
Thinking About Algorithms

Sangeet Khemlani (khemlani@princeton.edu)
P.N. Johnson-Laird (phil@princeton.edu)
Department of Psychology, Princeton University

Princeton, NJ 08540 USA

Keywords: algorithms; reasoning; deduction; computer
programming; problem solving

Introduction
Computer programming depends on high-level cognitive
abilities. While theories of programming exist, they tend to
focus on how individuals learn to program (e.g., Soloway,
Bonar, & Ehrlich, 1989; Anderson, Pirolli, & Farrell, 1988).
Our research aims to answer the following questions: Can
naïve individuals solve algorithmic problems? Can they
generate descriptions of algorithms?

To answer these questions, we developed an environment
that non-programmers can readily grasp, but that allows us
to test their ability to reason about recursive processes that
are commonplace in programming languages, such as Lisp.
The environment concerns railway trains consisting of
several cars; tasks call for the cars to be reordered by using
a switch leading to a siding (see Figure 1).

This system is equivalent to a push-down automaton, in
which the siding acts as a stack-like memory. The system
provides a concrete mechanism for any such automaton, and
with two extendible sidings, cars of two sorts, and the
capacity to add and subtract cars, it has the power of a
Universal Turing machine, i.e., it can perform arbitrary
computation. Hence, the system allows us to study the
reverse engineering of finite and infinite automata.

Experiment 1: List processing
Our first aim was to examine whether naïve individuals
were capable of the reasoning required to program simple
list-processing operations of the sort that occur in a
programming language such as Lisp. Twenty participants
were given problems in which they had to rearrange the cars
on one side of the track and place them on the other, similar
to list processing problems in introductory computer science
courses. Naïve individuals were able to solve these
problems with ease: they produced no erroneous responses.

We also observed the subtle phenomenon that the relational
complexity of a move (see Halford et al., 1998) – that is, in
our system the number of cars to be moved – affected
performance.

Experiment 2: Description of algorithms
The experiment called for the participants to formulate
descriptions of how to solve three common list-processing
problems (reversals, palindromes, and sortings) in the
railway environment. They tackled the problems based on
two sorts of trains. The determinate trains contained a single
set of eight cars, whereas the indeterminate trains contained
an indeterminate number of cars, signified by an ellipsis
(e.g., A…Z). Table 1 presents the percentages of correct
descriptions of algorithms: the determinate problems were
reliably easier than the indeterminate problems (Wilcoxon
test, z = 2.69, p < .005). A common mistake was for
participants to treat the ellipsis as though it were a single car
despite clear instructions that it signified an indeterminate
number of cars.

Table 1: Percentage of correct algorithms by level of determinacy

Determinacy Reversals Palindromes Sortings
Determinate 100 100 100
Indeterminate 85 42 57

Discussion
Algorithmic reasoning is central to the mental processes of
computer programming. We found that naïve individuals
with no training in computer science were able both to solve
list-processing problems (Experiment 1) and to describe the
recursive loops of operations needed to solve these
problems (Experiment 2).

References
Anderson, J. R., Pirolli, P., & Farrell, R. (1988). Learning to

program recursive functions. In M. Chi, R. Glaser, & M. Farr
(Eds.), The Nature of Expertise. Hillsdale, NJ: Erlbaum.

Halford, G.S., Wilson, W.H., & Phillips, S. (1998). Processing
capacity defined by relational complexity: Implications for
comparative, developmental, and cognitive psychology.
Behavioral and Brain Sciences, 21.

Soloway, E., Bonar, J., & Ehrlich, K. (1989). Cognitive strategies
and looping constructs: An empirical study. In E. Soloway and
J. C. Spohrer (Eds.), Studying the Novice Programmer.
Hillsdale, NJ, Lawrence Erlbaum Associates.

Figure 1. Railway environment for algorithmic reasoning

