CHAPTER 12

Mental Logic, Mental Models, and

Simulations of Human Deductive Reasoning

Philip N. Johnson-Laird and Yingrui Yang

1. Introduction

Individuals who know no logic are able to
make deductive inferences. Given a problem
such as:

If the printer test was run then the printer
produced a document,
The printer test was run.

What follows?
they draw the conclusion:
The printer produced a document.

The conclusion is the result of a valid de-
duction, thatis, if the premises are true, then
the conclusion must be true also. How naive
individuals — those untrained in logic — are
able to draw valid conclusions is a matter
of controversy, because no one has access to
the mental processes underlying inferences.
Some cognitive scientists believe that these
processes are analogous to those of “proof”
theory in logic (see Chapter 5 in this vol-
ume orn logic-based modeling); some believe
that they are analogous to those of “model”

theory in logic; and some believe that logic is
irrelevant and that the probability calculus
is a better guide to human deductive rea-
soning. The present chapter focuses on sim-
ulations based on proof theory and model
theory, but it has something to say about
the probabilistic theory.

The chapter starts with an outline of how
psychological theories based on formal rules
of inference — proof theory, that is — can be
implemented to simulate reasoning. It uses
as a test-bed so-called sentential reasoning
based on negation and connectives, such as
“if ” “and,” and “or.” This sort of reasoning
lies at the heart of our everyday deductions,
although we are soon defeated by complex
inferences in this domain. The chapter then
turns to programs simulating the theory in-
spired by “model” theory in logic, that is, the
theory of mental models, which posits that
the engine of human reasoning relies on con-
tent. Itillustrates two simulations of the the-
ory. One program simulates spatial reason-
ing, and it shows how valid inferences can
be drawn without explicit representations
of the logical properties of relations. Instead,
they emerge from the representations of the
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meanings of relational terms. The other pro-
gram concerns sentential reasoning, and it
shows how an apparently unexceptional as-
sumption leads to a striking prediction of
systematic fallacies in reasoning — a case that
yields crucial predictions about the nature
of human deductive reasoning. The chapter
concludes with an attempt to weigh up the
nature of human rationality in the light of
these and other simulation programs.

2. The Simulation of Formal Theories
of Reasoning

For many years, psychologists argued that
deduction depends on an unconscious sys-
tem of formal rules of inference akin to
those in proof-theoretic logic. The inference
in the opening example, for example, could
be drawn using the formal rule of inference
known as modus ponens:

If A then B
A
Therefore, B.

The human inference engine matches the
form of the premises to this rule, where A
has as its value: the printer test was run, and
B has as its value: the printer produced a doc-
ument. The use of the rule proves the con-
clusion, B. This sort of theory has its pro-
ponents both in artificial intelligence and in
cognitive psychology. Its intellectual god-
father in psychology was the Swiss theo-
rist, Jean Piaget (see, e.g., Beth & Piaget,
1966}, but many theorists have proposed
versions of the doctrine (e.g., Braine, 1978;
Braine & O’Brien, 1998; Johnson-Laird,
1975; Osherson, 1974-1976; Rips, 1983,
1994).

Rips (1994) describes an implementation
of his version of the theory, and the propo-
nents of the other leading formal rule theory
(Braine & O’Brien, 1998) have described an
algorithm for it, although they did not im-
plement a program. Hence, this section fo-
cuses on Rips’s (1994) program. He argues
that formal rules, such as modus ponens, are
central to human cognition, underlying not

just deduction but all thinking. Hence, for-
mal rules on his account are part of cog-
nitive architecture and akin to a general-
purpose programming system in which any
sort of theory can be implemented, even,
say, Newell’s (1990) Soar theory (see Chap-
ter 6 in this volume on cognitive architec-
ture). Soar is a so-called production sys-
tem, which is made up of a large number of
productions, that is, conditional rules with
specific contents. They have the form: if con-
dition X holds then carry out action Y, and
a production can be triggered whenever its
antecedent condition is satisfied. Rips ar-
gues that this method of applying the rules
is akin to the use of modus ponens, but
that Newell’s theory is “too unconstrained
to explain what is essential about deduction”
(Rips, 1994, p. 30).

At the heart of Rips’s (1994) theory is the
notion of a mental proof, so theorists need to
devise psychologically plausible formal rules
of inference and a psychologically plausi-
ble mechanism to use them in construct-
ing mental proofs. Like several proposals in
the mid-1970s (e.g., Braine, 1978; Johnson-
Laird, 1975; Osherson, 1974-1976), Rips
adopts the “natural deduction” approach to
rules of inference. Each logical connective
has its own rules. Each quantifier, such as
“every” and “some,” also has its rules, too,
although Rips presupposes an input to the
program that captures the logical form of
premises (see Chapter 5 in this volume on
logic-based modeling). This section accord-
ingly focuses on Rips’s system for reasoning
with sentential connectives. It has rules to
introduce each connective into a proof, for
example:

A
B
A and B

where the proposition beneath the line sig-
nifies the conclusion. And the system has
rules to eliminate connectives, for example:

If A then B
A
B.
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Natural deduction can yield intuitive proofs,
and it was popular in logic texts, although
the so-called “tree” method supplanted it
(e.g., Jeffrey, 1981). Rips refers to the tree
method, which simulates the search for
counterexamples, but he considers it to be
psychologically implausible, because “the
tree method is based on a reductio ad absur-
dum strategy” (p. 75), that is, the assump-
tion for the sake of argument of the nega-
tion of the conclusion to be proved. In fact,
the tree method can be used to derive con-
clusions without using the reductio strategy
(see Jeffrey 1981, Chapter 2).

Natural deduction relies on suppositions,
which are sentences that are assumed for
the sake of argument and which must be
“discharged” if a derivation is to yield a con-
clusion. One way to discharge a supposition
is to make it explicit in a conditional conclu-
sion (conditional proof), and another way is
to show that it leads to a contradiction and
must therefore be false (reductio ad absur-
dum). An example is the following proof of
an inference in the form known as modus
tollens:

1. If the printer test was run then the
printer produced a document.

2. The printer did not produce a docu-

ment.

The printer test was run. (Supposition)

4. The printer produced a document.
(Modus ponens applied to 1 and 3)

w

At this point, a contradiction occurs be-
tween one of the premises and the most
recent conclusion. The rule of reductio ad
absurdum discharges the supposition by
negating it:

5. The printer test was not run.

Rips (1994) could have adopted a single rule
for modus tollens, but it is a more difficult
inference than modus ponens, so he assumes
that it depends on the chain of inferential
steps illustrated here. The main problems
in developing a formal system are to ensure
that it is computationally viable and that it
explains robust psychological findings. An

example of a computational difficulty is that
the rule for introducing “and” can run amok,
leading to such futile derivations as:

A

B

Aand B

A and (A and B)

A and (A and (A and B))

and so on ad infinitum. The rules that
are dangerous are those that introduce a
connective or a supposition. Programs in
artificial intelligence, however, can use a
rule in two ways: either to derive a step in a
forward chain leading from the premises to
the conclusion or to derive a step in a back-
ward chain leading from the conclusion to
the premises. In a backward chain, the effect
of a rule is to create subgoals, for example,
given the goal of proving a conclusion of the
form, A and B, the rule for “and” creates a
subgoal to prove Aand a subgoal to prove B.
If the program satisfies these two subgoals,
then it has in effect proved the conjunction:
A and B, and it terminates there with no
further application of the rule. Rips (1994)
prevents rules from running amok by using
those that introduce connectives or suppo-
sitions only in backward chains. His system
therefore has three sorts of rules: those that
it uses forward, those that it uses backward,
and those that it uses in either direction.
Table 12.1 summarizes these rules in Rips’s
system.

The formal rules postulated in a psycho-
logical theory should be ones that naive
individuals recognize as “intuitively sound”
(Rips, 1994, p. 104). One worry about the
rules in Table 12.1 is whether they are all in-
tuitive. The rule for introducing “or,” for ex-
ample, was used appropriately by only 20%
of participants in Rips’s own study. Indeed,
this rule is not part of other formal theories
(e.g., Braine, 1978). What complicates mat-
ters is that Rips allows that individuals may
differ in the rules they possess, they may
learn new rules, and they may even use non-
standard rules that lead them to conclusions
not sanctioned by classical logic (Rips, 1994,
p. 103).
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Table 12.1: The forward, backward, and bidirectional rules in Rips’s

(1994) system

Forward rules

IF P THEN Q* IF P OR Q THEN R*
P P

Q R

P AND Q* NOT (P AND Q)*

P (NOT P) OR (NOT Q)
P OR Q*

NOT P NOT (POR Q

Q NOTP

PORQ

IF P THEN R

IF Q THEN R NOT NOT P*

R P

Backward rules

+P +NOT P

Q. Q AND (NOT Q)
IF P THEN Q P

P

Q P

PAND Q PORQ

PORQ NOT (P OR Q)

+P (NOT P) AND (NOT Q)
R

+Q

R

R

IFP AND Q THEN R
P

Q
R

NOT (P AND QJ*
P
NOT Q

+P

Q AND (NOT Q)
NOTP

* Signifies that a rule can also be used backward. Rules, such as the one eliminating
AND, are shown leading to the conclusion P; other versions of such rules yield
the conclusion Q. Plus sign (+] designates a supposition and colon (:) designates

a subsequent derivation.

A major problem for systems implement-
ing proofs is to embody an efficient method
of searching for the correct sequence of in-
ferential steps. The process is computation-
ally intractable, and the space of possible
sequences of inferential steps grows very
rapidly (Cook, 1971). Rips’s system uses a

fixed deterministic search procedure in eval-
uating an inference with a given conclu-
sion. Tt tries each of its applicable forward
rules in a breadth-first search until they yield
no new conclusions. It checks whether the
conclusion is among the results. If not, it
tries to work backward from the conclusion,
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pursuing a chain of inference depth first
until it finds the sentences that satisfy the
subgoals or until it has run out of rules to
apply (Rips, 1994, p. 105). Either it suc-
ceeds in deriving the conclusion or else it re-
turns to an earlier choice point in the chain
and tries to satisfy an alternative subgoal. If
all the subgoals fail, it gives up. However,
Rips’s system is incomplete, that is, there
are valid inferences that it cannot prove.
As Barwise (1993, p. 338) comments: “The
‘search till you're exhausted’ strategy gives
one at best an educated, correct guess that
something does not follow.” In other words,
when Rips’s system fails to find a proof, it
may do so because an inference is invalid or
else because it is valid but the incomplete
rules fail to yield its proof.

Rips’s system constrains the use of suppo-
sitions. They can be made only in a backward
chain of inference from a given conclusion,
so reasoners can use suppositions only when
there is a given conclusion or they can some-
how guess a conclusion. In everyday life, rea-
soners are not constrained to making suppo-
sitions only when they have a conclusion in
mind. “Suppose everyone suddenly became
dyslexic,” they say to themselves, and then
they follow up the consequences to an unex-
pected conclusion, for example, the sale of
dictionaries would decline. In an earlier ac-
count, Rips (1989) allowed suppositions to
occur in forward chains of reasoning. But, in
that case, how can they be prevented from
running amok? One possibility is to distin-
guish between the strategies that reasoners
adopt and the lower level mechanisms that
sanction inferential steps. One strategy is to
make a supposition, but the strategic ma-
chinery must keep the lower level mecha-
nisms in check to prevent them from losing
track of the purpose of the exercise. Indeed,
human reasoners develop a variety of strate-
gies for sentential reasoning, and they use
suppositions in ways not always sanctioned
by Rips’s theory (van der Henst, Yang, &
Johnson-Laird, 2002).

Braine and colleagues have described a se-
ries of theories based on natural deduction
(see, e.g., Braine, 1978; Braine & O’Brien,
1998). Their rules differ from Rips’s rules in

two main ways. First, “and” and “or” can ap-
ply to any number of propositions, so they
formulate the following rule to introduce
((and”:

PP . Py
P] and Pz . and Pn.

Second, they do not distinguish between for-
ward and backward rules. Instead, they try
to build the effects of dangerous rules, such
as: P; therefore, P or Q, into other rules.
Hence, they have a rule of the form: If Py or
Py, ...or P, then Q; Py; therefore, Q. Their
idea is to obviate the need for the rule in-
troducing disjunction. Like Rips, however,
they appear to postulate a single determin-
istic search strategy in which individuals ap-
ply simple rules before they apply rules that
make suppositions. A problem that both
Rips and Braine share is that it is often not
obvious what conclusion, if any, their the-
ories predict that individuals should draw
spontaneously from a set of premises. At this
point, the first author should declare an in-
terest. At one time, he was a proponent of
formal rules of inference (see Johnson-Laird,
1975), but, as the next section illustrates, he
has now come to believe that the human in-
ference engine relies, not on form, but on
content.

3. The Simulation of Spatial
Reasoning Using Mental Models

The theory of mental models postulates that
when individuals understand discourse, they
construct models of the possibilities consis-
tent with the discourse (e.g., Johnson-Laird
& Byrne, 1991; Johnson-Laird, 2006). Each
mental model represents a possibility. A fre-
quent misunderstanding is that mental mod-
els are images. In fact, they are more akin
to three-dimensional models of the world
of the sort that underlie the phenomena of
mental rotation (Metzler & Shepard 1982).
Because each model represents a possibility,
a conclusion is necessary if it holds in all the
models of the premises, it is possible if it
holds in at least one model of the premises,
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and it is probable if it holds in most of the
models of the premises given that the mod-
els are equiprobable. The theory accordingly
embraces deductions, reasoning about pos-
sibilities, and probabilistic reasoning, at least
of the sort that depends on the various ways
in which events can occur {Johnson-Laird
et al., 1999).

The first mental model theory was for
simple inferences based on quantifiers, and
programs have simulated various versions
of this theory (see Bucciarelli & Johnson-
Laird, 1999, for a review). Polk and Newell
(1995) simulated a model theory in which
counterexamples played no role, but more
recent evidence implies that human rea-
soners do make use of them (Bucciarelli
& Johnson-Laird, 1999; Johnson-Laird &
Hasson, 2003). Bara, Bucciarelli, and Lom-
bardo (2001) developed a program that sim-
ulated both sentential and quantified rea-
soning in a single model-based program. In
contrast, Johnson-Laird has written a series
of small-scale programs that simulate vari-
ous sorts of reasoning. The general design of
these programs is the same. Each program
has a lexicon that specifies the meanings of
the key words in the input, which, depend-
ing on the domain, may be sentential con-
nectives, quantifiers, causal verbs, deontic
verbs, relational terms, or nouns referring
to objects. The program also has a gram-
mar of the relevant fragment of English.
In many cases, this fragment is infinite in
size because the grammar contains recursive
rules. Such a grammar is illustrated in the
next section. Associated with each gram-
matical rule is a function that carries out
the corresponding semantic interpretation.
The parser is a “shift-and-reduce” one famil-
iar in the design of compilers (see, e.g., Aho
& Ullman, 1972). It constructs a represen-
tation of the meaning of each sentence as it
uses the grammar to parse the sentence. The
program accordingly implements a “compo-
sitional” semantics (Montague, 1974), that
is, the meanings of the words in a sen-
tence are composed to yield the meaning of
the sentence from its grammatical structure,
The resulting meaning can then be used to
update the model, or models, of the dis-

course so far, which represent the context
of each sentence. The present section illus-
trates how such a system works in a program
for spatial reasoning.

The program simulates three-dimen-
sional spatial reasoning based on mental
models (Byrne & Johnson-Laird, 1989). The
input to the program is a description with,
or without, a given conclusion. There can be
any number of premises, and they can de-
scribe complex three-dimensional relations.
But a simple inference best shows how the
program works:

The triangle is to the right of the circle.

The circle is to the right of the diamond.

Therefore, the triangle is to the right of
the diamond.

The program composes a representation of
the meaning of the first premise, which it
uses to build a model. It uses the meaning
of the circle to insert a token representing
the circle into a minimal three-dimensional
spatial model:

The meaning of to the right of specifies that
the model-building system scans in a right-
ward direction from the circle, so the pro-
gram increments the left-to-right axis from
the circle while holding constant the values
on the other two axes (up-and-down and
front-and-back). It uses the meaning of the
triangle to insert a representation of the tri-
angle into an empty location in the model:

o A

The left-to-right axis in this diagram corre-
sponds to the left-to-right spatial axis of the
model.

The program can search for referents in
its spatial models. Hence, given the second
premise:

The circle is to the right of the diamond

it discovers that the circle is already repre-
sented in its current model of the premises.
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Table 12.2: Seven procedures for reasoning using models

S Ut AN~

. Start a new model. The procedure inserts a new referent into the model according to a premise.

. Update a model with a new referent in relation to an existing referent.

. Update a model with a new property or relation.

. Join two separate models into one according to a relation between referents in them.

. Verify whether a proposition is true or false in models.

Search for a counterexample to refute a proposition. If the search fails, then the proposition follows

validly from the previous propositions in the description.
7. Search for an example to make a proposition true, If the search fails, then the proposition is

inconsistent with the previous propositions.

It uses the meaning of the sentence to up-
date this model. It therefore inserts a repre-
sentation of the diamond into an appropriate
position in the model:

<& o A

With the first premise, human reasoners can
scan from the circle in the direction that
the relation specifies to find a location for
the triangle. But, with the second premise,
this natural procedure is not feasible, be-
cause the subject of the sentence is already
in the model. The program therefore scans
in the opposite direction to the one that the
relation specifies — from the circle to a loca-
tion for the diamond. This task ought to be a
little bit harder, and psychological evidence
shows that it is (e.g., Oberauer & Wilhelm,
2000). If a premise refers to nothing in the
current model, then the program constructs
a new model. Later, given an appropriate
premise, it can integrate the two separate
models into a single model. This case also
adds to the difficulty of human reasoning.

Given the putative conclusion in the
example:

The triangle is to the right of the diamond

the program discovers that both referents
are already represented in its current model.
It checks whether the appropriate relation
holds between them. It scans in a rightward
direction from the diamond until it finds the
triangle. The relation holds. Next, it checks
whether any other model of the premises
is a counterexample to the conclusion. It

finds none, so it declares that the inference
is valid. In case a conclusion does not hold
in the current model, the program checks
whether any other model of the previous
premises allows the relation to hold. If not,
the program declares that the proposition
is inconsistent with what has gone before.
Table 12.2 summarizes the main procedures
used in the program. If the human inferen-
tial system uses models, it needs such pro-
cedures, too.

In formal systems, the previous inference
can be proved only if an additional premise
specifies the transitivity of “to the right of”:

For any x, y, and z, if x is to the right of
y, and y is to the right of z, then x is to
the right of z.

This premise functions as an axiom for any
inference concerning the relation, and for
obvious reasons, logicians refer to such ax-
ioms as meaning postulates. Proof theory in
logic and formal rule theories in psychology
need meaning postulates to allow deduc-
tions whose validity depends on the mean-
ings of relations. In contrast, as the pro-
gram shows, the model theory does not need
meaning postulates, because the validity of
inferences emerges from the meanings of re-
lations, which specify the direction in which
to scan models, and from the procedures
that construct models and search for coun-
terexamples.

One point is easy to overlook. The pro-
gram’s search for counterexamples works
because it has access to the representations
of the meanings of the premises. Without
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these representations, if the program were
to change a model, it would have no way to
check whether the result was still a model
of the premises. Any inferential system that
constructs alternative models therefore
needs an independent record of the pre-
mises. It must either have a memory for their
meanings, or be able to return to each pre-
mise to re-interpret it.

The strategy embodied in the spatial rea-
soning program is to construct a single model
at a time. When a description is consistent
with more than one layout, the program
builds whichever model requires the least
work. An alternative strategy, which is im-
plemented in a program for reasoning about
temporal relations, is to try to build all the
different possible models. Still another strat-
egy is to represent the alternative possibili-
ties within a single model using a way to in-
dicate the uncertain positions of entities in
the model. Human reasoners can probably
develop any of these strategies, depending
on the particulars of the problems that they
tackle (see, e.g., Carreiras & Santamaria,
1997; Jahn, Knauff, & Johnson-Laird, 2007;
Schaeken, Johnson-Laird, & d'Ydewalle,
1996a, 1996b; Vandierendonck, Dierckx, &
De Vooght, 2004).

The evidence corroborates the use of
models in spatial reasoning. Participants in
experiments report that they imagine lay-
outs. They often make gestures with their
hands that suggest they have a spatial model
in mind. Likewise, if they have paper and
pencil, they draw diagrams. Yet, such evi-
dence does not rule out the possibility that
deep down, the unconscious inferential pro-
cesses are guided by form rather than con-
tent. Several experiments, however, provide
crucial evidence supporting the model the-
ory. One experiment used descriptions of
two-dimensional spatial layouts of house-
hold objects and showed that inferences that
depend on a single model are easier than
those that depend on multiple models. Yet,
the one-model problems called for longer
formal proofs than the multiple-model
problems (Byrne & Johnson-Laird, 1989).

A recent study demonstrated a still
greater difficulty for meaning postulates

(Goodwin & Johnson-Laird, 2005). It ex-

amined such inferences as:

Alice is a blood relative of Brian.
Brian is a blood relative of Charlie.
What follows?

The participants tended to infer that Alice
is a blood relative of Charlie. They presum-
ably thought of a set of siblings or a line
of descendants. Yet, there are counterex-
amples to the conclusion. Suppose, for in-
stance, that Alice is Brian's mother, and
Charlie is his father. Alice is related to Brian,
and he is related to Charlie, but his mother
and father are probably not blood relatives.
These “pseudo-transitive” inferences depend
on relations that are neither transitive nor
intransitive, but that yield models of typi-
cal situations in which a transitive conclu-
sion holds. The model theory therefore pre-
dicts that the way to block these inferences
is to get the participants to search harder for
counterexamples. Hence, when the prob-
lem about “blood relatives” was prefaced
with the clue that people can be related
either by blood or by marriage, the pro-
portion of transitive inferences was reduced
reliably.

If human reasoners use formal rules to
reason, then they need meaning postulates
that capture the transitivity of relations. So
what sorts of relations should be tagged as
transitive? The reader might suppose that
good candidates would be comparative rela-
tions, such as “taller than.” But, consider this
problem:

Cate is taller than Belle.
Belle was taller than Alice.
Who is tallest?

The change in tense no longer guarantees
transitivity, and again individuals are much
less inclined to draw the transitive con-
clusion (Goodwin & Johnson-Laird, 2005).
It follows that no comparative terms, not
even “taller than,” can be classified as transi-
tive in all cases. In other words, the logical
form of an assertion depends on its signifi-
cance, which in turn depends on its tense, its
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context, and general knowledge. The obvi-
ous route to discover its correct logical form
is to use this information to construct mod-
els of the situations to which it refers. But
once one has constructed such models, they
can be used directly in reasoning: There is
no need to recover the assertion’s logical
form. Hence, if the system builds models,
then it no longer needs meaning postulates.
The models either support a transitive con-
clusion or not.

4. The Simulation of Sentential
Reasoning Using Mental Models

Sentential reasoning hinges on negation
and such connectives as “if,” “or,” and
“and,” which interconnect atomic proposi-
tions, that is, those that do not contain nega-
tion or connectives. Section 2 illustrated
how sentential reasoning could be simulated
using formal rules. Connectives have ideal-
ized meanings in logic, so that the truth-
values of sentences formed with them de-
pend solely on the truth-values of those
atomic propositions or their negations that
they interconnect. For example, an exclu-
sive disjunction of the form: A or else B but
not both, is true if one proposition is true and
the other false, and in any other case the dis-
junction is false. Model theory in logic cap-
tures this analysis in a truth-table, as shown
in Table 12.3. Each row in the table repre-
sents a different possibility, for example, the
first row represents the case in which both A
and B are true, and it shows that the disjunc-
tion is false in this case. Truth-tables can be
used to determine the validity of sentential
inferences: An inference is valid if any row in
its truth-table in which the premises are true
is also one in which its conclusion is true.
However, truth-tables double in size with
each additional atomic proposition in an in-
ference, whereas the psychological difficulty
of inferences does not increase at anything
like the same rate (Osherson, 1974-1976).

The theory of mental models is based on
a fundamental assumption that obviates this
problem and that is known as the principle
of truth:

Table 12.3: A truth-table for an exclusive
disjunction

Aorelse B
A B but not both
True True False
True False True
False True True
False False False

Mental models represent only what is
true, that is, they represent only true
possibilities and within them they rep-
resent only those atomic propositions
or their negations in the premises that
are true.

As an example, consider an exclusive dis-
junction, such as:

The machine does not work or else the
setting is high, but not both.

The principle of truth implies that individ-
uals envisage only the two true possibilities.
They therefore construct the following two
mental models shown in the rows of the fol-
lowing diagram, where “—” designates nega-
tion:

— Machine works
Setting high

The principle of truth has a further, less ob-
vious, consequence. When individuals think
about the first possibility, they tend to ne-
glect the fact that it is false that the setting is
high in this case. Likewise, when they think
about the second possibility, they tend to
neglect the fact that it is false that the ma-
chine does not work in this case, that is, the
machine does work. The relation between
these mental models and the truth-table for
an exclusive disjunction is transparent (see
Table 12.3). The mental models correspond
to those rows in the table in which the dis-
junction is true, and they represent only
those literals in the premises that are true in
the row, where a literal is an atomic propo-
sition or its negation.
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The principle of truth postulates that in-
dividuals normally represent what is true,
but not what is false. It does not imply,
however, that they never represent falsity.
Indeed, the theory proposes that they rep-
resent what is false in “mental footnotes,”
but that these footnotes are ephemeral. Peo-
ple tend to forget them. But as long as they
are remembered, they can be used to con-
struct fully explicit models, which represent
the true possibilities in a fully explicit way.
Hence, the footnotes about what is false al-
low reasoners to flesh out the models of the
proposition:

The machine does not work or else the
setting is high, but not both.

to make them fully explicit:

— Machine works
Machine works

— Setting high
Setting high

where a true negation is used to represent a
false affirmative proposition. This represen-
tation of negation makes models more ab-
stract than images, because you cannot form
an image of negation. Even if you imagine,
say, a large red cross superimposed on what-
ever is to be negated, nothing in the image
alone captures the meaning of negation.

The meanings of conditional proposi-
tions, such as:

If the machine works then the setting is

high

are a matter of controversy. Their meanings
depend both on context and on the semantic
relations, if any, between their two clauses —
the antecedent clause following “if” and
the consequent clause following “then” (see
Johnson-Laird & Byrne, 2002). The core log-
ical meaning of a conditional is independent
of its context and of the meanings and
referents of its antecedent and consequent
clauses. It yields two mental models. One
mental model represents the salient possi-
bility in which both the antecedent and the
consequent are true. The other model is
wholly implicit, that is, it has no explicit

content, but allows for possibilities in which
the antecedent of the conditional is false.
The mental models for the preceding condi-
tional are accordingly:

Machine works Setting high

where the ellipsis denotes the implicit
model, and a mental footnote indicates the
falsity of the antecedent in the implicit pos-
sibilities. A biconditional, such as:

The machine works if and only if the set-
ting is high

has exactly the same mental models, but a
footnote indicates that both the antecedent
and the consequent are false in the possibil-
ities that the implicit model represents. It
is the implicit model that distinguishes the
models of a conditional from the model of a
conjunction, such as:

The machine works and the setting is high

which has only a single model:

Machine works Setting high

The fully explicit models of the conditional
can be constructed from the mental mod-
els and the footnote on the implicit model.
They are as follows:

Setting high
Setting high
— Setting high

Machine works
— Machine works
— Machine works

Likewise, the fully explicit models of the
biconditional are:

Setting high
= Setting high

Machine works
— Machine works

One point bears emphasis: These diagrams
refer to mental models, but mental models
themselves represent entities in the world —
they are not merely strings of words. Ta-
ble 12.4 summarizes the mental models and
the fully explicit models of sentences formed
from the main sentential connectives in their
“logical” senses.
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Table 12.4: The mental models and fully
explicit models for sentences based on the
main sentential connectives

Mental Fully explicit

Connective models models
A and B: A B A B
A or else B: A A -B
B - A B
A or B, or both: A A -B
B - A B
A B A B
If A then B: A A B
-A B
- A - B
If and only if A B A B
A then B: -A —B
“=” denotes negation and “. .. ” denotes a wholly

implicit model. Each line represents a model of
a possibility.

How are sentential inferences made with
mental models? A computer program sim-
ulates the process (see Johnson-Laird &
Byrne, 1991). The program takes as input
a set of sentences. It is sensitive to the oc-
currence of the following sentential con-
nectives: and (conjunction), or (inclusive
disjunction), ore (exclusive disjunction), if
(conditional), iff (biconditional), and then,
which serves only a syntactic role.

The program has a grammar that can be
summarized as follows, where the items in
parentheses may, or may not, occur in a sen-
tence, and comma is a syntactic element:

sentence = (negation) variable
= negation sentence
= (comma) sentence connective
sentence
= (comma) if sentence then
sentence.

These four rules allow for different sorts of
sentences, but because “sentence” occurs on
both the left- and right-hand sides of some
rules, the rules can be used recursively to

analyze complex sentences, such as:
if not A and B then, C or D

where A, B, C, and D are all variables. Not
A, for example, is analyzed as a sentence ac-
cording to the first rule in the set shown pre-
viously, and C or D is analyzed as a sentence
according to the third rule. Each of the rules
in the grammar has an associated function
for carrying out the appropriate semantics,
so that the parser controls the process of in-
terpretation, too.

The program’s process of inference can
be illustrated by the following example:

A ore B.
Not A.
What follows?

The exclusive disjunction symbolized by
“ore” yields the mental models:

A
B

The categorical premise yields the model:
—A

This model eliminates the first model of
the disjunction because they cannot both
be true. But it is consistent with the second
model of the disjunction. Their conjunction:

-A B
yields the conclusion:
B.

This conclusion is valid, because it holds
in all the models — in this case, the single
model — consistent with the premises.

The principles for conjoining mental
models seem straightforward, but contain
some subtleties. If one model represents a
proposition, A, among others, and another
model represents its negation, — A, their con-
junction yields the empty (or null) model
that represents contradictions. The previous
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example illustrated this principle. But what
happens if the two models to be conjoined
contain nothing in common? An exam-
ple illustrating this case occurs with these
premises:

If C then D.
E ore C.

The reader is invited to consider what
possibilities are compatible with the two
premises. Most individuals think that there
are two:

C D
E

The mental models of the first premise are:

C D

and the mental models of the second
premise are:

E
C

One possibility according to the second
premise is E, so the program conjoins:

C D and E

C occurs in the set of models of the disjunc-
tion from which E is drawn, so the interpre-
tative system takes the absence of C in the
model of E to mean not C:

C D and E - C

Because there is now a contradiction —
one model contains C and the other its nega-
tion — the result is the null model. The pro-
gram next conjoins the pair:

C D and C

D does not occur elsewhere in the set of
models of the disjunction containing C, so
the two models are compatible with one

another. Their conjunction yields:
C D

The program now constructs conjunctions
with the implicit model of the conditional.
The conjunction:

.and E

yields E, because E does not occur in the
models of the conditional containing the im-
plicit model. The final conjunction:

.and C

yields the null model, because C occurs in
the models of the conditional, so its absence
in the implicit model is treated as akin to
its negation. The mental models of the con-
junction of the premises are accordingly:

C D
E

The null models are not shown because they
do not represent possibilities. The two mod-
els of possibilities yield the valid conclusion:

Cand D, ore E.

Table 12.5 summarizes the mechanisms for
forming conjunctions of pairs of models.
These principles apply both to the combi-
nation of sets of models, as in the preceding
disjunctive inference, but they also apply to
the combination of possible individuals in
models of quantified propositions (Johnson-
Laird, 2006).

The same mechanisms apply to the con-
junction of fully explicit models except
that the first mechanism in the table does
not come into play. Here are the previous
premises again:

If C then D.
E ore C.

A mechanism that uses mental footnotes can
flesh our mental models into fully explicit
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Table 12.5: The mechanisms for forming conjunctions of pairs of mental models and pairs

of fully explicit models

1. If one model represents a proposition, A, which is not represented in the second model, then
if A occurs in at least one of the models from which the second model is drawn, then its absence
in the second model is treated as its negation (and mechanism 2 applies); otherwise, its absence
is treated as its affirmation (and mechanism 3 applies). This mechanism applies only to mental

models.

2. The conjunction of a pair of models containing respectively a proposition and its negation vield

the null model, e.g.:
A B and — A B yieldnil

3. The conjunction of a pair of models that are not contradictory yields a model representing all the

propositions in the models, e.g.:

A BandB CyieldA B C

4. The conjunction of a null model with any model yields the null model, e.g.:

A B andnil yield nil.

models. The fully explicit models of the con-
ditional and the disjunction (see Table 12.4)
are, respectively:

C D E =C
-C D —-E C
-C =D

There are six pair-wise conjunctions, but
three of them are contradictions yielding the
null model. The remaining pairs yield the
following models:

C D =-E
-C D E
-C -D E

The same conclusion follows as before:
Cand D, ore E.

But reasoners who rely on mental models
will fail to think of the second of the these
three possibilities.

A problem for formal rule theories is to
find the right sequence of inferential steps
to prove that a conclusion follows from the
premises. The model-based program does
not have a search problem, because it merely
updates its set of models for each new
premise. As the number of distinct atomic

propositions in the premises increases, the
number of models tends to increase, but it
does so much less rapidly than the number
of rows in a truth-table. Nevertheless, the
intractability of sentential reasoning does
catch up with the program and with human
reasoners as the number of distinct atoms in
a problem increases.

The principles for constructing conjunc-
tions of mental models seem innocuous —
just a slight variation on those for fully
explicit models, which yield a complete ac-
count of sentential reasoning. After the pro-
gram was written, however, it was given a
test of the following sort of premises based
on a hand of cards:

If there is a king then there is an ace ore if
there is not a king then there is an ace.
There is a king.

When the program reasoned using mental
models, it returned a single mental model:

King Ace

But when it reasoned using fully explicit

models, it returned the fully explicit model:
King — Ace

Did it really follow that there is not an ace?
This result was so bizarre that Johnson-Laird
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spent half a day searching for a bug in his
program, but at last discovered it in his own
mind. The force of the exclusive disjunc-
tion in the first premise is that one of the
two conditionals is false, and the falsity of
either conditional implies that there is not
an ace, so the fully explicit models did yield
a valid conclusion. Given an inclusive inter-
pretation of the disjunction, or a bicondi-
tional interpretation of the conditionals, or
both, mental models still yield the (invalid)
conclusion that there is an ace, whereas fully
explicit models do not. Nothing definite fol-
lows from the premises with these interpre-
tations: There may, or may not, be an ace.
Yet, as experiments showed (Johnson-Laird
& Savary, 1999), nearly everyone succumbs
to the illusion that there is an ace. Johnson-
Laird modified the program so that it would
search for illusions by generating a vast num-
ber of premises and comparing their mental
models with their fully explicit models. Sub-
sequent experiments corroborated the oc-
currence of various sorts of illusory inference
in sentential reasoning (Walsh & Johnson-
Laird, 2004}, modal reasoning about what is
possible (Goldvarg & Johnson-Laird, 2000),
deontic reasoning about what is permissible
(Bucciarelli & Johnson-Laird, 2005), reason-
ing about probabilities (Johnson-Laird et al.,
1999), and reasoning with quantifiers (Yang
& Johnson-Laird, 2000a, 2000b). The the-
ories based on formal rules did not predict
the illusory inferences, and they have no way
of postdicting them unless they posit invalid
rules of inference. But in that case, they then
run the risk of inconsistency. llusory infer-
ences are therefore a crucial corroboration of
the use of mental models in reasoning, and
their discovery was a result of a simulation
of the theory.

5. Concepts, Models, and
Minimization

Because infinitely many valid conclusions
follow from any set of premises, computer
programs for proving theorems do not nor-
mally draw conclusions, but instead eval-
uate given conclusions (see, e.g., Pelletier,

1986). Human reasoners, however, exer-
cise real intelligence because they can draw
conclusions for themselves. They abide by
two principal constraints (Johnson-Laird &
Byrne, 1991). First, they do not normally
throw semantic information away by adding
disjunctive alternatives. Second, they aim
for conclusions that re-express the seman-
tic information in the premises parsimo-
niously. They never, for example, draw a
conclusion that merely forms a conjunction
of all the premises. Of course, human per-
formance degrades with complex problems,
but the goal of parsimony provides a ratio-
nal solution to the problem of which con-
clusions intelligent programs should draw.
They should express all the semantic infor-
mation in the premises in a minimal descrip-
tion. The logic of negation, conjunction, and
disjunction is often referred to as “Boolean,”
after the logician George Boole. Minimiza-
tion accordingly has a two-fold importance.
On the one hand, it is equivalent to the mini-
mization of electronic circuits made up from
Boolean units, which are powerful enough
for the central processing units of comput-
ers (Brayton et al, 1984). On the other
hand, cognitive scientists have argued that
simplicity is a cognitive universal (Chater
& Vitanyi, 2003) and that the difficulty of
the human learning of Boolean concepts de-
pends on the length of their minimal de-
scriptions (Feldman, 2000).

A simple algorithm to find a minimal
description of a set of possibilities checks
all possible descriptions, gradually increas-
ing the number of literals and connectives
in them, until it discovers one that describes
the set. The problem is computationally in-
tractable, and this method is grossly inef-
ficient. Hence, various other methods ex-
ist (e.g., Quine, 1955}, but, because of the
intractability of the problem, circuit de-
signers use approximations to minimal cir-
cuits (Brayton et al., 1984). Another version
of the program described in the previous
section uses the notation of the sentential
calculus: & (conjunction), v (inclusive dis-
junction), V (exclusive disjunction), —
(conditional), and <> (biconditional). It finds
minimal descriptions using fully explicit
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Table 12.6: The possibilities compatible with four Boolean concepts, putatively
minimal descriptions of them, and true minimal descriptions discovered by the

program using fully explicit models

1. a —-b C

—a b -c¢

—a =b C

—a —b =c
Putative minimal description:

The program’s description:
V. a —b =c¢

—a b -c¢

—a =b c

—-a —=b =c
Putative minimal description:

The program’s description:

V. a b c
—a b -c
—-a =b c
—-a =-b =c
Putative minimal description:
The program’s description:  a < (b & ¢)
VI a b —-c
a =b c
—a b c
—a =b =c

(—a& = (b&c)) v (a&(~b&d)

(—ava &(—bv—-q)

(a&-(b&))v(a&(~b&—c)

(c>(-a&—=b))&(a—>—-Db)

(ma&=(b&J)v(a&(b&d)

Putative minimal description: (& (b & ) v (b & —=c))v—-a& ((-b& =) v(b&))

The program’s description: (a2 Vb) < ¢

The Roman numbers are the labels of the problems in Shepard et al. (1961).

models. Table 12.6 presents four Boolean
concepts, first studied by Shepard et al.
(1961), with Feldman’s (2000} putative
minimal descriptions and, as the program
revealed, actual minimal descriptions. Shep-
ard et al. (1961) found that concepts III,
IV, and V were roughly equally difficult for
their participants to learn but VI was reliably
harder, so Feldman concluded that subjec-
tive difficulty is well predicted by his puta-
tive descriptions. But, as the table shows,
true minimal length does not correlate
with psychological complexity. In fairness
to Feldman, he used only approximations to
minimal descriptions, and he restricted his
vocabulary to negation, conjunction, and in-

clusive disjunction on the grounds that these
are the traditional Boolean primitives. How-
ever, Goodwin (2006) has shown that when
concepts concern patterns of switch posi-
tions that cause a light to come on, naive
individuals neither restrict their vocabulary
to these primitives nor are they able to dis-
cover minimal descriptions (less than 4% of
their descriptions were minimal). Parsimo-
nious descriptions are hard to find, and they
may not relate to the psychological difficulty
of learning concepts.

When the program builds models from
premises, it multiplies them together to in-
terpret conjunctions. Hence, to describe a
given set of models, it works backward,
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dividing the set up into subsets of models
that can be multiplied together to get back
to the original set. The process of division
proceeds recursively until it reaches models
that each contain only two items. Pairs of
items are easy to describe, because the stan-
dard connectives do the job. Consider, for
example, the following description (of con-
cept V in Table 12.6):

(ma& - b&))v(a&(b&)).

It yields these fully explicit models of possi-
bilities:

a b C
—a b —-c
—a —b c

—a =b =c

The reader may notice, as the program does,
that all four possible combinations of b and
¢, and their negations, occur in these possi-
bilities. The program therefore recodes the
models as:

a
—a =X

where the value of the variable X is: b &
¢. The program compares these two models
with each of its connectives and finds the de-
scription: a <> X. It plugs in the description
of X to yield the overall minimal descrip-
tion: a <> (b & ).

There are six sorts of decomposition of
a set of models depending on whether or
not any pairs of propositions or variables
occur in all four possible contingencies and
how the other elements relate to them. Any
procedure for minimization is necessarily in-
tractable, but the program is more efficient
than some algorithms. Table 12.7 presents
some typical examples of its performance
with examples from logic textbooks. Each
example shows the input, and the program’s
output, which in each of these cases are both
an evaluation of the given conclusion (the
last assertion in the input) and a minimal
valid conclusion expressing all the informa-
tion in the premises.

6. General Discussion: The Nature
of Human Deductive Reasoning

Does the engine of inference rely on form or
content? Indeed, might it rely on entirely
different principles? For example, Shastri
and Ajjanagadde {1993) describe a “connec-
tionist” system of simulating a network of
idealized nerve cells capable of simple in-
ferences (see also Chapter 2 in this volume
on connectionist models). Likewise, in a se-
ries of striking studies, Qaksford and Chater
(e.g., 1998) have argued that logic is irrel-
evant to our everyday reasoning and to our
deductions in the psychological laboratory.
The right criterion to assess them is the
probability calculus, and they even claim
that this calculus describes our deductions.
Our reasoning, they say, is a rational adap-
tation to the world, and it depends on a
tractable process. Because the probability
calculus is not tractable, they argue that we
use heuristics rather than the calculus itself.
Yet, they reject Tversky and Kahneman'’s
(e.g., 1973) findings that heuristics can lead
to into errors in probabilistic thinking. They
advocate instead different heuristics, which
they claim are rational. Their theory is in-
genious, and, granted certain assumptions
about the interpretations of premises, it
gives a good account of three sorts of rea-
soning: performance in a hypothesis-testing
task, reasoning from simple quantified as-
sertions, and simple inferences from condi-
tional assertions (Oaksford & Chater, 1998).
Yet, serious difficulties exist for the theses of
rationality, tractability, and probability: Any
heuristic process that seeks to circumvent
the intractability of sentential reasoning is
bound to lead to systematic error, for exam-
ple, the illusory inferences described earlier.
And recent empirical studies have shown
that the probabilistic theory often makes un-
satisfactory predictions (e.g., Espino et al.,
2005; Schroyens, Schaeken, & d'Ydewalle,
2001). But the decisive issue is that the
preservation of truth in a valid deduction
transcends validity in the probability calcu-
lus (Rips, 2002).

Many observations suggest that human
deductive reasoning does not rely on form.
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Table 12.7: Some examples of the program using fully explicit models

avb
a-—c
b—d

cvd

1. Input:

Output: This premise follows from those that preceded it: c v d

Premises are equivalent to: (a — ¢} & (b — d) & (a v b))

wv(p—i)
i—(cvs)
s —u
—c&—-u
—w

2. Input:

Output: This premise follows from those that preceded it: = w

Premises are equivalent to: " w & (mp & (mi& ([~ c & (s &~ u))])

(2> b) & (c > d)
b—oe)&(d—1)
—(e &)

a—>C

3. Input:

—a

Output: This premise follows from those that preceded it: = a.

Premises are equivalentto: = a & (b - e) & (e = =) & ((d = f) & (c — d))))

(v—> (s&[p&m)))
= (g~ (=1->-m))
S—r

(p—(c—2)

l— —c

C

4. Input;

Output: This premise follows from those that preceded it: — v.

Premises are equivalent to: = v& (~1& (c& {(p = 8 & (> ) & (m & g) - —1)))))

One observation is that theorists have yet
to devise an algorithm for recovering the
logical form of propositions. Another obser-
vation is that the inferential properties of
relations and connectives are impossible to
capture in a simple way. Reasoners use their
knowledge of meaning, reference, and the
world to modulate their interpretation of
these terms. Hence, no sentential connec-
tives in everyday language, such as “if” and
“or,” can be treated as they are in logic. For
example, the truth of a conjunction, such as,
“He fell off his bicycle and he broke his leg,”
depends on more than the truth of its two
clauses: The events must also be in the cor-

rect temporal order for the proposition to
be true. Likewise, a conditional, such as “If
she’s in Brazil then she is not in Rio,” has an
interpretation that blocks a modus tollens
inference (Johnson-Laird & Byrne, 2002),
whereas a counterfactual conditional, such
as “If she had been in Rio then she would
have been in Brazil,” facilitates the inference
(Byrne, 2005). The use of axioms to spec-
ify the logical properties of relations, such as
“taller than,” faces similar problems. Logical
properties depend on the proposition as a
whole and its context. Instead, as the sim-
ulation program in Section 3 showed, rea-
soners can use the meanings of propositions
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to construct appropriate models from which
logical consequences emerge. A more re-
cent simulation has shown how context, de-
pending both on the current models of the
discourse and on general knowledge, over-
rules the “logical” interpretations of connec-
tives (Johnson-Laird, Girotto, & Legrenzi,
2004).

Because human working memory is lim-
ited in capacity, human reasoners cannot
rely on truth-tables. Their mental mod-
els represent atomic propositions and their
negations only when they are true in a
possibility. The failure to represent what
is false seems innocuous. Indeed, for sev-
eral years, no one was aware of its seri-
ous consequences. However, the simulation
program implementing the theory revealed
for some inferences radical discrepancies
between mental models and fully explicit
models. These discrepancies predicted the
occurrence of illusory inferences, which sub-
sequent experiments corroborated. Some
commentators argue that human reasoning
depends on both formal rules and on men-
tal models, and that the evidence shows only
that sometimes human reasoners do not rely
on logic, not that they never use formal
rules. No conceivable evidence could ever
rule out the use of formal rules on at least
some occasions, but theoretical parsimony
suggests that in general, human reasoners
rely on mental models.

. Conclusions

If humans err so much, how can they be ra-
tional enough to invent logic and mathemat-
ics, and science and technology? At the heart
of human rationality are some simple princi-
ples that almost everyone recognizes: A con-
clusion must be the case if it holds in all the
possibilities compatible with the premises. It
does not follow from the premises if it runs
into a counterexample, that is, a possibil-
ity that is consistent with the premises, but
not with the conclusion. The foundation of
rationality is our knowledge of these princi-
ples, and they are embodied in the programs
simulating the theory of mental models.
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