[T

/

D\

Kinematic mental simulations in abduction

and deduction

Sangeet Suresh Khemlani®', Robert Mackiewicz®, Monica Bucciarelli, and Philip N. Johnson-Laird®*"

2Navy Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Washington, DC 20375; ®PDepartment of Psychology, University of
Social Sciences and Humanities, 03-815, Warsaw, Poland; “Centro di Scienza Cognitiva and Dipartimento di Psicologia, Universita di Torino, 10123 Turin, Italy;
9Department of Psychology, New York University, New York, NY 10003; and ®Department of Psychology, Princeton University, Princeton, NJ 08540

Contributed by Philip N. Johnson-Laird, August 29, 2013 (sent for review April 25, 2013)

We present a theory, and its computer implementation, of how
mental simulations underlie the abductions of informal algorithms
and deductions from these algorithms. Three experiments tested
the theory’s predictions, using an environment of a single railway
track and a siding. This environment is akin to a universal Turing
machine, but it is simple enough for nonprogrammers to use. Par-
ticipants solved problems that required use of the siding to rear-
range the order of cars in a train (experiment 1). Participants
abduced and described in their own words algorithms that solved
such problems for trains of any length, and, as the use of simula-
tion predicts, they favored “while-loops” over “for-loops” in their
descriptions (experiment 2). Given descriptions of loops of proce-
dures, participants deduced the consequences for given trains of
six cars, doing so without access to the railway environment (ex-
periment 3). As the theory predicts, difficulty in rearranging trains
depends on the numbers of moves and cars to be moved, whereas
in formulating an algorithm and deducing its consequences, it
depends on the Kolmogorov complexity of the algorithm. Overall,
the results corroborated the use of a kinematic mental model in
creating and testing informal algorithms and showed that individ-
uals differ reliably in the ability to carry out these tasks.

cognitive processes | informal programming | problem solving | reasoning

he basis of much human thinking is the ability to make

mental simulations, that is, to imagine a process step-by-step,
so that it unfolds in the mind in the same temporal order as the
events in the actual process. This hypothesis is central to the
theory of mental models (1-4). The theory explains how indi-
viduals reason, but in tasks such as syllogistic or conditional
reasoning, rival theories offer alternative accounts (5, 6), and it is
not easy to decide among them empirically (7). The aim of the
present paper, accordingly, is to show that human reasoners use
kinematic mental models to simulate events. This concept of
mental models in simulations depends on three assumptions,
which derive from the model theory (8).

i) The mental models in simulations are iconic [i.e., their struc-
tures correspond to the structures of what they represent (9)].
Hence, a model of a spatial layout is itself spatial, and so the
relations between objects in the world are mirrored in the
spatial relations between them in the model (10).

ii) A kinematic model unfolds in time, and the sequence of
situations that it represents corresponds to the temporal or-
der of events in the world, real or imaginary (2, 11).

iii) Mental models can be schematic and more parsimonious
than visual images, which they underlie (1), because models
need not represent the world from a particular point of view
or represent all of its visual features (12). They represent
what is common to many possibilities differing in details,
and they yield faster inferences than images (13).

Some cognitive scientists are skeptical about the existence of
any mental representations (14, 15), some emphasize the role of
the environment in constraining, affording, or situating intelligent
behavior (16, 17), some allow representations only in the form of

www.pnas.org/cgi/doi/10.1073/pnas.1316275110

syntactically structured strings of symbols in a mental language
(18), and some to the contrary allow representations only in sen-
sory modalities (19). Our experiments were designed to illuminate
these various ideas about representations.

The model theory postulates that the formulation of algo-
rithms and computer programs depends on mental simulations.
Computer programming calls for knowledge of programming
languages, and so our studies focused on how naive individuals—
those who knew nothing about programming—formulated algo-
rithms in informal language. Programs often depend on a loop of
operations (e.g., “For each of the n elements in an input list, put
that element at the head of the output”). This “for-loop”
reverses the order of a list, such as (A B C). The first step places
A at the head of an otherwise empty output, the second step
puts B at the head of the output, and the third step puts C at
the head of the output. The result is (C B A). The same re-
versal can be carried out with a “while-loop” (e.g., “While the
input list contains at least one item, put the item at the head of
the input list to the head of the output”). While-loops are more
powerful than for-loops, because only they can compute certain
functions (20).

There have been investigations of deductions that call for
a repeated loop of mental operations (21, 22) and of novice
programmers’ grasp of loops (23, 24). Studies of algorithmic
thinking in nonprogrammers are rare, but they suggest that
nonprogrammers tend not to make spontaneous use of loops
(25-27).

To investigate the mental simulation of loops, we needed
a task suitable for individuals with no knowledge of pro-
gramming. We devised a simple computer environment of a toy
train, which mimics a Turing machine (20) but can be immedi-
ately grasped by naive participants including children. Unlike
classical problems, such as the Tower of Hanoi (28) or mis-
sionaries and cannibals (29), the railway environment can be

Significance

We developed a theory of how mental simulations underlie the
abductions of informal algorithms and deductions from these
algorithms. Experiments tested the theory’s predictions using
a task for the investigation of how naive individuals think about
algorithms. Participants solved problems, abduced and described
in their own words algorithms that solved such problems, and
deduced the consequences of algorithms. Difficulty in formu-
lating an algorithm and deducing its consequences depended on
the algorithm’s Kolmogorov complexity. Results corroborated
the use of kinematic mental models in creating and testing in-
formal algorithms and showed that individuals differ reliably in
the ability to carry out these tasks.

Author contributions: S.5.K., R.M., M.B., and P.N.J.-L. designed research; S.5.K., R.M., M.B.,
and P.N.J.-L. performed research; S.5.K. and P.N.J.-L. analyzed data; and S.S.K. and P.N.J.-L.
wrote the paper.

The authors declare no conflict of interest.

'"To whom correspondence may be addressed. E-mail: skhemlani@gmail.com or phil@
princeton.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1316275110/-/DCSupplemental.

PNAS Early Edition | 10of6

S
<=
= W
SS
va
ul.u
Q=
SE
-
S&
5o
w
a v

mailto:skhemlani@gmail.com
mailto:phil@princeton.edu
mailto:phil@princeton.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1316275110

[T

/

1\

=y

used to examine problems that differ in computational com-
plexity (30) as we describe below. Fig. 1 presents the environ-
ment as it is shown on a computer screen. It consists of a railway
track with a siding and labeled cars. Only three types of moves
are possible: a move from the left track to the right track; from
the left track to the siding, and from the siding to the left track.

We used the train environment to examine naive individuals’
performance of three distinct categories of tasks. (i) “Problem
solving” calls for individuals to rearrange a train, initially on the
left track, so that it is in a specified order on the right track. (i)
“Abductive reasoning” yields explanations (31), and we broaden
the term to cover reasoning that yields algorithms. Our task calls
for individuals to abduce algorithms that solve whole classes of
rearrangements, such as an algorithm that reverses the order of
a train of any length. (iii) “Deductive reasoning” calls for indi-
viduals to infer the consequences of an algorithm for a given
train. Here, we describe the model theory of these three tasks, its
computer implementation, and the results of three experiments
that corroborate its predictions about the three tasks. Finally, we
draw some general conclusions about mental representations
and simulation.

The Model Theory of Algorithms

To create an algorithm that solves any problem in a class of
problems, the first step is to solve representative instances in the
class. The second step is to use a simulation of the process of
their solution to abduce an algorithm that solves any problem in
the class. Additionally, to test the algorithm’s correctness, the
third step is to use the algorithm itself, or to simulate it, to de-
duce its consequences for some new problems in the class. Each
of these steps is a component of the model theory, and we have
implemented each component in a computer program, mAbducer
(for “model-based abducer,” available at http://mentalmodels.
princeton.edu/models). We describe the theory of its three com-
ponents in turn.

Problem Solving. Although there are only three possible types of
moves in rearrangement problems (R: move one or more cars to
the right track; S: move one or more cars to the siding; and L:
move one or more cars to the left track), trial and error soon
leads to an exponential number of possibilities. A problem such
as the Tower of Hanoi can be solved using means—ends analysis
in which one works backward from the desired goal, invoking
operations to reduce the difference between it and the current
state (32). A Sudoku puzzle, however, cannot be solved using
means—ends analysis, because, by design, it lacks a complete
description of the goal (33). Rearrangement problems can be
solved in a relatively unusual way, using a “partial” means—ends
analysis, in which individuals decompose the goal, starting with
the right-most car on the right track, and solve the problem of
arranging one or more adjacent cars into their required position
in a “piecemeal” way.

The input to mAbducer is the starting state of the track and
the required goal. It maintains a model of the current state of the
track and of the goal, and it solves the problem in a psychologi-
cally plausible way. The kinematic model that it uses to represent
the railway is highly schematic. For example, this model from
a kinematic sequence A[BA]BCC represents the car, A, on the

NN |) S | | |
A

left track, the cars BA on the siding as denoted by the square
brackets, and the cars BCC on the right track. The goal is repre-
sented as a single sequence of cars, which need to be on the right
track, with no cars on the siding or the left track (e.g., [JAABBCC).
The program, which implements a partial means—-ends analysis,
matches cars on the left track and the siding with those required to
be on the right track, updating the goal whenever at least one car is
moved to the right track until it solves the problem. The program’s
output is a trace of the successful sequence of moves.

The sequences of moves in the program’s solutions are
intended to be psychologically plausible. Hence, the relative
difficulty of a problem should depend on the number of moves in
the program’s solution, and the mean number of operands per
move. In a reversal problem, as the trace above shows, each
move after the first one has an operand of a single car. We can
contrast this case with the solution of a “palindrome” problem,
such as the rearrangement from ABCCBA[] to [JAABBCC. We
refer to the problem as a palindrome, because when the input is
a palindrome, as in this case, it is sorted into the order illustrated
above. The program’s solution calls for six moves and the total
number of operands (moved cars) is 10, which is greater than the
seven operands for the reversal problem. Even though the two
problems have the same number of moves, the theory, therefore,
predicts that the palindrome should be more difficult to solve
than the reversal. Number of operands has a family resemblance
to “relational complexity,” which concerns the number of argu-
ments in a relation and affects the difficulty of solving problems
(34). However, the number of operands concerns not the number
of arguments of an operator but whether the value of a single
argument is one or more cars. The two have in common that they
increase the processing load on working memory. A corollary is
that individuals should be likely to make unnecessary moves in
their solutions (i.e., they should often fail to solve problems
parsimoniously) because they move just one car instead of two
or more.

An alternative theoretical approach is that solution depends
instead, for example, on a proof procedure or on an algebraic
manipulation (35). The difficulty of a problem is then likely to
depend on the Levenshtein “edit” distance (36) (i.e., the number
of additions, deletions, or substitutions to obtain the goal string of
cars from the starting string of cars). This metric predicts the
difficulty of certain deductive tasks (37).

Abductions of Algorithms. Consider the task of formulating an
algorithm for reversing a train of any length (i.e., given an input
of a train of some arbitrary length, ABC...XYZ, the algorithm
should yield: ZYX...CBA). A train with a small number of cars
can be reversed with a small number of moves with no loops.
However, the example calls for reversing trains of any length,
and so a correct solution is bound to call for a loop of operations.
The model theory postulates that individuals can nevertheless
carry out the task. The process is abductive because it depends
on creating an explanation of how to get from the input to the
output (31). A putative solution can be tested using deduction,
but it is not discovered by deduction alone—no more than is the
discovery of a mathematical proof. According to the model
theory, the creation of an algorithm depends on three steps,
which are each modeled in the mAbducer program.

B

Fig. 1. The railway environment with an example of an initial configuration in which a set of cars is on the left side (A) of the track, the siding (B) can hold
one or more cars while other cars are moved to the right side of the track (C). The program allows individuals to select a car (e.g., the highlighted “E” car) and

to move it and all of the cars in front of it to the siding or the right track.

20f6 | www.pnas.org/cgi/doi/10.1073/pnas.1316275110

Khemlani et al.

http://mentalmodels.princeton.edu/models
http://mentalmodels.princeton.edu/models
www.pnas.org/cgi/doi/10.1073/pnas.1316275110

[T

/

1\

=y

The program’s first step is to simulate the solutions to two
instances of the problem to avoid ambiguity. It makes the sim-
ulations using the process described above. Because each move
concerns a set of one or more cars, which move together, the
process parallels the piecemeal simulation of the workings of
complex mechanisms (4).

The program’s second step is to recover the loop of moves,
and any moves that have to be performed before or after the
loop. The program finds the repeated sequences of at least two
moves. However, what determines the number of iterations of
the loop? Because the loop can be either a for-loop or else a
while-loop, there are two ways to proceed. One way is to solve
a pair of simultaneous linear equations to obtain the values of
a and b in n = a X length + b, where n is the number of iterations
of a for-loop, and length is the number of cars in the train.
Therefore, the two reversals above yield the values, 3 = 4a + b
and 4 = 5a + b, and the solution is that ¢ = 1 and that b = —1.
Hence, for a train of length 6, a for-loop can be constructed in
which the number of iterations of the loop for a reversal, #,
equals (1 x 6) — 1 = 5. Another way to ensure that a loop is
carried out for the required iterations is to determine the con-
ditions under which a while-loop halts. A simulation shows that
for a reversal the while-loop halts as soon as the siding is empty.
Other types of problems have different halting conditions. They
can be used in the description of a while-loop.

Next, mAbducer determines any moves that precede or follow
the loop. In the present example, the loop is preceded by a move,
S3 or S4, where the number of operands, again, depends on the
length of the train or in the simulation when there is only one car
remaining on the left track. After the end of the loop of moves,
a final R1 occurs. The loop in the present example is “static” in
that the number of operands for the moves in the loop remains
constant from one iteration to the next. In other rearrangement
problems, including those that use two stacks for their solution,
loops are “dynamic” [i.e., the number of cars in a move within
a loop varies depending on the length of the train and on
whether the loop is in its first iteration, its second iteration, and
so on (see the faro shuffle in SI Text SI)].

The program’s third step is to convert the structure of the
solution, including the loop, into a verbal description of the al-
gorithm. It translates both for-loops and while-loops into ex-
plicit descriptions in the programming language Lisp (see SI
Text S1 for the translations). It also translates while-loops into
informal English.

The theory predicts that naive individuals use simulations to
abduce algorithms, and so it should be easier for them to de-
tect the halting conditions needed for while-loops than to solve
the simultaneous equations needed for for-loops. They should,
therefore, be biased to use while-loops. The prime difficulty in
solving a problem is the number of moves and operands. How-
ever, the prime difficulty in abducing an algorithm should be the
complexity of the algorithm itself. We used Kolmogorov com-
plexity as the relevant metric (38, 39), and we applied it to
mAbducer’s while-loops, because of their psychological plausi-
bility. We used the numbers of characters in its algorithms in
Common Lisp (SI Text SI), multiplied by the number of bits in a
character [i.e., 7 for ASCII (American Standard Code for In-
formation Interchange)]. The first three problems in Table 1 call
for static loops, but the faro shuffle, which is the converse of the
“parity-sort,” calls for a dynamic loop. The faro shuffle of cards
(also known as a “riffle”) has interesting mathematical properties
relating to parallel computation and to the Fast Fourier trans-
form (40). The four algorithms, which we used in our experi-
ments, increase in complexity and in computational power—two
stacks are needed to solve faro shuffles. However, Kolmogorov
complexity is a simple general metric that captures this increase,
which is otherwise hard to quantify.

Deductions from Descriptions of Algorithms. The final task that we

investigated is to deduce the consequences of an algorithm.
mAbducer carries out this procedure to check the algorithm that

Khemlani et al.

it has abduced. For a train of a new length, it simulates the
consequences of the algorithm. An obvious sign of an erroneous
algorithm is that it halts before solving the problem. This type of
error has not occurred with mAbducer, and so it is capable
of automatic programming (for other methods, see 41, 42).
Suppose that naive individuals familiar with the railway envi-
ronment have to deduce the consequences of the reversal algo-
rithm for the train, ABCDEEF. They should carry out this task by
mentally simulating a sequence of operations. Of course, the task
of imagining this sequence could be too difficult for most indi-
viduals without access to pencil and paper, and so one aim of our
empirical research was to determine whether they could cope
with it. The primary factor that should cause difficulty in such
simulations, given that they are of comparable numbers of moves
and operands, is the Kolmogorov complexity of the algorithms.

We have outlined the model theory, and its computer imple-
mentation, of how individuals solve rearrangement problems,
how they use simulations to abduce algorithms to solve them,
and how they use simulations of the algorithms to deduce their
consequences. We now turn to empirical tests of the theory’s
predictions that number of moves and operands should de-
termine the difficulty of solving problems, whereas Kolmogorov
complexity should determine the difficulty of the abductions
and deductions.

Experiment 1: Problem Solving

The experiment examined the ability of 20 students to solve
rearrangement problems—a prerequisite for the subsequent
studies, because if individuals cannot solve these problems with
reasonable efficiency, they can hardly devise algorithms for their
solution. However, the experiment was also a test of the first
component of mAbducer—its procedure for solving rearrange-
ment problems. It uses a single algorithm to carry out a partial
means—ends analysis to decide what move to make next, which
may have one or more operands. The experiment allowed the
participants to manipulate the trains (on a computer screen), and
so they did not have to simulate the process of solution but could
carry out it directly. The aim was to determine whether naive
individuals could carry out the task, whether its difficulty
depended on mAbducer’s numbers of moves and operands, and
whether they tended to err in overlooking parsimonious moves.
The problems were presented using a graphical interface on
a computer and consisted of all 24 possible rearrangements of
trains containing four cars.

The important result was that naive individuals were able to
solve these problems with ease. They produced very few in-
correct solutions. We omitted the two extreme problems from
the statistical analysis, so that they would not bias the results
(i.e., the problem that required only one move to solution and
the problem that had a total of 12 operands). The participants’
mean number of moves to solve a problem increased with the
mAbducer’s number of moves (Page’s trend test; L = 1809.5; z =
8.47; P < 0.0001) and the mean number of moves also increased
with mAbducer’s number of operands (Page’s trend test; L = 276;
z = 5.69; P < 0.0001; see SI Text S2 for means and additional
analyses). In other words, as the number of operands increased,
so did the mean number of moves, independently of the number
of moves in a mAbducer’s solution. The latency results likewise
corroborated both of these effects. There was a reliable tendency
for the participants to make redundant moves. Every participant
made at least one redundant move, and we replicated this ten-
dency in a follow-up experiment designed to elicit such errors.
The main reason for redundant moves was perseveration. That
is, when the participants moved a single car from the siding to
the left track, they often overlooked the possibility of moving two
cars together from the left track to the right track. The partic-
ipants differed reliably in their ability to find parsimonious sol-
utions (Friedman test; x* = 45.05; P < 0.001), and the best
participant made a mean of 5.63 moves over all of the problems,
and the worst participant made a mean of 7.54 moves over all of
the problems. After the end of the experiment proper, the

PNAS Early Edition | 3 of 6

PSYCHOLOGICAL AND
COGNITIVE SCIENCES

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT

[T

/

1\

=y

Table 1.

Examples of four types of rearrangements, the total number of moves for each example of six cars, their

mean number of operands, their edit distance, and the Kolmogorov complexities of the Lisp functions containing

while-loops for rearranging trains of any length

Rearrangements of ABCDEF No. of moves

Mean no. operands

Edit distance Kolmogorov complexity

Reversal yields: FEDCBA 1
Palindrome yields: AFBECD

Parity sort yields: ACEBDF

Faro shuffle yields: ADBECF

ONON

1.3 6 1,288
1.6 4 1,295
1.4 4 1,519
1.3 4 1,771

participants had to think aloud as they solved two further
problems, and their protocols corroborated the use of a partial
means—ends analysis in which they focused on the successive
parts of the goal rather than the goal as a whole.

Experiment 2: Abduction of Algorithms

The experiment examined the model theory of how naive indi-
viduals abduce informal algorithms that solve rearrangement
problems. They should rely on mental simulations of solutions of
the problems. The experiment accordingly tested three empirical
predictions. First, algorithms to solve rearrangements of trains of
eight cars should be easier to create than those for trains of any
length. The former do not require loops of operations, and so
they should be simpler to deal with than the latter. Second, the
difficulty in formulating algorithms should depend on their
Kolmogorov complexity, not on metrics such as edit distance or
number of moves (Table 1). Third, if participants use mental
simulation, then they should be biased in favor of while-loops
rather than for-loops, because they can observe the condition on
the track when a while-loop ends, whereas the abduction of a for-
loop calls for mental arithmetic to solve simultaneous equations.
The experiment examined the three categories of problems with
static loops, namely, reversals, palindromes, and parity sorts,
which call for-loops with a constant number of operands in their
instructions (SI Text $3). The 20 participants, who were not
programmers, first solved five practice problems (different from
those in the experiment) using the railway environment. The
environment was then switched off, and they had to create
algorithms for solving the three categories of problems either for
trains of eight cars or for trains of any length. The problems of
these two types were presented in separate blocks in two coun-
terbalanced orders to make a total of six trials. The participants
wrote their algorithms in informal language; a typical example of
a participant’s correct algorithm for a reversal of trains of any
length is as follows: “Move all cars to the right of A to the side.
Then move A to the right. Shift B to left, then right. Shift C to
left, then right...repeat until pattern is reached.” It is based on
a while-loop (for other examples of informal algorithms, see SI
Text §3). Because solutions were near ceiling for the eight car
trains (92% correct), Fig. 2 presents the percentages of correct
algorithms and the times the participants took to produce them
(whether correct or not) only for trains of any length. The results
corroborated the three predictions of the model theory. First, it
was easier to formulate algorithms for trains of eight cars (92%
correct) than for trains of any length (52% correct; Wilcoxon
test; z = 3.29; P < 0.001). Second, the three types of rear-
rangements yielded the predicted trend in accuracy [i.e., rever-
sals (90% correct), palindromes (70% correct), and parity sorts
(63% correct); Page’s trend test; L = 256.5; z = 2.60; P < 0.005].
Participants created accurate algorithms more often when they
tackled eight car trains in the first block than when they tackled
trains of any length in the first block (82% vs. 65%; Mann—
Whitney test; z = 1.70; P < 0.05). However, there was a three-way
interaction (Mann-Whitney test; z = 1.94; P < 0.05) in that eight
car problems were close to ceiling regardless of block or type of
problem, whereas algorithms for trains of any length were af-
fected by both variables. Once again, the latencies showed the
same pattern of results (SI Text S4). Third, analyses of the
algorithms revealed that the participants used reliably more

40of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1316275110

while-loops than for-loops. For trains of eight cars, 61% of
correct algorithms embodied loops (38% while-loops and 23%
for-loops). For trains of any length, correct solutions were bound
to use loops (82% while-loops and 18% for-loops). These data
are based on the 18 participants who formulated at least one
correct algorithm for trains of any length; 12 of them used more
while-loops than for-loops and there were 3 ties (binomial test;
P < 0.02). The bias toward while-loops was greater for trains of
any length (Wilcoxon test; z = 2.4; P < 0.01). The use of while-loops
had a reliable correlation with accuracy (r = 0.43; P < 0.005),
whereas the use of for-loops tended toward a negative correla-
tion with accuracy (r = —0.26; P = 0.09). Finally, the participants,
who knew nothing about programming, differed overall in their
ability to formulate correct algorithms (Friedman nonparametric
analysis of variance; x> = 35.96; P = 0. 01). The most accurate
participant was correct on every problem, whereas the least ac-
curate participant was correct for less than 20% of the problems.

Experiment 3: Deduction from Algorithms

The model theory postulates that when naive individuals deduce
the consequences of carrying out an algorithm on a particular
train, they rely on simulating the sequence of the algorithm’s
operations. Hence, according to the theory, the difficulty of the
task should depend, not on the number of moves to be carried
out, but on the Kolmogorov complexity of the algorithm. The
experiment tested this prediction using while-loops for all four
types of problems in Table 1 (i.e., reversals, palindromes, parity
sorts, and faro shuffles). Each of them, however, was described in
exactly the same number of words. The participants, who were
not programmers, first watched a movie that explained and
illustrated the railway environment. They then had no access to
this environment for the deduction task, and they were not
allowed to write anything down. After two simple practice
problems, they had to deduce the consequences of the descrip-
tions of algorithms on a given train of six cars. They did the task
twice for each of the four types of algorithms, once with trains

A B
«— 1.0 4 1.0
(&)
g
O
[&]
[
o _ _
= 0.5 0.5
o
o
o
—
* ;
0.0 1 0.0 1

l T T l T T

o «©
&‘5 ﬂ%
St *od M 0, o™

Fig. 2. The proportions of correct algorithms in experiment 2 for trains of
any length depending on the type of rearrangement and whether the
participants carried out problems of trains of any length in the first block (A)
or the second block (B).

Khemlani et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1316275110

[T

/

1\

=y

labeled with letters and once with trains labeled with numbers.
The descriptions of the algorithms were in Polish, the native
language of the participants, and they were not the minimal
descriptions in Table 1 but were rewritten to be as clear as
possible and to contain the same number of words (SI Text S5).

The percentages of correct deductions for the 43 participants
who produced at least one complete answer corroborated the
model theory’s predictions. The participants were correct for 41%
of reversals, 35% of palindromes, 32% of parity sorts, and 23% of
faro shuffles (Page’s L test; z = 1.94; P < 0.03). The latencies of
correct deductions also supported this trend for those participants
who were correct on at least one deduction of each algorithm
(i.e., 77 s for reversals, 130 s for palindromes, 106 s for parity sorts,
and 151s for faro problems). The means are slightly misleading
because the stochastic increase in latencies for individual partic-
ipants corroborated the predicted trend in a highly reliable way
(Page’s L; z = 3.55; P < 0.0005). The number of moves in the
simulations, the number of operands, or the edit distance (Table
1) cannot explain the trends in accuracy and latency. The par-
ticipants differed overall in their ability to make correct deduc-
tions (Friedman nonparametric analysis of variance; y* = 17.29;
P < 0.001). The most accurate participants got all eight problems
correct; the least accurate got none of them correct.

General Discussion

In reasoning, the mind is fallible about both logical and probabi-
listic conclusions (43-45), but it has a striking ability to make
mental simulations. They can be static mental models or kinematic
sequences of them in which the sequences represent temporal
orders (11). The model theory that we outlined in this article, and
its computer implementation in mAbducer, show how such sim-
ulations can underlie the abduction of algorithms and the de-
duction of their consequences—at least in the case of a seemingly
simple environment of toy trains. In fact, unlike, say, syllogistic
inferences (7), the number of rearrangement problems is un-
bounded, and some of them call for considerable computational
power. Faro shuffles, as illustrated in Table 1, call for the use of
two stacks, so that a car shifted from the siding to the left track has
to be shifted back to the siding again. The computational power
needed here—two stacks—exceeds the power embodied in a well-
known conjecture about the syntax of natural languages (46).

Individuals readily solve problems in the railway domain when
they manipulate the cars on the track. The difficulty of solving
these problems, as experiment 1 showed, depends on mAbducer’s
number of moves in a solution but also independently on the
number of cars in these moves. Participants often overlooked
parsimonious moves of more than one car at a time. In the ex-
periment, they did not have to simulate the moves because they
could use the track itself.

The ability to solve problems is a prerequisite for abducing
algorithms for their solution. The mAbducer program depends
on simulating solutions using schematic models that it updates
kinematically. Given that a loop of operations has to be re-
peated, it formulates a while-loop from its observations of the
halting condition in the simulations. The program can also de-
scribe a for-loop and determine the number of times that the
loop should iterate from its solution of a pair of simultaneous
equations. The task of abducing algorithms is difficult, and, at
first, we doubted whether naive individuals would be able to
perform it because previous studies of informal programming
showed that they avoided the use of loops (25-27). However,
without access to the railway environment, as experiment 2
showed, they were able to simulate loops of operations, to figure
out what was going on in them, and to describe them in informal
algorithms. The participants had the predicted bias toward while-
loops rather than for-loops. Likewise, the difficulty of the four
types of rearrangements depended, not on the numbers of moves
or cars to be moved, but on the Kolmogorov complexity of the
Lisp algorithms that mAbducer creates (Table 1).

Prudent programmers debug their code by deducing its con-
sequences for specific inputs. This task also provided evidence for

Khemlani et al.

the role of simulation. With no access to the railway environment
and without being allowed to write anything down, naive indi-
viduals in experiment 3 were able to infer the results of carrying
out the four types of algorithms on trains containing six cars.
As the theory predicts, the difficulty of making the deductions
depended, not on numbers of moves or cars to be moved, but on
the complexity of the algorithms, which varied from reversing the
order of cars to the more complex faro shuffle (Table 1).

The evidence we have reported supports the theory of the
simulation using kinematic mental models. It provides a unified
account of the abduction of algorithms and the deductions of
their consequences. As far as we know, no other theory of naive
reasoning about algorithms exists. Probabilities hardly enter the
process and so Bayesian theories of reasoning may be irrelevant
(5). However, a theory could be developed from an axiomat-
ization of the railway domain in logic (6). The difficulties for this
approach are to frame a complete set of axioms in a way that
captures both what changes and what does not change with each
move (47), and to ensure that the resulting system makes the
correct predictions about human performance.

As we mentioned in the Introduction, psychologists hold al-
most all possible views about mental representations, from the
claim that they are not needed for intelligent behavior (16) to the
competing views that they are either abstract strings of symbols
(18) or rooted in sensory modalities (19). Our results seem im-
possible to explain without invoking mental representations, and,
most plausibly, kinematic models with an iconic structure that
corresponds to the railway environment. These models may be
mapped into visual images or they may be as abstract as they are
in mAbducer (4, 12). Individuals can reason from models with-
out forming visual images from them, and evidence suggests that
images impede reasoning (13). Of course, it does not follow that
all reasoning depends on simulating the world: a person can
learn to use formal rules of inference. Likewise, it does not
follow that all mental representations are iconic models (48).
The model theory itself relies on another type of representation
to capture the meaning of an assertion, which it then uses to
construct models (49).

Mathematicians, logicians, and computer programmers reason
about the repeated loops of operations in algorithms. Previous
studies have examined how novice programmers try to formulate
such algorithms in a programming language (e.g., refs. 23-27).
However, as computer scientists often complain, no valid test
exists to predict the ability of naive individuals as computer
programmers (50). The results show that individuals differ re-
liably in their ability to abduce informal algorithms and to de-
duce the consequences of these algorithms. It remains to be seen
whether such tasks, which depend on mental simulation, are
reliable predictors of ability in programming. However, the evi-
dence corroborates the theory that naive individuals use mental
simulations to create informal algorithms, even those containing
loops of operations, and to infer their consequences.

Methods

Experiment 1. Twenty undergraduate students at Princeton University served
as participants (mean age of 19.7 y), and none had had any prior training in
logic or computer science. Participants gave informed consent, and the study
was approved by the Princeton University Institutional Review Panel for
Human Subjects. The participants were tested individually and carried out the
experiment on a personal computer using LispWorks Version 4.4. They
interacted with the system using the mouse and the keyboard of the com-
puter. They were shown a 3-min instructional video that guided them
through the elements of the railway environment and that presented the
instructions. The problems showed the initial state with the cars on the left
track and the required goal state with the cars on the right track. The par-
ticipants made moves using a mouse to control a graphical interface. The key
instruction stated that they should try to solve each problem with as few
moves as possible. They acted as their own controls and carried out all 24
problems, which were presented in a different random order to each of them.

Experiment 2. Twenty participants from the same population as before were
tested individually. The session began with five practice problems akin to

PNAS Early Edition | 5of 6

PSYCHOLOGICAL AND
COGNITIVE SCIENCES

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT

those in experiment 1, which the participants had to solve by interacting with
the railway system. These problems were unrelated to the experimental
problems, and each of them used a train of six cars with a solution of eight
moves. The experiment proper followed, and the participants’ task was to
type out a procedure that would solve each problem, but they could not
interact with the railway environment or write anything down. They carried
out two blocks of trials, one with problems for trains of eight cars and one
with problems for trains of any length (i.e., a total of six trials). The blocks
were presented in a counterbalanced order to two groups of participants.
The order of the three types of rearrangement was randomized for each
participant within each block. For the problems with trains of any length,
the participants were told that a car containing an ellipsis stood in place for
any number of cars that had the same pattern. They were free to use their
own words in any way that they wanted. Two independent judges (one of
the authors and a research assistant) scored the informal algorithms in terms
of whether were correct or incorrect and whether they contained a while-
loop or a for-loop. The two judges agreed 93% about the accuracy of the
algorithms (111 out of 120 problems; Cohen'’s x = 0.82). The judges agreed
83% about the nature of the loops in the algorithms (99 out of 120 prob-
lems; Cohen’s k = 0.73). A third independent judge resolved the discrepant
evaluations in both cases.

Experiment 3. Fifty-four undergraduate psychology students from Warsaw
University of Social Sciences and Humanities took part in the experiment
(mean age 21.6 y), and because logic is obligatory in most Polish universities,

1. Shepard RN, Metzler J (1971) Mental rotation of three-dimensional objects. Science

171(3972):701-703.

. Johnson-Laird PN (1983) Mental Models (Cambridge Univ Press, Cambridge, UK).

. Bower GH, Morrow DG (1990) Mental models in narrative comprehension. Science

247(4938):44-48.

4. Hegarty M (2004) Mechanical reasoning by mental simulation. Trends Cogn Sci 8(6):

280-285.
. Oaksford M, Chater N (2007) Bayesian Rationality: The Probabilistic Approach to
Human Reasoning (Oxford Univ Press, New York).

. Rips LJ (1994) The Psychology of Proof (MIT Press, Cambridge, MA).

. Khemlani S, Johnson-Laird PN (2012) Theories of the syllogism: A meta-analysis. Psy-

chol Bull 138(3):427-457.

. Johnson-Laird PN (2010) Mental models and human reasoning. Proc Natl Acad Sci USA

107(43):18243-18250.

. Peirce CS (1931-1958) Collected Papers of Charles Sanders Peirce, eds Hartshorne C,

Weiss P, Burks A (Harvard Univ Press, Cambridge, MA), Vol 4.

10. Johnson-Laird PN, Byrne RMJ (1991) Deduction (Erlbaum, Hillsdale, NJ).

11. Schaeken WS, Johnson-Laird PN, d'Ydewalle G (1996) Mental models and temporal
reasoning. Cognition 60(3):205-234.

12. Hegarty M, Stieff M, Dixon BL (2013) Cognitive change in mental models with ex-
perience in the domain of organic chemistry. J Cogn Psychol 25(2):220-228.

13. Knauff M, Fangmeier T, Ruff CC, Johnson-Laird PN (2003) Reasoning, models, and
images: Behavioral measures and cortical activity. J/ Cogn Neurosci 15(4):559-573.

14. Margolis E, Laurence S (2007) The ontology of concepts—abstract objects or mental
representations? Nods 41(4):561-593.

15. Ramsey WM (2007) Representation Reconsidered (MIT Press, Cambridge, MA).

16. Brooks R (1991) Intelligence without representation. Artif Intell 47(1-3):139-160.

17. Thelen E, Smith LB (1994) A Dynamic Systems Approach to the Development of
Cognition and Action (MIT Press, Cambridge, MA).

18. Pylyshyn Z (2003) Return of the mental image: Are there really pictures in the brain?
Trends Cogn Sci 7(3):113-118.

19. Barsalou LW (2008) Embodied Grounding: Social, Cognitive, Affective, and Neuro-
scientific Approaches, eds Semin GR, Smith ER (Cambridge Univ Press, New York),
pp 9-42.

20. Rogers H (1967) Theory of Recursive Functions and Effective Computability (McGraw—

Hill, New York).

. Cherubini P, Johnson-Laird PN (2004) Does everyone love everyone? The psychology

of iterative reasoning. Think Reason 10(1):31-53.

22. Mazzocco K, Cherubini AM, Cherubini P (2013) On the short horizon of spontaneous
iterative reasoning in logical puzzles and games. Organ Behav Hum Decis Process
121(1):24-40.

23. Kurland DM, Pea RD (1985) Children’s mental models of recursive LOGO programs.
J Educ Comput Res 1(2):235-244.

24. Anderson JR, Pirolli P, Farrell R (1988) The Nature of Expertise, eds Chi M, Glaser R,
Farr M (Erlbaum, Hillsdale, NJ), pp 153-183.

25. Miller L (1974) Programming by non-programmers. Int J Man Mach Stud 6(2):237-260.

26. Miller L (1981) Natural language programming: Styles, strategies, and contrasts. IBM
Syst J 20(2):184-215.

w N

w1

~N o

o]

©

2

=

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1316275110

over half of them had taken at least one course in logic. Twenty-two par-
ticipants were paid a small sum (equivalent to $2) for participating in the
experiment, and the rest took part in exchange for course credit. This dif-
ference had no reliable effect on either of the dependent variables, and so we
pooled the data from those two conditions. Each participant carried out two
versions of the reversal, palindrome, parity, and faro problems. One version
had cars labeled with letters, and one version had cars labeled with numbers.
Each description of an informal algorithm started and ended with the same
phrases, and each description contained 109 words in Polish (see S/ Text 54 for
the original descriptions and translations into English). The descriptions
were presented in one of eight counterbalanced orders allocated at random
to the participants. The experiment was presented on a computer screen and
the students typed in their answers. They were instructed not to type their
response until they knew the position of all six cars on the right track, and
they were not allowed to write anything down.

ACKNOWLEDGMENTS. We thank Ruth Byrne, Sam Glucksberg, Adele Goldberg,
Geoffrey Goodwin, Louis Lee, David Lobina, Max Lotstein, Paula Rubio, and
Carlos Santamaria for advice. This work was supported by a National Sci-
ence Foundation Graduate Research fellowship (to S.S.K.), Polish Ministry
of Science and Higher Education Grant 2836/01/E/560/5/2012 (to R.M.), by
Italian Ministry of Education University and Research Grant 2010RP5RNM
(to M.B.) to study problem solving and decision making, and by National
Science Foundation Grant SES 0844851 (to P.N.J.-L.) to study deductive and
probabilistic reasoning.

27. Pane JF, Ratanamahatana CA, Myers BA (2001) Studying the language and structure
in non-programmers’ solutions to programming problems. Int J Hum Comput Stud
54(2):237-264.

28. Simon HA (1975) The functional equivalence of problem-solving skills. Cognit Psychol
7(2):268-288.

29. Simon HA, Reed SK (1976) Modeling strategy shifts in a problem-solving task. Cognit
Psychol 8(1):86-97.

30. Hopcroft JE, Ulliman JD (1979) Introduction to Automata Theory, Languages, and
Computation (Addison-Wesley, Reading, MA).

31. Peirce CS (1955) Philosophical Writings of Peirce, ed Buchler J (Dover, New York).

32. Newell A (1990) Unified Theories of Cognition (Harvard Univ Press, Cambridge, MA).

33. Lee NYL, Goodwin GP, Johnson-Laird PN (2008) The psychological problem of Sudoku.
Think Reason 14(4):342-364.

34. Halford GS, Wilson WH, Phillips S (1998) Processing capacity defined by relational
complexity: Implications for comparative, developmental, and cognitive psychology.
Behav Brain Sci 21(6):803-831, discussion 831-864.

35. Anderson JR, Betts S, Ferris JL, Fincham JM (2011) Cognitive and metacognitive ac-
tivity in mathematical problem solving: Prefrontal and parietal patterns. Cogn Affect
Behav Neurosci 11(1):52-67.

36. Levenshtein V (1966) Binary codes capable of correcting deletions, insertions, and
reversals. Sov Phys Dokl 10(8):707-710.

37. Ragni M, Khemlani S, Johnson-Laird PN (2013) The evaluation of the consistency of
quantified assertions. Mem Cognit, in press.

38. Li M, Vitanyi P (1997) An Introduction to Kolmogorov Complexity and Its Applications
(Springer, New York), 2nd Ed.

39. Chater N, Vitanyi P (2003) Simplicity: A unifying principle in cognitive science? Trends
Cogn Sci 7(1):19-22.

40. Diaconis P, Graham RL, Kantor WM (1983) The mathematics of perfect shuffles. Adv
Appl Math 4:175-196.

41. Koza JR (1994) Genetic Programming II: Automatic Discovery of Reusable Programs
(MIT Press, Cambridge, MA).

42. Flener P, Yilmaz S (1999) Inductive synthesis of recursive logic programs: Achieve-
ments and prospects. J Log Program 41(2-3):141-195.

43. Johnson-Laird PN (2006) How We Reason (Oxford Univ Press, New York).

44. Nickerson RS (2008) Aspects of Rationality (Psychology Press, New York).

45. Khemlani SS, Lotstein M, Johnson-Laird PN (2012) The probabilities of unique events.
PLoS ONE 7(10):e45975.

46. Gazdar G (1981) On syntactic categories. Philos Trans R Soc Lond B Biol Sci 295(1077):
267-283.

47. McCarthy J (1986) Applications of circumscription to formalizing common-sense
knowledge. Artif Intell 28(1):89-116.

48. Khemlani S, Orenes |, Johnson-Laird PN (2012) Negation. J Cogn Psychol 24(5):
541-559.

49. Khemlani S, Johnson-Laird PN (2012). The processes of inference. Argument &
Computation 4(1):4-20.

50. Bornat R, Dehnadi S, Simon (2008) Mental models, consistency and programming
aptitude. Proceedings of the Tenth Australasian Computing Education Conference
(ACE 2008), CRPIT, eds Simon, Hamilton M (Australian Computer Society, Wollongong,
Australia), Vol 78, pp. 53-61.

Khemlani et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316275110/-/DCSupplemental/pnas.201316275SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1316275110

[T

/

D\

v
ar

Supporting Information

Khemlani et al. 10.1073/pnas.1316275110

SI Text S1

Table S1 below presents the for-loops in Lisp for solving three
categories of general problem, and the while-loops in both Lisp
and informal language.

SI Text S2

Nonparametric trend analyses (Page’s trend tests) for the effect
on the moves and operands in mAbducer’s solutions on partic-
ipants moves in experiment 1 are provided in the main text. Fig.
S1 below provides the means of the moves and response times.
Follow-up regression analyses revealed that both the moves in
mAbducer’s solutions (b = 0.98; #(441) = 21.36; P < 0.0001; Fig.
S1A4) and the number of operands in the solutions (b = 0.16;
1(441) = 4.28; P < 0.0003; Fig. S1B) were significant predictors of
the moves participants made. Likewise, the moves in mAbducer’s
solutions (b = 2.98; #(441) = 8.91; P < 0.0001; Fig. S1C) and the
number of operands in the solutions (b = 1.08; #(441) = 3.90; P <
0.0002; Fig. S1D) significantly predicted participants’ response times.

SI Text S3

Table S2 below presents examples of the informal algorithms that
the participants in Experiment 2 abduced.

SI Text S4

Experiment 2 recorded participants’ response times to abduce
informal algorithms for rearrangement problems. Their response
times mirrored their accuracies. Algorithms for problems that
concerned trains of eight cars took less time to formulate than
those that concerned trains of any length (137 s vs. 198 s; Wil-
coxon test; z = 2.68; P < 0.005). Algorithms showed a reliable
increasing trend in times to formulate over reversals (109 s),
palindromes (152 s), and parity sorts (247 s) regardless of block or
the length of the trains (Page’s trend test; L = 262.5;z = 3.55; P <
0.005). Furthermore, the order of blocks had comparable effects
on latencies [e.g., participants took less time to write algorithms
for problems that concerned trains of eight cars than for prob-
lems that concerned trains of any length, particularly when they
encountered trains of eight cars second (Mann-Whitney; z =
2.50; P < 0.05)]. Fig. 2 in the main text reports the analyses of
accuracies in experiment 2 only for problems for trains of any
length. Fig. S2 shows the response times for trains of any length.

Participants in the study carried out problems that concerned
trains of any number of cars, as well as trains of eight cars. When
participants had to carry out problems of trains of eight cars, their
accuracies were uniformly high (Fig. S3). Therefore, there was
a significant three-way interaction (Mann—Whitney test; z = 1.94;
P < 0.05): problems that concerned trains of eight cars were close
to ceiling regardless of block or the type of problem, but problems
that concerned trains of any length were affected by both variables.

SI Text S5

Below are the problems used for the deduction study in exper-
iment 3 in the original Polish, followed by their English trans-
lations. Students proficient in both English and Polish checked
the translations. The descriptions in Polish were all 109 words in
length.

Polish Description of the Reversal Problem. “Na lewym torze znaj-
duje sie 6 wagonéw ustawionych w kolejnosci ABCD E F (A
jest pierwszy od lewej, F jest pierwszy od prawej). Przesun w
mysli wszystkie te wagony na tor po prawej stronie wykonujac
nastepujace czynnosci:

Khemlani et al. www.pnas.org/cgi/content/short/1316275110

Przesun wszystkie wagony, ktére znajduja si¢ w pociagu stojacym na
lewym torze z wyjatkiem ostatniego z nich na bocznice.
Tak dlugo, jak na bocznicy jest co najmniej jeden wagon:
przesun jeden wagon z lewego toru na prawy tor,
przesun jeden wagon z bocznicy na lewy tor.
I na koniec przesun jeden wagon z lewego toru na prawy tor.

Jaka jest teraz kolejnos¢ wagonéw na prawym torze?
Jezeli juz wiesz, to wpisz ponizej swoja odpowiedz.”

English Translation of the Reversal Problem. “On the left track there
are six cars in the order A B CD E F (A is first on the left and F
is at the end on the right). Move in your mind all the cars to the
right track by following actions:

Move all but one cars that are in the train on the left track to the siding.
As long as there is at least one car on the siding:

move one car from the left track to the right track

move one car from the siding to the left track
Finally move one car from the left track to the right track.

What is the order of cars on the right track now?
If you know it now, write your answer below.”

Polish Description of the Palindrome Problem. “Na lewym torze
znajduje si¢ 6 wagonéw ustawionych w kolejnosci ABCD E F
(A jest pierwszy od lewej, F jest pierwszy od prawej). Przesun w
mysli wszystkie te wagony na tor po prawej stronie wykonujac
nastepujace czynnosci:

Przesunt dwa pierwsze wagony z pociagu, ktory stoi teraz na lewym
torze na bocznicg.
Tak dlugo, jak na lewym torze sa co najmniej trzy wagony:
przesun dwa wagony z tych, ktére stoja na lewym torze na
prawy tor,
przesun jeden wagon z bocznicy na lewy tor.
A na koniec przesun dwa wagony z lewego toru na prawy tor.

Jaka jest teraz kolejno$¢ wagonéw na prawym torze?
Jezeli juz wiesz, to wpisz ponizej swoja odpowiedz.”

English Translation of the Palindrome Problem. “On the left track
there are six cars in the order A B CD E F (A is first on the left
and F is at the end on the right). Move in your mind all the cars
to the right track by following actions:

Move two first cars from the train that is now on the left track to the
siding.
As long as there are at least three cars on the left track:
move two cars from those that are standing on the left track to
the right track
move one car from the siding to the left track
And finally move two cars from the left track to the right track.

What is the order of cars on the right track now?
If you know it now, write your answer below.”

Polish Description of the Parity Sort Problem. “Na lewym torze
znajduje si¢ 6 wagonéw ustawionych w kolejnosci A B C D E F.
(A jest pierwszy od lewej, F jest pierwszy od prawej). Przesun w
mysli wszystkie te wagony na tor po prawej stronie wykonujac
nastepujace czynnosci:

Tak dtugo, jak na lewym torze sa co najmniej trzy wagony:
przesun jeden wagon z lewego toru na prawy tor,
przesun jeden wagon z lewego toru na bocznice.
Na koniec przesun jeden wagon z lewego toru na prawy tor,
przesun wszystkie wagony znajdujace si¢ na bocznicy na lewy tor,
przesun wszystkie wagony z lewego toru na prawy tor.

10f4

www.pnas.org/cgi/content/short/1316275110

[T

/

1\

=y

Jaka jest teraz kolejnos¢ wagondéw na prawym torze?
Jezeli juz wiesz, to wpisz ponizej swoja odpowiedz.”

English Translation of the Parity Sort Problem. “On the left track
there are six cars in the order A B CD E F (A is first on the left
and F is at the end on the right). Move in your mind all the cars
to the right track by following actions:

As long as there are at least three cars on the left track:
move one car from the left track to the right track
move one car from the left track to the siding

Finally move one car from the left track to the right track:

move all cars that are on the siding to the left track

move all cars from the left track to the right track

What is the order of cars on the right track now?
If you know it now, write your answer below.”

Polish Description of the Faro Problem. “Na lewym torze znajduje si¢

6 wagondéw ustawionych w kolejnosci A B C D E F (A jest pierwszy

od lewej, F jest pierwszy od prawej). Przesun w mysli wszystkie te

wagony na tor po prawej stronie wykonujac nastepujace czynnosci:
Tak dhugo, jak liczba wagonéw na lewym torze jest parzysta i wieksza
niz dwa:

przesun jeden wagon z prawej potowy pociagu na prawy tor,
przesun reszte prawej potowy pociagu na bocznice,
przesun jeden wagon z lewego toru na prawy tor,
przesun wagony z bocznicy na lewy tor.
Potem przesun ostatnie dwa wagony z lewego toru na prawy tor.

Jaka jest teraz kolejno$¢ wagonow na prawym torze?
Jezeli juz wiesz, to wpisz ponizej swoja odpowiedz.”

English Translation of the Faro Problem. “On the left track there are
six cars in the order AB CD E F (A is first on the left and F is at
the end on the right). Move in your mind all the cars to the right
track by following actions:

As long as the number of cars on the left track is even and bigger
than two
move one car from the right half of the train to the right
track
move the rest of the right half of the train to the siding
move one car from the left track to the right track
move the cars from the siding to the left track
Then move two last cars from the left track to the right track.

What is the order of cars on the right track now?
If you know it now, write your answer below.”

A 10 1 B 10+

8 8 -
7]
3 6- 6 -
3
§ 4 - 4 -

2 24

o] mm o mm

1 1 1 1 1 1 1 1 1 1 1
c 14 5 6 7 8 p 4 6 8 10 12
»
2 40+ 40
© 30 - 30
£
o 20 - 20
(7]
7
o 0+ 0 -
m 1 1 1 1 1 1 1 1 1 1 1
1 4 5 6 7 8 4 6 8 10 12

Moves in mAbducer's solutions

Operands in mAbducer's solutions

Fig. S1. The mean numbers of moves (A and B) and mean response times in seconds (C and D) in experiment 1 in 24 rearrangements depending on
mAbducer’s number of moves (A and C) and the total number of operands (cars) in moves (B and D) in its solutions of the rearrangements.

A.
=300
=
200
£
(0]
€ 100 -
o
o
n
i
0_
T T T
2 e S
G AR
@' e ot

B.

300 -
200
100
04

T T T

2 &
e(‘b 0((\ . <0
S

Fig. S2. The mean response times in experiment 2 for trains of any length depending on the type of rearrangement and whether the participants carried out

problems of trains of any length in the first block (A) or the second one (B).

Khemlani et al. www.pnas.org/cgi/content/short/1316275110

20f4

www.pnas.org/cgi/content/short/1316275110

>
@

—~300 —~300
4+ 1.0 »n — 1.0 %)
[} c [} c
[0 = [0 =
= @» = @»
8 @ 200 8 @ 200
2 E 2 E
.g 0.5 o .g 0.5 9
s S 100+ <3 S 100+
<] o o Q
o 3 o 3

0.0 N 0.0 N

0
&0 o &0 * &° o &0 \s%
?\6 ? ? (\ ?\ ? ? (\ ?\G ? ? (\ ?\ ? ?

Fig. S3. The percentages of correct algorithms for trains of eight cars and their mean latencies (in seconds) depending on the type of rearrangement and
whether the participants carried out problems of trains of eight cars after they’d carried out problems for trains of any length (A) or before they'd carried out
problems of trains of any length (B).

Table S1. Loops for computing solutions to three categories of general problems
While-loops

For-loops Lisp Informal English

Reversals: (e.g., ABCDEFGH 9HGFEDCBA)

(setf track (S (+ (* 1 len) -1) (setf track (S (+ (* 1 len) -1) track))
(loop for i from 1 to (loop while (> (length (second track)) 0) g
do (setf ¢ do (setf ¢ k (R 1 track))
(setf (setf (L ~k)))
(setf track (R 1 track)) (setf track (R 1 track))
Palindromes: (e.g., ABCDDCBA - AABBCCDD)
(setf track (S (+ (* 1/2 len) -1) track)) (setf track (S (+ (* 1/2 len) -1) track)) i
(loop for i from 1 to (+ (* 1/2 Ien) -1) (loop while (> (length (first) 2) rack
do (setf track (R 2 tra)) do (setf track (R 2
(setf track (L 1 track))) (setf track (L 1
(setf track (R 2 track)) (setf track (R 2 track))
Parity sorts: (e.g., ABCDEFGH - ACEGBDFH)
(loop for i from 1 to (+ (* 1/2 len) -1) (loop while (> (1ength (first track 2)
do (setf k (R 1 track)) do (setf < (R 1 trac
(setf track (S 1 track)) (setf (S 1 track)
(setf track (R 1 track)) (setf track (R 1 track))
“ (setf track (L (+ (* 1/2 len) -1) (setf t (L (+ (* 1/2 len) -1) track)) left
(setf track (R (+ (* 1/2 len) 0) track)) (setf track (R (+ (* 1/2 len) 0) track))

Problem categories included reversals, palindromes, and parity sorts, using for-loops, and while-loops and their informal description (from the output of the
computer program for abducing them, mAbducer). Blue text denotes functions specified in Common Lisp [e.g., (+ 1 2)]. Red text denotes functions specific to
the railway environment introduced in the paper [e.g., (R 1) track instructs the system to move one car to the right track]. Italicized teal text denotes variables
(e.g., track).

Khemlani et al. www.pnas.org/cgi/content/short/1316275110 30f4

www.pnas.org/cgi/content/short/1316275110

[T

/

1\

BN AS DNAS P

Table S2. Examples of the algorithms that participants formulated in experiment 2
Type of loop
Subject Algorithm Type of problem in algorithm
S3 | would first move the H car over to the right track. Then | would move the G car down to the siding Eight-car train None
track and then move the F car to the right track. Then | would bring the E car down to the siding (parity sort)
track and move the D car over to the right track. Then | would move the C car down to the siding
track and then move the B car over to the right track. Then | would move the C, E, and G cars back
up to the left track together, and then move them all over to the right track along with the A car.
S5 (1) Shift the A car (and all of the cars to the right of that car) to the side track; (2) move the A car back Eight-car train For-loop
to the left track; (3) move the A car to the right track; (4) follow steps 2 and 3 for each individual car (reversal)
B, C, D, E, F, G, and H in that order.
S2 Move all cars to the right of A to the side. Then move A to the right. Shift B to left, then right. Shift C Eight-car train While-loop
to left, then right...repeat until pattern is reached. (reversal)
S8 Move Z from left to right. Place Y on the siding track. Move X from left to right. Place W in siding Any length train None
track. Move “..." from the left to the right track. Move D from the left to right track. Place C in (parity sort)
siding track. Move B from left to right. Take out all of the ones in siding track, and put them in the
left track. Move all but Y to the siding track. Put Y from left to right track. Do same for W. Do same
for C. Finally, move A from the left to the right track.
S19 From the initial state, move the car second from the left to the right track. Move the remaining one Any length train For-loop
car on the left track to the bottom track. Move the cars on the right track back to the left track. (reversal)
Repeat until there are no cars on the right track and one car on the left track. From here move the
cars on the bottom track to the left track, then move all of the cars to the right track. The 18 Cars
represented by the “...” will be handled in the same way as the delineated cars. [We did not
penalize the participant’s assumption that the cars correspond to letters of the alphabet.]
S7 The cars on the left are letters A-Z and Z-A in order. Move all cars right of the last available letter to Any length train While-loop

the side track. Move both copies of the last available letter to the right track. Then move one car
from the side track back to the left track. Move the two rightmost cars from the left track to the
right track. Repeat this cycle until all cars have been “paired” and moved to the right track.

(palindrome)

All algorithms are correct except that attributable to participant S8. We have corrected spelling errors and regularized the punctuation; otherwise, the
algorithms are verbatim. The italicized portions provide the crucial evidence for the nature of the loop.

Khemlani et al. www.pnas.org/cgi/content/short/1316275110

40of 4

www.pnas.org/cgi/content/short/1316275110

