: An example of the second strategy in which the 
participant focuses on the effects of a single switch on the 
bulb, and then extends the model to account for the second 
switch (see text). 

General Discussion 
When individuals try to reverse engineer a system, they need 
to understand what the system does and how its components 
work. They then have to assemble the components in a 
synthesis that delivers the required performance of the 
system. As the theory predicts, individuals tend to synthesize 
a circuit by accounting either for one switch or else one 
possibility at a time. The difficulty of the task follows from 
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this account: it depends on the number of variable 
components, the number of settings of them that yield 
positive outputs from the system, and the dependence of the 
system’s input components. Experiment 1 showed that both 
the number of positive outputs and dependence affected 
performance. The participants found it easier to synthesize an 
and circuit (one positive possibility) than an or circuit (three 
positive possibilities). Even though an or-else circuit has only 
two positive possibilities, it was hardest of all, because the 
two input components’ effects are dependent. Their positions 
interact. The difficulty in synthesizing an exclusive 
disjunction is well known to “connectionists”: unlike 
inclusive disjunction, it calls for “hidden units” if a network 
of units is to learn it (see McClelland & Rumelhart, 1986). 
 Experiment 2 corroborated these findings, showing that the 
same trend occurred in synthesizing water flow systems. 
More importantly, the participants’ think-aloud protocols and 
the post-experiment interviews showed that they did develop 
two principal strategies. In one, the participants focus on a 
single positive possibility, and construct a circuit for it. They 
then try to extend the circuit to cope with the other 
possibilities. In the other, they focus on a single switch, and 
construct a circuit that controls the output appropriately. They 
then try to extend the circuit to cope with the effects of the 
other switch. 
 Are alternative theories likely to account for our results? 
The most influential psychological theory views the search 
for a solution to a problem as governed by a means-ends 
analysis (see, e.g., Newell & Simon, 1972; Newell, 1990). 
But, as in many other synthetic tasks, our circuit problems are 
not amenable to this heuristic. The goal of our problems was 
clear, but it was not one that allowed our participants to 
envisage a position that was just a move away from the 
solution. Hence, they cannot work backwards from the goal. 
Likewise, because both the number of positive possibilities 
and the dependence of the input components affected the 
difficulty of the problems, it seems unlikely that relational 
complexity alone can account for performance (pace Halford 
et al., 1998). In addition, some theories argue that the 
complexity of Boolean concepts depends on the concept’s 
minimal description, i.e., the length of the concept’s shortest 
equivalent logical formula (see e.g., Feldman, 2000). 
However, such accounts treat both conjunction and inclusive 
disjunction, but not exclusive disjunction, as the primitives of 
a logical formula. Hence, although these accounts can predict 
why an or-else problem should be harder than an or or an and 
problem, they do so merely by stipulating that or-else is not 
allowed in their descriptive language. They also fail to 
explain why an or problem should be harder than an and 
problem. 
 Readers may argue that the or-else problems call for an 
insight (see, e.g., Knoblich, Ohlsson, Haider, & Rhenius, 
1999; Ormerod, MacGregor, & Chronicle, 2002), namely, the 
realization that instead of breaking or closing a single circuit, 
a switch can also direct the current into two different circuits 
in its two different positions. In our view, this possibility does 
not explain the difficulty of the or-else problems, if only 

because the participants were explicitly taught this use of the 
switches, and because some participants used this switch in 
solving the inclusive or problems. But, we cannot as yet rule 
out this putative explanation. The model-based theory of 
synthetic reasoning has so far yielded reliable predictions. 
The theory extends to domains outside Boolean circuits, but 
we have yet to test its applications there.  
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