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Abstract 

Many theorists argue that deduction is based on the 
construction of mental models or simulations of descriptions.  
Individuals tend to reason intuitively from a single mental 
model, but on occasion they make a deliberate search for 
alternative models. Previous computer implementations of the 
theory were deterministic, but evidence from empirical 
studies suggested that a stochastic algorithm would have 
greater predictive power. We present such a system for 
inferences from assertions with single quantifiers, such as, 
“All the agents are lawyers”. This system implements 
constraints on the size of model, the sorts of individual it 
represents, and on the likelihood of a search for alternative 
models. We show that the system yields quantitative 
predictions at a fine-grained level, and that they fit the data 
from two experiments better than previous accounts. 

Keywords: deduction, mental models, reasoning, simulation, 
stochastic models 

Introduction 
Reasoners with no knowledge of logic can make 

deductive inferences. Consider the following examples: 
 
All of the agents are lawyers. Does it follow that… 
1. none of the lawyers are agents? 
2. all of the lawyers are agents? 

 
The correct answer to both (1) and (2) is ‘no’, but (1) is 
easier than (2), i.e., one study revealed 92% accuracy on the 
former inference, but only 67% accuracy on the latter 
inference (Newstead & Griggs, 1983, Experiment 1). 
Indeed, psychologists have known for a long time that 
similar inferences can differ in difficulty in a striking way  
(Begg & Harris, 1982; Wilkins, 1928). Their theories to 
explain these differences reflect three general approaches: 
the use of formal rules similar to the proof theory of logic 
(e.g., Rips, 1994), the use of heuristics for probabilistic 
validity (e.g., Oaksford & Chater, 2007), and the use of 
mental models (e.g., Johnson-Laird, 1983). The first two 
sorts of theory include parameters for fitting their 
predictions to the frequencies of different conclusions.  
Hitherto, however, the mental model theory has made 
parameter-free predictions about rank-order differences in 
difficulty.  Yet, one of the major conclusions from a study 
of how individuals used external models in reasoning was 
that the individual human reasoning system is not 
deterministic. The same person constructs different models 

of the same premise from one inference to another 
(Bucciarelli & Johnson-Laird, 1999).   

The mental model theory of higher cognition postulates 
that reasoning relies on the construction and manipulation of 
mental models, i.e., iconic simulations of possible situations 
(Johnson-Laird, 2006). As the theory posits, reasoners who 
are told that all of the agents are lawyers simulate the 
situation, that is, they build a model of a small arbitrary 
number of tokens that denote individual agents, and then 
add the property of being a lawyer to each of the agents. A 
model of such a situation is akin to the following diagram, 
in which each row denotes the properties of an individual: 

 
   agent   lawyer 
   agent   lawyer 
   agent   lawyer 
   agent   lawyer 
 
Reasoners can immediately make deductions by inspecting 
the model. Since at least one of the lawyers is an agent, it 
does not follow that none of the lawyers are agents. An 
inference is valid if its conclusion is true in every case in 
which the premise is true (Jeffrey, 1981, p. 1).  And so the 
initial model establishes the invalidity of the inference. 

Other inferences require reasoners to revise initial models. 
For instance, does it follow that all of the lawyers are 
agents? It does in the initial model, but an alternative model 
of the premise is a counterexample: 
 
   agent   lawyer 
   agent   lawyer 
   agent   lawyer 
   agent   lawyer 
  ¬agent   lawyer 
 
where ‘¬’ denotes the mental symbol for negation. Thus, the 
correct answer is ‘no’, but it calls for reasoners to construct 
multiple models. In sum, the model theory accounts both for 
valid responses and for relative difficulties in inference, and 
it does so using set-theoretic models rather than formal rules 
of inference or probabilities (Johnson-Laird, 2006). 

Yet, the theory is limited. It explains the rank order of the 
difficulty of inferences (see Khemlani & Johnson-Laird, 
2012, 2013, for reviews), but it has been parameterized to 
account for quantitative differences in only a limited way – 
a notable exception is Schroyens and Schaeken’s (2003) 
formalization of its account of conditional reasoning (see 
also Oberauer, 2006). In other domains, such as the 



inferences above, it cannot account for quantitative patterns 
of reasoning, e.g., why participants were correct for 92% of 
inferences of (1), but for 67% of inferences of (2). The 
problem is the deterministic computational implementations 
of the theory (e.g., Johnson-Laird & Byrne, 1991). 
Determinism is counterintuitive for three principal reasons. 
First, individuals vary one from another in how they reason 
even from just a pair of premises. Second, a given 
individual varies from one inference of the same sort to 
another.  Third, as we illustrated earlier, a premise that 
refers to distinct possibilities is compatible with several 
distinct models, and individuals vary in the initial model 
that they construct – a difference that occurs both between 
and within individuals (see Polk & Newell, 1995, for a 
model-based theory that accommodates differences between 
individuals). Reasoners may vary in the number of tokens 
that they construct to represent a particular sort of 
individual, i.e., the size of the model varies (see Table 1).  
All of these factors, in turn, are susceptible to hidden 
unknown variables that yield noise, and that may therefore 
contribute to errors. 

In the present paper, we outline a new stochastic system 
for building mental models. It relies on three components, 
which serve as the parameters of the system for predicting 
performance. We describe the system in detail, and then 
show how it provides a close fit to the data from an 
experiment on immediate inferences. 

A stochastic model-building system 
The model-building system embodies three stochastic 

parameters. The first parameter constrains the size of a 
model, that is, the number of different tokens representing 
entities that it contains. The second parameter constrains the 
contents of a model, and in particular the different sorts of 
entities that it represents. The third parameter constrains the 
likelihood that the system searches for an alternative to the 
initial model of premises. In summary, the system 
manipulates stochastically the size, the contents, and the 
revisions of models. We now describe in detail each 
parameter and its effects. 

The size of a mental model (parameter λ) 
The interpretation of a quantified assertion, such as, All of 

the agents are lawyers calls for a mental model of a set of 
individual agents that are lawyers. The cardinality of the set 
is not fixed, but varies depending on the inference, the 
capacity of working memory, and other cognitive 
constraints. These variables can be approximated in a 
discrete probability distribution. The distribution must be 
discrete, because the elements of a mental model are 
discrete, e.g., there can be no scenario in which 4.5 agents 
are lawyers. We therefore assume that the cardinality of a 
model varies according to a Poisson distribution, which is 
typically used to describe a given number of events 
occurring within a fixed interval of time. For example, 
 

 
Figure 1. Left truncated Poisson distributions for various values of 
λ. The distributions establish the stochastic cardinality for building 
models. Gray bars indicate values that were truncated (0 and 1).  
 
a Poisson distribution can describe the number of emails an 
individual receives in a day: some days she might get no 
emails, other days five, other days twenty. In the reasoning 
system, “events” correspond to the mental consideration of 
tokens in a model. When reasoners interpret the assertion 
All of the agents are lawyers, they may consider two such 
individuals, three, four, or maybe five. A single real-valued 
parameter, λ, governs the shape of a Poisson distribution, 
and λ is both the expected value and the variance of the 
distribution. In addition, the Poisson distribution is left 
truncated, i.e., zeroes and ones are excluded (see 
Deshpande, Gore, & Shanubhogue, 1995, p. 199). When 
building a model, the model’s cardinality is established by a 
single sample drawn from a left-truncated Poisson 
distribution of parameter λ.  Figure 1 presents the 
frequencies of such samples for various values of λ, and it 
shows, for example, that for λ = 3 the majority of them will 
be 2, 3, 4, or 5.  Table 1 shows these models.  

The adoption of a stochastic value for the cardinality of a 
model can potentially capture more of the variation in 
reasoners’ mental models. But, as the examples in Table 1 
show, merely varying the size of a model does not always 
yield inferential flexibility. That is, the same inference (e.g., 
that it follows that some lawyers are agents) can be drawn 
from a model of three individuals as can be drawn from a 
model of five individuals.  The second component in the 
system, however, directly affects inferences.  
 

Cardinality 
2 3 4 5 
 

A   L 
A   L 

 

 
A   L 
A   L 
A   L 

 

 
A   L 
A   L 
A   L 
A   L 

 
A   L 
A   L 
A   L 
A   L 
A   L 

 
Table 1. Possible models of “All of the agents are lawyers”, where 
A denotes an individual agent, and L denotes an individual lawyer. 
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The contents of a mental model (parameter ε) 
The second component governs the contents of a model, 

i.e., the particular sorts of individual or entity that it 
represents. The models in Table 1 are canonical according 
to the model theory in that they represent only agents that 
are lawyers. But, the assertion is compatible with the 
situation in which there are some lawyers that are not 
agents. Thus, the following models are all feasible 
representations of All the agents are lawyers: 

 
A   L 
A   L 
    L 
    L 

 

A   L 
A   L 
    L 
    L 
    L 

A   L 
A   L 
A   L 
A   L 
    L 

A   L 
A   L 
A   L 
A   L 
A   L 

The system embodies the principle that some proportion of 
models deviate from the canonical sort. Models are built by 
drawing samples from one of two sets, either the canonical 
set of individuals for a particular type of quantified 
assertion, or else the full set of possible individuals 
compatible with the assertion (see Appendix). Every time 
the system draws a sample, the probability that it will draw 
it from the full set of possible individuals is given by ε, e.g., 
if ε = .10, then there is a 10% chance that the system will 
draw a model from the full set of individuals. To illustrate, 
the premise All the agents are lawyers, has only one 
canonical individual: 
 
 A   L 
 
but two sorts of individual in the full set of possibilities: 
 
¬A   L 
¬A  ¬L 
 
And so when ε = 0, any model built from drawing from the 
canonical set of individuals will comprised only agents that 
are lawyers, as in Table 1. But when ε = .5, models are built 
from drawing individuals from the full set of possibilities on 
half the occasions: 
 

 A   L 
¬A   L 

 

 A   L 
¬A  ¬L 
¬A  ¬L 

 

 A   L 
 A   L 
¬A   L 
¬A  ¬L 

 

 A   L 
 A   L 
¬A   L 
¬A   L 
¬A  ¬L 

All of the models satisfy the premise, but variations in their 
contents afford different inferences. For example, in some 
of the models above, all of the lawyers are agents. In others, 
some of the lawyers are not agents. And in yet others, most, 
but not all, of the lawyers are agents. 

The λ and ε parameters constrain the system’s 
construction of initial models, and an underlying assumption 
of the model theory is that individuals tend to reason based 
on their intuitions, i.e., to draw conclusions based on initial 
mental models alone. Nevertheless, reasoners can make a 
deliberate search for alternative models, and the system 

contains a third parameter concerning the likelihood of such 
a search.   
 
Modifying initial models (parameter σ) 

The model theory assumes that reasoners tend to reason 
from a single model or simulated scenario (see also Vul et 
al., 2009). Nevertheless, individuals can search for 
alternative models by modifying their initial model.  In this 
way, they may corroborate a putative conclusion or they 
may discover a counterexample to it, i.e., a model in which 
the premises are true but the conclusion is false (Bucciarelli 
& Johnson-Laird, 1999; De Neys, Schaeken, & d’Ydewalle, 
2003; Neth & Johnson-Laird, 1999; Johnson-Laird & 
Hasson, 2003). Indeed, the simpler the inference, the more 
likely reasoners should be to modify their initial models. 
The likelihood of modifying initial models, i.e., engaging in 
a search for alternative models, is specified by the final 
parameter σ in the system, It fixes the proportion of 
inferences in which a search occurs, e.g., when σ = .3, the 
system searches for alternative models on 30% of 
inferences. In general, a search for alternative models is not 
guaranteed to return a correct response, but the prototype of 
the stochastic system operationalizes σ as the probability of 
obtaining the correct answer.  

 
The simulation of immediate inferences 

The system contains three stochastic components, λ (the 
number of individuals in a model), ε (the sorts of individual 
in a model), and σ (the search for alternative models, which 
yield the correct response). We implemented the system in 
R (R Core Team, 2012), and its code can be accessed at 
http://goo.gl/nATWH. We assessed its ability to account for 
immediate deductive inferences from a single quantified 
premise, as illustrated in the introductory examples in the 
present paper. Many studies have examined these inferences 
(e.g., Begg & Harris, 1982; Newstead & Griggs, 1983; 
Wilkins, 1928) but there is no theory that makes quantitative 
predictions about them. The inferences are based on four 
different moods of singly-quantified premise: 

 
All the Xs are Ys 
Some of the Xs are Ys 
None of the Xs are Ys  
Some of the Xs are not Ys 
 

and 8 different sorts of conclusion (4 moods by 2 
arrangements of terms X and Y). There are therefore 32 
possible immediate inferences based on these premises. A 
typical inference is: 

 
Some of the alchemists are barbers. 
Does it follow that all of the barbers are alchemists? 
 
We chose immediate inferences as a test case, because the 

model theory can make qualitative predictions about the 
relative difficulties of three sorts of immediate inference: a) 
zero-model inferences, b) one-model inferences, and c) 



multiple-model inferences. Zero-model inferences yield a 
correct response without requiring a model, e.g., the 
conclusion is identical to the premise. One-model inferences 
yield the correct response from the initial model. Multiple-
model inferences yield a correct response only from an 
alternative to the initial model. Recent analyses corroborate 
the predicted trend that zero-model inferences should be 
easier than one-model inferences, which in turn should be 
easier than multiple-model inferences (Khemlani, Trafton, 
Lotstein, & Johnson-Laird, 2012; Khemlani & Trafton, 
2012). 

Our present goal, in contrast, was to assess both 
quantitative and qualitative predictions of difficulty as 
derived from the stochastic system. We therefore simulated 
two experiments from Newstead and Griggs (1983) that 
examined all 32 immediate inferences. Experiment 1 used 
assertions containing letters, and Experiment 2 used 
assertions containing letters, and assertions containing terms 
such as, “artists” and “beekeepers”.  

Results and discussion 
We carried out a search for the values of the parameters 

using the data from Experiment 1. Each triplet of parameters 
was used to simulate each of the 32 inferences 100 times. 
The search found optimal fits when λ = 4, ε = .3, and σ = .4. 
In other words, the search yielded the best fit to the data 
when models consisted of around 4 separate entities; when 
30% of models contained non-canonical individuals; and the 
search for alternative models, which yield the correct 
response, occurred for 40% of the inferences.  

We then carried out simulations for Experiments 1 and 2 
in Newstead and Griggs (1983). The parameter values 
obtained from the parameter search were used to simulate 
Experiment 1, and to cross-validate the system on the data 
from Experiment 2. Each simulation consisted of 1000 
simulations of the 32 inferences. The deterministic theory 
classified the inferences as zero-, one-, or else multiple-
model inferences (see above). Hence, Figure 2 shows the 
proportion of correct responses in the observations 
(histograms with error bars) and predictions (circles) in the 
two studies as a function of the type of inference. The 
stochastic system closely matched the performance of 
Newstead and Griggs’ participants for Experiment 1 (R2 = 
.97, RMSE = .12) and Experiment 2 (R2 = .93, RMSE = 
.12). The data from both studies are comparable to one 
another, and so the fit for Experiment 2 revealed successful 
cross-validation of the parameters, and suggested that the 
parameters did not overfit the data from Experiment 1. 

The stochastic system yields more detailed predictions, 
because it predicts performance for each of the 32 separate 
inferences. Figure 3 shows the system’s fit for each of the 
inferences. As expected, the goodness of fit metrics were 
not as close as those for the fits with group means (R2 = .57, 
RMSE = .21 and R2 = .61, RMSE = .23 for Experiments 1 
and 2 respectively). However, the figure reveals that the 
 

 
 
Figure 2. Observed (histograms with error bars) and predicted 
(circles) proportions of correct response for the three types of 
inference (i.e., zero-, one-, and multiple-model). Panel A shows the 
data from Experiment 1, and Panel B shows the data from 
Experiment 2. Error bars show 99% confidence intervals. 
 
majority of the system’s predictions fall within the 
confidence intervals of the observations. What explains the 
decline in the coefficients of determination?  

One reason is that the coefficients do not take into 
account the number of separate data points to be predicted: a 
fit is bound to be smaller for 32 inferences than for 3 group 
means. We therefore used an alternative metric, the 
Bayesian Information Criterion (BIC; see Schwarz, 1978), 
as a selection measure that takes into account both the 
number of data points that were fit and the number of 
parameters that were used to fit them. Table 2 presents the 
BIC values for the two experiments.  Lower values of BIC 
indicate a better fit, and so as the Table shows the fit was 
better for the 32 inferences than for the 3 types of inference.  

To assess the relative importance of each parameter, we 
systematically disabled them and compared the results to the 
version of the system in which all parameters are enabled 
(cf. Altmann & Trafton, 2002). The results are shown in 
Table 3. They suggest that disabling any of the parameters 
has a deleterious effect on the fit between the predictions 
and the data. However, disabling the λ parameter (the 
number of individuals in a model) appeared to diminish the 
system’s performance the most. In contrast, while disabling 
the σ parameter (the likelihood of searching for an 
alternative model, which yielded the correct response) 
affected on the R2 value negatively, it seemed to yield a 
slight improvement for the RMSE.  
 

 Bayesian Information Criterion (BIC) 
 by inference type 

(n = 3, k = 3) 
by immediate inference 

(n = 32, k = 3) 

Experiment 1 -8.43 -87.51 

Experiment 2 -8.40 -82.31 
 
Table 2. The values of the Bayesian Information Criterion (BIC) 
for the fit of the predictions to the observed data for the 3 sorts of 
inference and for the 32 individual inferences (in Experiments 1 
and 2).  The system uses three parameters to fit the data, i.e., k = 3. 
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Figure 3. Observed (histograms and error bars) and predicted (circles) proportions of correct response for 32 immediate inferences. Panel 
A shows the data from Experiment 1 in Newstead and Griggs (1983), and Panel B shows the data from their Experiment 2. Error bars 
reflect 99% confidence intervals. Black circles indicate when the predictions fell within the confidence interval of the observed proportion 
of correct responses, while red circles indicate deviations from the predictions and the observation. Premises and conclusions are 
abbreviated using the conventions of Scholastic logicians, as follows: Aab = “All As are Bs”, Iab = “Some As are Bs”, Eab = “No As are 
Bs”, and Oab = “Some As are not Bs,” and analogous conventions for Aba, Iba, Eba, and Oba. Each inference is abbreviated as a premise 
concatenated with its putative conclusion, e.g., AabAab denotes the inference, “All As are Bs. Does it follow that all As are Bs?” 
 

In sum, the stochastic system provided quantitative 
predictions of accuracy across the different types of 
inference (zero-, one-, and multiple-model inferences) and 
across the 32 individual inferences themselves, and those 
predictions closely matched the results of two experiments. 
 

 All 
parameters 

enabled 

Disabled parameters 

 λ ε σ all 

R2 .57 .38 .52 .53 .34 

RMSE .21 .24 .22 .20 .25 

 
Table 3. The goodness of fit between the predictions and the 
observations (Newstead & Griggs, 1983, Experiment 1) when all 
parameters are enabled; when λ is disabled, i.e., models are built 
with a fixed cardinality of 3; when ε = 0; when σ = 0; and when all 
parameters are disabled. 

 
General Discussion 

The stochastic system for building mental models rests 
on the idea that the fundamental engine of deductive 
inference is the process of constructing, manipulating, and 
inspecting set-theoretic models – a constant in the theory 
from Johnson-Laird (1983) to Khemlani and Johnson-Laird 
(2012). The stochastic system embodies three parameters 
that allow variation from inference to inference in the 
number of individuals represented in a model, in the sorts of 

individuals, which may be canonical or from the set of 
possible individuals as a whole, and in the likelihood that a 
search is made for alternatives to the initial model, which is 
treated in the system as a way to guarantee the correct 
response.  

Can the system be extended to provide a closer fit to the 
32 individual immediate inferences? Figure 3 suggests so in 
two respects. First, many of the participants’ errors are cases 
of “scalar implicatures” (Gazdar, 1979; Horn, 2004). In 
particular, the stochastic system responded that “Some of 
the As are Bs” follows from “All of the As are Bs,” whereas 
the participants drew this conclusion only 73% in 
Experiment 1 and 56% in Experiment 2. We suspect that 
they rejected the inference on the grounds that the 
conclusion is less informative than the premise, and so it 
violates the conversational convention to be informative 
(Grice, 1975). The present system might therefore be 
enhanced if it incorporated a computational model of scalar 
implicature (e.g., Goodman & Stuhlmüller, 2012). Second, 
most predictions that deviate from the data (the red circles 
in the figure) are overestimates of accuracy, and therefore 
suggest that the parameter search may have yielded too 
large a value of σ. Extensions of the model should therefore 
correct for these two factors. 

The three components of the stochastic system reflect 
psychologically motivated constraints on inferential 
processes. In the present analysis, we compared the 
system’s ability to predict accuracy across items, i.e., we 
assumed that the noise contributed by each participant was a 
random effect. The opposite approach is viable as well: the 
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stochastic system’s parameters could be tweaked for 
individual reasoners. For example, the λ parameter may 
theoretically correspond to working memory span, and the ε 
and σ parameters may correspond to analytic processing 
(Stanovich & West, 2000). Thus, the system may be a 
foundation for developing computational cognitive models 
that analyze individual differences in deductive reasoning. 

The stochastic system is relevant to the broader context of 
developing unified theories of inference. We have taken 
pains to describe the system as “stochastic” and not 
“probabilistic”, even though the system is based on the 
interaction of three variables with values chosen according 
to probabilities. The reason is that “probabilistic” is often 
used to characterize theories in which inferences are based 
on subjective probabilities, transformations between them, 
such as Bayes’s theorem, and heuristic approximations of 
probabilistic validity (see, e.g., Oaksford & Chater, 2007). 
In our account, however, mental models, i.e., set-theoretic 
models of possibilities, are the primary representation that 
makes inferences possible. The stochastic components 
constrain their construction, but it is the models themselves 
that allow reasoners to draw deductive conclusions. Thus, 
our use of the term “stochastic” refers, not to the meaning of 
quantified assertions, but to the system’s non-determinism.  

In conclusion, stochastic model building is a way to 
approximate the variation in mental simulations that 
underlie deductive inference. The size of a model, its 
contents, and its propensity for revision, are each critical in 
accounting for inferences with quantifiers. 
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Appendix 

Canonical and full model sets for the four types of assertions that the stochastic model building system simulates. Canonical sets 
reflect the sorts of individuals people are most likely to build, whereas full sets reflect all individuals compatible with the assertion. 

 

 All As are Bs Some As are Bs No As are Bs Some As are not Bs 

Canonical { A B } { A B, ¬A B } { A ¬B, ¬A B } { A B,  A ¬B, ¬A B } 

Full { A B, ¬A B, ¬A ¬B } { A B, A ¬B, ¬A B, ¬A ¬B } { A ¬B, ¬A B, ¬A ¬B } { A B, A ¬B, ¬A B, ¬A ¬B } 


