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This article begins with an account of logic, and of how logicians formulate formal
rules of inference for the sentential calculus, which hinges on analogs of negation
and the connectives if, or, and and. It considers the various ways in which computer
scientists have written programs to prove the validity of inferences in this and other
domains. Finally, it outlines the principal psychological theories of how human
reasoners carry out deductions.  2009 John Wiley & Sons, Ltd. WIREs Cogn Sci 2010 1 8–17

Deductive reasoning is the mental process of
making inferences that are logical. It is just

one sort of reasoning. But, it is a central cognitive
process and a major component of intelligence, and
so tests of intelligence include problems in deductive
reasoning. Individuals of higher intelligence are more
accurate in making deductions,1 which are at the
core of rationality. You know, for instance, that if
your printer is to work then it has to have ink in
its cartridges, and suppose that you discover that
that there is no ink in its cartridges. You infer
that the printer would not work. This inference
has the important property of logical validity: if its
premises are true then its conclusion must be true
too. Logicians define a valid deduction as one whose
conclusion is true in every possibility in which all
its premises are true (Ref 2, p. 1). All able-minded
individuals recognize that certain inferences are valid
because there are no counterexamples to them, that
is, no possibilities in which the premises hold but
the conclusion does not. This idea underlies deductive
reasoning. And deductive reasoning in turn underlies
the development of all intellectual disciplines and our
ability to cope with daily life. The topic is studied in
logic, in artificial intelligence, and in cognitive science.
Hence, the aim of this interdisciplinary review is to
survey what these different disciplines have to say
about deduction, and to try to solve the mystery
of how individuals who know nothing of logic are
nevertheless able to reason deductively.

The plan of the article is straightforward. It starts
with logic, because logic began as a systematic attempt
to evaluate inferences as valid or invalid, and because
a knowledge of logic informs our understanding of
both computer programs for deduction and theories of
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human deduction. The article next reviews computer
systems for deductive reasoning. Its final section
considers human reasoning, and outlines the principal
attempts to make sense of it.

LOGIC
A test case throughout this article is sentential
deduction, which hinges on negation and the
connectives (in English): if, and, and or. A logical
calculus for sentential reasoning has three main
components.2 The first component is a grammar that
specifies all and only the well-formed sentences of
the language. The sentential calculus is not concerned
with an analysis of the internal structure of simple
atomic sentences, such as: ‘There is a circle’, which
it merely assigns to be the values of variables, such
as a, b, and c. Hence, a compound sentence, such
as ‘There is a circle and there is not a triangle’, is
represented as: a & ¬ b, where ‘&’ denotes logical
conjunction, ‘¬’ denotes negation, and ‘a’ and ‘b’ are
variables whose values are the appropriate atomic
sentences. In a simple version of the calculus, there
are just two other connectives: ‘v’, which denotes an
inclusive disjunction equivalent to: a or b or both, and
‘ →’, which denotes the closest analog in logic to the
conditional assertions of daily life. For example, ‘if
there is a circle then there is a triangle’ is represented
as: a → b. Conditionals in daily life can have many
interpretations,3 and so to avoid confusion logicians
refer to ‘ →’ as ‘material implication’.

The grammar of the sentential calculus is simple.
It has variables (a, b, c, etc.), negation (¬), three
connectives (&, v, and →), and three rules for forming
sentences:

sentence = variable

sentence = ¬ (sentence)

sentence = (sentence connective sentence)
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TABLE 1 Examples of ’natural deduction’ rules of inference of the
sort adopted in psychological theories based on formal logic.

Formal rules for introducing connectives:

A

B A

∴ A & B ∴ A v B

Formal rules for eliminating connectives:

A v B A → B

A & B ¬ A A

∴ B ∴ B ∴ B

Formal rules for introducing connectives, where ‘A |–B’ signifies that the
supposition of A for the sake of argument yields with other premises a proof
of B.)

This grammar specifies that each of the following
examples is a sentence in the logic, where brackets are
omitted to simplify matters:

a

¬b

(a → ¬ b) v ¬ (c & d)

The second component of the calculus is a
set of rules of inference that enable proofs to be
derived in a purely formal way. In fact, there are
many ways to couch such rules. One way that seems
intuitive is a so-called ‘natural deduction’ system4

that has rules for introducing connectives and rules
for eliminating them. For example, conjunction has a
rule that introduces ‘&’ by using it to combine any
two premises, which themselves may be compound:

A

B

Therefore, A & B

Another rule eliminates ‘&’ by drawing a conclusion
corresponding to one of the sentences that it conjoins:

A & B

Therefore, A

A similar rule allows B to be derived from A & B.
Table 1 illustrates these and other rules in a ‘natural
deduction’ system.

A proof in such a system starts with a set of
premises, and uses the rules to derive the conclusion.
Consider the inference:

If the printer works then it has ink in its cartridges.

It does not have ink in its cartridges.

Therefore, the printer does not work.

Its proof starts with the premises expressed in the
language of the sentential calculus:

1. p → i

2. ¬ i

It then proceeds as follows using the rules summarized
in Table 1:

3. Suppose p (a supposition can be introduced at
any point)

4. ∴ i (rule for eliminating →, lines 1 and 3)

5. ∴ i & not i (introduction of &, lines 4 and 2)

6. ∴ ¬ p (reductio ad absurdum, lines 3 and 5)

The final step is based on a rule known as
reductio ad absurdum, which stipulates that if a
supposition leads to a contradiction (as in line 5),
then one can deny the supposition.

The third component of a logic is its semantics.
Logicians assume that the truth or falsity of any
sentence in the sentential calculus depends on the
truth or falsity of its atomic propositions, i.e.,
those propositions that contain neither negation nor
sentential connectives. The meaning of negation is
simple: if a sentence A is true then ¬ A is false, and if
A is false then ¬ A is true. Likewise, the meaning of
conjunction is simple: if A is true and B is true, then A
& B is true; otherwise, it is false. Logicians often lay
out the meaning of a connective in a truth table, e.g.:

A B A and B
True True True
True False False
False True False
False False False

Each row in the table shows a possible combination of
truth values for the sentence A and for the sentence B,
and the resulting truth value of the conjunction, A &
B. The first row in the table, for instance, represents
the case where A is true and B is true, and so the
conjunction is true.

The meaning of disjunction is likewise obvious:
A v B is true provided that at least one of its two
sentences is true, and false otherwise. The meaning of
‘ →’ is defined in this way: A → B is true in any case
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except the one in which A is true and B is false. It
accordingly treats the conditional about the printer as
though it meant: if the printer works then it has ink
in its cartridges, and if it does not work then either
there is ink in its cartridges or there is not. In sum, the
semantics of the sentential calculus is truth functional,
i.e., the meaning of each logical term is a function that
takes truth values, true or false, as its input and that
outputs a single truth value.

The set of formal rules constitute a system
for proving that conclusions can be derived from
premises, and they are sensitive to the logical form
of the premises, which is specified by the grammar.
The formal rules of inference are rules for writing
new patterns of symbols given certain other patterns
of symbols, and the rules are sensitive to the form of
the symbols, not to their meaning. A formal system
accordingly operates like a computer program. When
a computer program plays a game of chess, for
example, the computer itself has no idea of what
chess is or of what it is doing. It merely slavishly
follows its program, operating on ‘bits’, which are
symbols made up from patterns of electricity, and
from time to time displaying symbols that the human
users of the program can interpret as moves on a chess
board. There is an intimate relation between computer
programs and proofs, and programs have been written
to prove theorems. The programming language,
PROLOG, is itself closely related to a logical calculus.

Formal rules make no reference to validity,
which is the province of the semantics: a valid
inference is one that has a true conclusion given
that its premises are true. We can check that an
inference is valid using a truth table to consider all
the possible assignments of truth values to the atomic
propositions in the premises in order to show that
when the premises are true, the conclusion is true
too. Logicians have proved that a natural deduction
system for the sentential calculus has the desirable
property that any inference that can be proved using
the formal rules is valid according to the semantics
(the calculus is ‘sound’), and the further desirable
property that any inference that is valid according
to the semantics is provable using the formal rules
(the calculus is ‘complete’). There is also a decision
procedure that for any inference determines in a finite
number of steps whether or not it is valid. The greatest
logical discovery of the twentieth century, however,
was Gödel’s proof of the incompleteness of any logic
powerful enough to express arithmetic, i.e., there are
truths of arithmetic that cannot be proved using any
consistent system of formal rules (see Ref 2, Chapter
7). Another major logical discovery concerned the
‘first-order predicate calculus’, a logic that combines

the sentential calculus with rules for reasoning about
the properties of individuals and relations among
them. No formal system for this calculus can yield
a decision procedure about the status of an inference.
If an inference is valid, a proof for it can always be
found in an exhaustive exploration of the possibilities.
But, if an inference is invalid, no guarantee exists that
a demonstration of its invalidity can be found.

ARTIFICIAL INTELLIGENCE AND
PROGRAMS FOR PROOF
The practicalities of computer programming call
for a decision about validity within a reasonable
amount of time. The sentential calculus, however,
is computationally intractable, that is, as the length
of the premises increases, so the time it takes to
discover a proof increases in an exponential way. Yet,
given a proof, the time to check that it is correct
increases only as some polynomial of the length of
the premises, e.g., n3, where n is the length of the
premises.5 So, if one could guess a proof, then the
time to check it would take only a polynomial of n.
The sentential calculus is accordingly NP-complete (N
for ‘nondeterministic’, which is jargon for ‘guessing’,
P for ‘polynomial’, and ‘complete’ because if someone
discovered a deterministic way to find sentential
proofs in polynomial time, a whole set of other
problems would also have polynomial time solutions.6

Some programs for proofs use natural deduction
systems.7 But, any sentential connective can be re-
expressed as a disjunction: A & B is equivalent to
¬(¬A v ¬ B), and A → B is equivalent to ¬A v B.
To try to cut down the search for a proof, early
programs used just a single rule of inference, the
so-called resolution rule8:

A v B

¬ B v C.

Therefore, A v C.

Yet, there is no way round the intractability of the
sentential calculus: the search at each step depends on
finding the appropriate pair of sentences to which to
apply the resolution rule.

An alternative approach in artificial intelligence
uses, not formal rules of inference, but rules that have a
specific content.9 Such programs typically have a data
base of facts, which are written in a logical notation,
so, for example, the sentence ‘Pat is a teacher’ is stated
in the data base as:

(teacher Pat)
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The program allows a user to interrogate the data
base, and it can add new sentences to it. If the
user enquires whether Pat is a teacher, the program
responds, ‘yes’. And if the user types in the further
information: ‘Pat is a reader’, the program adds this
new information to the data base: (reader Pat). But,
suppose one wants to establish a general principle,
such as: All teachers are readers. The program deals
with such a generalization using a content-specific
rule, which stipulates in effect: if x is a teacher, add
the fact that x is a reader to the data base. The rule
springs to life when anyone is described as a teacher,
and adds the further information that this individual
is also a reader. The same generalization, however,
can be used in a different form of rule, which says in
effect if the goal is to determine whether a person is a
reader, set up a subgoal to show that this individual is
a teacher. Now, if a user enquires: ‘Is Viv a reader?’,
there may be no matching assertion in the data base.
But, the rule springs to life to try to discover if Viv is
a teacher. And, if there is a sentence to that effect in
the data base, or it can be proved, then the answer to
the user’s question, via the new rule, is, ‘yes’.

In logic, general assertions are axioms—further
premises to be taken into account in proving theorems.
But, these programs represent such axioms as content-
specific rules. These rules either add information to the
data base when an assertion is made, or deduce it from
the data base in order to answer questions. But, the
rules in turn can be equipped with specific heuristics
for achieving particular inferential goals. Instead of a
blind uniform search, such as the resolution method,
the content of a problem can directly affect the way in
which a search for a proof is carried out.

Computer scientists have developed another
approach based on knowledge. It tackles a reasoning
problem by finding a method in its data base that
has been successfully applied to a similar case in
the past.10,11 According to this idea of ‘case-based’
reasoning, human reasoning has little to do with
logic. What happens is that one inference calls to mind
another. But, when an activity has been repeated often
enough, it begins to function like a content-specific
rule.

Knowledge-based systems offer no immedi-
ate explanation of the ability to reason about the
unknown. Even if you know nothing about nondeter-
minism, you can make the following deduction:

If the process is nondeterministic then its runs in
polynomial time.

The process is nondeterministic.

∴ It runs in polynomial time.

Theories that postulate mechanisms for dealing with
specific domains12,13 can therefore tell only part
of the story of reasoning. More abstract deductive
competence is necessary for logic and mathematics,
and knowledge-based theories cannot immediately
explain it.

As programmers developed systems for reason-
ing, they made several discoveries that had eluded
psychologists. One discovery was that simple tacit
inferences play a crucial part in the comprehension
of everyday discourse. In an assertion, such as: ‘If
he put the parcel on the table, then it rolled off’, an
inference is necessary to determine that the pronoun
‘it’ refers to the parcel, and not to the entity most
recently referred, to the table.14 Part of the reason
that no existing program can understand English in
full is the lack of a sufficiently rich inferential system.
A particular difficulty is that these inferences are often
invalid, e.g., in the preceding case it is possible that
the table itself rolled off.

Another important discovery illuminated a
major difference between logic and everyday rea-
soning. Much human knowledge is in the form of
idealizations, e.g., birds fly, dogs bark, tigers have
stripes. If you learn that Tweety is a bird, then this
knowledge allows you to infer:

Tweety flies.

But, if you find out that, say, Tweety is an emu or
has his feet encased in concrete, you withdraw the
conclusion. In contrast, logic is monotonic, that is to
say, the addition of a new premise never entails that a
prior valid conclusion should be withdrawn. In logic,
one never has to say ‘sorry’ about a valid inference.
Hence, given the following premises:

Tweety is a bird.

All birds fly.

Tweety is an emu.

No emus fly.

logic allows you to infer from the first two premises
that Tweety flies, and to infer from the last two
premises that Tweety does not fly. You have inferred
a contradiction. But, logic does not prohibit inferences
to contradictions—we already saw that a reductio ad
absurdum depends on inferring a contradiction. But,
the contradiction about Tweety did not derive from a
supposition, and so, as far as logic is concerned, there
is nothing to withdraw.
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Unlike logic, everyday reasoning is not mono-
tonic. A new premise that conflicts with a conclusion
may lead you to withdraw the conclusion, and in turn
to reject one of the premises from which it derives
But, which premise? Logic cannot tell you. So, which
premise should you withdraw in the Tweety example?
The answer is clear: it is not true that all birds fly.
What you should like to maintain, however, is that
birds typically fly. English expresses this proposition
in a generic assertion that omits the quantifier ‘all’ or
its equivalents: Birds fly. Generics are useful, because
they tolerate exceptions, and yet they are true for
typical cases.

Artificial intelligencers accordingly sought some
way of formulating nonmonotonic reasoning systems
in which the rebuttal of a conclusion did not
call for the withdrawal of useful generic premises,
such as ‘birds fly’. Researchers tried out various
ideas, and there developed a cottage industry of
nonmonotonic reasoning systems.15 A psychologically
plausible idea is due to Minsky.16 He formulated
the notion of a ‘default value’, e.g., a bird flies by
default. In other words, you can infer that a bird
flies, unless there is evidence to the contrary. In
which case, you withdraw the conclusion, but not
the generic idealization. This notion was embodied
in ‘object-oriented’ programming languages, which
allow programmers to set up hierarchies of concepts,
so that birds include emus; birds fly, but this default is
overruled in the case of emus, which do not fly. These
systems allow you to have your cake and eat it. And
human reasoning often appears to rely on defaults,
which are arguably the correct semantic analysis for
generic assertions. Hence, a statement such as:

Smoking causes cancer

allows for exceptions. Because the assertion allows
exceptions, some theories postulate that causation is
itself a probabilistic notion (e.g., Ref 17). But, it is the
generic nature of the assertion that gives rise to the
tolerance of exceptions. A claim such as:

All cases of smoking cause cancer

is not probabilistic, and so the concept of cause is not
probabilistic, either.18

One final point about nonmonotonicity is that it
also occurs in cases where beliefs do have to be revised.
Suppose you believe the following propositions:

If someone pulled the trigger then the pistol fired.

Someone did pull the trigger.

And then you learn that the pistol did not fire. You
are likely to try to figure out an explanation of the
sequence of events. You might suppose that a prudent
person emptied the bullets from the pistol. In this
case, your explanation overturns the first of your two
premises.19

PSYCHOLOGICAL THEORIES OF
DEDUCTION

The task for psychologists once seemed to be to
identify the particular logic that people have in their
heads—an idea going back to the ancient doctrine
that the laws of logic are the laws of thought. The
problem was the vast number of different logics, and
the variety of different ways of formalizing them.
Logicians have proved that there are infinitely many
distinct modal logics, which deal with possibility and
necessity. Nevertheless, theorists argued for a century
that logic is a theory of deductive competence.20

Inhelder and Piaget (Ref 21, p. 305) went so far
as to claim that reasoning is nothing more than the
sentential calculus itself. Others similarly argued that
deductive performance depends on formal rules of
inference akin to those in Table 1 (e.g., Refs 22 and
23). This view has adherents in psychology (e.g., Refs
24 and 25), in linguistics (e.g., Ref 26), in philosophy
(e.g., Ref 27), and in artificial intelligence (e.g., Ref
28). But, three major theoretical difficulties confront
any psychological theory based on logic.

The first difficulty is that logic allows an infinite
number of different conclusions to follow validly from
any premises. Consider, for instance, the following
premises:

If the printer works then it has ink in its cartridges.

The printer works.

They validly imply the infinite list of conclusions
beginning:

The printer has ink in its cartridges.

The printer has ink in its cartridges and it has ink
in its cartridges.

The printer has ink in its cartridges and it has ink
in its cartridges and it has ink in its cartridges.

Of course the last two conclusions are preposterous.
No sane individual—other than a logician—is likely
to draw them. Yet they are valid deductions. Hence,
logic alone cannot be a theory of deductive reasoning

12  2009 John Wi ley & Sons, L td. Volume 1, January /February 2010



WIREs Cognitive Science Deductive reasoning

(pace Ref 21). Likewise, in logic, the response that
nothing follows from the premises is always wrong.
Yet, people are sensible. They do not draw just
any valid conclusion, and for some premises the
sensible response is that nothing follows (of any
interest). Logic is at best an incomplete theory of
deductive reasoning, because it has nothing to say
about which logical conclusions are sensible. What
naı̈ve individuals—those who have not mastered
logic—tend to infer are conclusions that do not throw
information away by adding disjunctive alternatives
to those the premises support, that simplify matters
rather than add redundant propositions, and that
make explicit what was only implicit in the premises
(Ref 29, p. 22). This account of deductive competence
has yet to be overturned. And none of its principles
can be derived from logic alone.

The second difficulty for logic-based theories
is the gap between formal logic and natural lan-
guage. Logic concerns implications between sentences.
Everyday reasoning concerns implications between
the propositions that sentences express, and most
sentences can express many different propositions.
Consider a sentence such as:

If she played a game then she did not play that.

The sentence expresses different propositions depend-
ing on whom ‘she’ refers to, and on the game to which
the speaker points on uttering ‘that’. The grammar of a
natural language captures the grammatical form of the
sentences in the language, but grammatical form is not
necessarily equivalent to logical form. Consider all the
possible inferences of the following grammatical form:

If A then not B.

B.

Therefore, not A.

If she is in Brazil then she is not in Oslo.

She is in Oslo.

Therefore, she is not in Brazil.

On the other hand, you are likely to balk at this case:

If she is in Brazil then she is not in Rio.

She is in Rio.

Therefore, she is not in Brazil.

You may say that there is a missing premise: if she
is in Rio then she is in Brazil. Alas, all this premise
does is to make the three premises self-contradictory,
and, as we have already seen, in logic a contradiction
does not force us to withdraw a conclusion. An index
of the difficulty of determining the logical form of
propositions expressed in natural language is that no
algorithm exists for automatically doing the job. The
one program implementing a psychological theory
based on formal rules accordingly calls for users
themselves to provide the logical form of premises
and conclusions.24

Arguments in books or articles do not resemble
formal proofs. It is almost impossible to determine
their logical form, and hence to use logic to assess
their validity. This problem has led some theorists to
argue that logic is irrelevant to the inferences of daily
life30 (see also the ILACT movement for ‘Informal
Logic And Critical Thinking’). When logicians do
analyze everyday inferences, they typically discover
that their logical forms are ambiguous.31 Yet, validity
is important in daily life, and, as we will see, it can be
assessed without having to determine the logical form
of arguments.

The third difficulty for logic-based theories is
that the validity of many inferences in daily life
depends on the meanings of words other than logical
terms. Consider the following deduction:

Alan is taller than Betty.

Betty is taller than Charlie.

Therefore, Alan is taller than Charlie.

On the definition of validity at the start of this article,
the inference is valid, i.e., if its premises are true then
so too is its conclusion. But, the inference cannot
be proved in logic without the addition of a missing
premise to the effect that: for any individuals, x, y, z,
if x is taller than y, and y is taller than z, then x is
taller than z. This premise amounts to an axiom, or
meaning postulate, because it captures the transitivity
of the relation, ‘is taller than’. The task of specifying
the required set of meaning postulates is formidable,
and has yet to be done. One reason is that a simple
change in tense in one of the two premises of the
preceding example suffices to invalidate transitivity:

Alan is taller than Betty.

Betty was taller than Charlie.

The past tense alerts you to the possibility that Charlie
has grown, and may now be taller than Alan. Indeed,
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naı̈ve individuals balk at drawing the transitive con-
clusion in such cases.32 But, matters are still worse in
the case of certain spatial inferences.33 If three individ-
uals, Matthew, Mark, and Luke, are seated along one
side of a rectangular table, then the fact that Matthew
is to Mark’s right, and Mark is to Luke’s right, suffices
to infer validly that Matthew is to Luke’s right. But, if
they are equally spaced around a small circular table,
the inference is no longer valid, because Matthew
is opposite Luke. Depending on the radius of the
table and the closeness of the seating, transitivity may
hold over, say, four individuals but break down over
five individuals, hold over five individuals but break
down over six, and so on, up to an indefinite number
of individuals. Each of these different cases calls for
its own meaning postulates, and so one wonders
whether there might not be a better way for handing
the deductions. There is; and we now turn to it.

The theory of mental models postulates that
deductive reasoning depends not on formal rules, but
on the use of meaning, reference, and knowledge
to construct mental models of the possibilities in
which premises hold.29,34,35 Mental models have three
essential characteristics:

1. Each model represents a possibility, just as each
true row in a truth table corresponds to a
possibility. Hence, the inclusive disjunction:

There is a circle or there is not a triangle.

calls for three mental models, shown here
on separate lines, which represent the three
possibilities:

o

¬ �

o ¬ �

2. The principle of truth: to minimize the load
on working memory, mental models represent
only what is true, and not what is false. This
principle applies at two levels. First, each mental
model represents a true possibility. Hence, the
set of models above does not represent the case in
which the disjunction as a whole is false. Second,
atomic propositions and the negations of atomic
propositions in premises are represented in a
mental model only when they are true in the
corresponding possibility. Hence, the first model
in the set above represents the possibility that
there is a circle, but it does not make explicit that
in this case it is false that there is not a triangle,
i.e., there is a triangle. When individuals reason
intuitively they rely on mental models, typically

just a single model.33 Only in reasoning in a
more deliberate way do they use fully explicit
models, which represent both what is true and
what is false.

3. The parts of a model correspond to the parts
of what it represents, and the structure of the
model corresponds to the structure of what it
represents. Thus, a mental model is like an
architect’s model of a building. It can also be
used in some cases to construct a visual image,
though many mental models are not visualizable.

The theory postulates that models are based
on descriptions, on perception, and on knowledge,
including, for example, knowledge of the size and
seating arrangements in the earlier case of the round
table. Reasoners formulate a conclusion that holds
in the models and that was not explicitly asserted
in any single premise. The strength of the inference
depends on the proportion of the models in which
the conclusion holds. A conclusion that holds in
all the models is necessary given the premises.29 A
conclusion that holds in at least one model is possible
given the premises.36 And a conclusion that holds in
most of the models is probable given the premises.37

Models accordingly provide a unified theory of logical,
modal, and probabilistic reasoning—at least the sort
of probabilistic reasoning that depends on adding the
probabilities of the different ways in which an event
can occur.

Do logically untrained individuals reason using
formal rules, content-specific rules, mental models,
or some other system? Experiments have established
crucial phenomena that may help readers to decide.
The model theory predicts that reasoners should be
able to reason from exclusive disjunctions such as: A or
else B, but not both, more easily than from inclusive
disjunctions, such as: A or B, or both. Exclusive
disjunctions hold in only two possibilities, whereas
inclusive disjunctions hold in three possibilities. In
contrast, formal rule theories have rules only for
inclusive disjunctions, and so proofs from exclusive
disjunctions call for extra steps in which the exclusive
disjunction is paraphrased as: (AvB) & ¬ (A & B), and
then one of these clauses is detached as an intermediate
conclusion. The evidence in several sorts of study
shows that deductive reasoning from exclusive
disjunctions is easier than from inclusive disjunctions
(for a review, see Ref 29). Formal or content-specific
rule theories could, of course, introduce a rule for
exclusive disjunctions, but they have no way to
predict that the use of this rule should be easier
than the use of the rule for inclusive disjunctions.
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Another phenomenon concerns the use of coun-
terexamples. The model theory predicts that indi-
viduals can refute invalid inferences by envisaging
counterexamples to their conclusions. A counterex-
ample is a possibility in which the premises hold, but
the conclusion does not. In contrast, current formal
rule theories (e.g., Refs 24 and 25) make no use of
counterexamples. But, when participants had to write
down justifications for their evaluations of inferences,
they used counterexamples, especially to refute con-
clusions that were consistent with the premises but
that did not follow from them.38 Studies of other
sorts of reasoning have shown that individuals spon-
taneously use counterexamples.39 And the inferences
in these studies cannot be based on general knowledge.

Another phenomenon arose from an apparent
bug in a computer program implementing the model
theory. In fact, the bug was in the author’s mind
rather than the program. What it showed was that
the principle of truth predicted that certain inferences
should elicit systematic fallacies. These fallacies occur
in many domains of reasoning (e.g., Refs 34 and 40).
A simple case due to Khemlani41 concerns a rule at
a restaurant:

Only one of these assertions is true:

1. You can have the bread.

2. You can have the soup or else the salad, but not
both.

Let us say that you decide to have the bread. Is it
possible to have the soup and the salad as well?

If you answered ‘no’, then you are like the par-
ticipants in the experiments.41 Yet, the inference is
illusory. The principle of truth predicts that you form
these mental models of what are you allowed accord-
ing to the restaurant’s rule:

bread

soup

salad

But, the fully explicit models of the rule, which rep-
resent both what is true and what is false, show that
if you have the bread according to part (1) of the
rule then it is possible for you to have both the soup
and the salad, because taking them both would be
a case in which part (2) of the rule would be false.
The majority of participants in the studies succumbed
to the fallacies. They are so compelling that they
are known as ‘illusory inferences’. People go wrong

because they cannot cope with what is false.42 If the-
ories that postulate only the sorts of rule in Table 1
are correct, then the illusions should not occur. But,
they do occur, and hence jeopardize these theories.
Valid principles cannot explain systematic invalidity.
However, Rips24 has suggested that individuals may
have erroneous rules of inference. The problem with
this proposal is to formulate a theory that predicts
the systematic pattern of real and illusory inferences.
Once again, theories based on content-specific rules
or knowledge fail to predict the phenomena.

CONCLUSION

Deductive reasoning is critical to many human activ-
ities. This paper, for example, has relied on at least
one valid inference of the form:

If theory X is correct then phenomenon Y should
not occur.

But, phenomenon Y does occur.

Therefore, theory X is not correct.

Despite the ubiquity of such inferences, some psy-
chologists have argued that logical validity is the
wrong criterion for human reasoning, and that it
should be replaced by probability.43 The probabilistic
approach yields excellent accounts of some experi-
ments—though not those summarized in the previous
section. And, contrary to its claims, individuals are
sensitive to the difference between valid deductions
and probabilistic conclusions.44 Other current theo-
ries of reasoning postulate, as we saw earlier, that it
relies on content-specific rules, or even innate mental
modules for specific topics, such as checking whether
someone is cheating you13. The difficulty in assessing
these accounts is that theorists have yet to specify
the complete set of modules, their detailed work-
ings, or the principles by which problems trigger
a particular module. What remains highly contro-
versial are the meaning and mental representation
of if-then assertions in daily life,3,45–47 estimates of
their probability,48–50 and deductive reasoning from
them.51–54 Theoretical generality and the evidence
lean toward the model theory.55–57 But, of course,
a new theory could lead to the discovery of robust
phenomena contrary to the model theory. The theory
postulates that counterexamples can overturn theo-
ries, and so it will at least account for its own demise.
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