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Abstract 

Few experiments have examined how people reason about 
durative relations, e.g., "during". Such relations pose 
challenges to present theories of reasoning, but many 
researchers argue that people simulate a mental timeline when 
they think about sequences of events. A recent theory posits 
that to mentally simulate durative relations, reasoners do not 
represent all of the time points across which an event might 
endure. Instead, they construct discrete tokens that stand in 
place of the beginnings and endings of those events. The theory 
predicts that when reasoners need to build multiple simulations 
to solve a reasoning problem, they should be more prone to 
error. To test the theory, an experiment provided participants 
with sets of premises describing durative relations; they 
assessed whether the sets were consistent or inconsistent. The 
results of the experiment validated the theory's prediction. We 
conclude by situating the study in recent work on temporal 
thinking. 
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Introduction 
A police officer stopped a driver on the suspicion of drunk 

driving near Vero Beach, FL. As the officer began to speak 
to the driver, he noticed an open bottle of Jim Beam on the 
passenger’s seat. The driver explained to the officer that he 
had not, in fact, been drinking while driving – because he only 
drank when the car was stopped at traffic lights. He was 
arrested after failing a field sobriety test (Simmons, 2018). 

In daily life, people use temporal relations such as “while” 
and “during” to convey information about events that endure 
across more than one point in time. Consider the function of 
the temporal preposition “during” in the following examples: 

 
1a.  The car broke down during the road trip. 
  b. Breckinridge graduated during the Progressive Era. 
 

The statements each describe a punctate event, i.e., a single 
point in time (e.g., the breakdown, the graduation), that 
occurred in the context of a period that extends across 
multiple time points (e.g., the road trip, the Progressive Era). 
The sentential connective “while” can yield similar 
interpretations, as in the examples in (2): 

 
2a.  The man slept while the neighbors fought. 
  b. The neighbors fought while the man slept. 

 
The examples show how syntax can change the way events 
are interpreted. For instance, (2a) seems to suggests that the 
neighbors fought for longer than the man slept, whereas (2b) 
seems to convey the opposite. Perhaps the two statements are 

compatible with one another, as in the situation in which the 
man started sleeping right as the fight began and woke up 
when the fight ended. 

Researchers in artificial intelligence have developed many 
systems of temporal logic to cope with reasoning about 
durative events (e.g., Allen, 1983, 1991; Freksa, 1992). 
Temporal logics often stipulate relations between intervals of 
time. The logics were designed to describe durative events as 
they occur in the world – they were not developed to capture 
how humans think about time. Hence, many temporal logics 
posit relations that don’t map onto prepositions or 
connectives in English. For instance, Allen’s (1983) system 
includes the following types of relation that connect event A 
with event B: 

 
AAAA A starts B. 
BBBBBBBB   
 
    AAAA A finishes B. 
BBBBBBBB   
 
AAAABBBB  A meets B. 

 
The repetitions of the letters are used to depict how one event 
endures across multiple points in time. The descriptions of 
the relations in natural language can be quite complex, e.g., 
you might describe the starts relation as: “Event A and event 
B began simultaneously, but event A ended before event B 
did.” Hence, while the relation is primitive in Allen’s 
calculus, it depends on the composition of several different 
concepts in natural language: beginnings, endings, and the 
preposition “before.” Despite the disparity between language 
and logic (see Knauff, 1999), researchers have built a wide 
variety of tools in artificial intelligence designed to explain 
what kinds of inferences can be drawn from the way relations 
between intervals interact (for reviews, see Fischer, Gabbay, 
& Vila, 2005; Goranko, Montanari, & Sciavicco, 2004). 

In contrast to the computational analyses of temporal 
reasoning, few studies have examined how people reason 
about durative relations such as “while” and “during.” Many 
studies have examined temporal relations such as “before” 
and “after” (Clark, 1971; Münte, Schiltz, & Kutas, 1998; 
Zhang et al., 2012), but durative temporal relations appear to 
be more complex – children comprehend and produce 
“while” after they understand the meanings of “before” and 
“after” (Keller-Cohen, 1981; Silva, 1991; Winskel, 2003). 
Previous work by Schaeken and colleagues investigated how 
adults reason about “while” (Schaeken, Johnson-Laird, & 
d’Ydewalle, 1996) using premises of the form X happened 
while Y happened. However, reasoners could draw inferences 



from such relations without considering the durative nature 
of “while”, i.e., the problems in Schaeken et al.’s (1996) 
studies implied that the two events both started and ended at 
the same time. Nevertheless, their work revealed two central 
patterns of temporal reasoning: first, reasoners appear to 
simulate a mental timeline of events when they reason about 
time (Bonato, Zorzi, & Umiltà, 2012; Casasanto & 
Boroditzky, 2008). Second, some temporal reasoning 
problems are easy, and some are difficult: people are more 
prone to error and they take longer to complete certain 
temporal reasoning problems (Baguley & Payne, 2000; 
Schaeken & Johnson-Laird, 2000; Vandierendonck & De 
Vooght, 1997).  

Though no studies have examined how people reason about 
durations, many have focused on people’s ability to estimate 
the durations of experienced or anticipated events (Zakay & 
Block, 1997). In typical tasks, people make estimations in 
minutes and hours or by using more qualitative boundaries. 
The research has shown that people overestimate short time 
periods and underestimate longer ones (Lejeune & Wearden, 
2009), a robust pattern known as Vierordt’s law. Gennari and 
Wang (2019) showed that these estimation biases are 
correlated with the relative amount of represented 
information per timepoint. People “compress” 
representations to avoid maintaining a representation of all 
timepoints over which an event transpires (Faber & Gennari, 
2015, p. 157). The lesson for researchers interested in 
temporal reasoning is that some event representations can be 
compressed into a single timepoint, and reasoners can 
construe them as punctate events. Other event representations 
may resist such compression by requiring reasoners to 
maintain information about durations, i.e., information that 
spans two or more timepoints. Of course, even punctate 
events have some duration, but their duration is irrelevant to 
how people make inferences from them. 

One recent account by Khemlani, Harrison, and Trafton 
(2015a) sought to explain how reasoners construct a mental 
timeline to represent durative relations such as “while” and 
“during” by specifying how time representations can be 
compressed. The account builds on previous theories of 
temporal reasoning that assume people build mental 
simulations that consist of discrete tokens to reason about 
time (Schaeken & Johnson-Laird, 2000; Schaeken et al., 
1996). But Khemlani et al.’s account extends beyond 
previous research to make predictions about how people 
carry out different temporal reasoning tasks, such as 
reasoning about what is necessary, reasoning about what is 
possible, and assessing the consistency of a set of assertions 
(Khemlani, Lotstein, Trafton, & Johnson-Laird, 2015b). 

In this paper, we spell out the central principles of 
Khemlani et al.’s (2015a) account of durative reasoning and 
use it to derive predictions about whether certain reasoning 
problems should be easy or difficult. We describe a 
preregistered experiment that tested these predictions. We 
conclude by describing limitations of the study and why 
durative inferences pose unique challenges for investigators. 

Mental models of durative relations 
Khemlani et al.’s (2015a) account of durative reasoning is 

based on the idea that humans build discrete mental 
simulations of possibilities – mental models – when they 
reason (Johnson-Laird, 2006; Johnson-Laird, Girotto, & 
Legrenzi, 2004). The model theory applies to relational 
reasoning across several different domains (Goodwin & 
Johnson-Laird, 2005), including reasoning about space 
(Ragni & Knauff, 2013; Jahn, Knauff, & Johnson-Laird, 
2007), time (Schaeken et al., 1996; Schaeken & Johnson-
Laird, 2000), consistency (Jahn, Johnson-Laird, & Knauff, 
2004; Johnson-Laird, Girotto, & Legrenzi, 2004), and 
kinematics (Khemlani, Mackiewicz, Bucciarelli, & Johnson-
Laird, 2013). The theory rests on three fundamental 
assumptions: 
• Models are iconic. Mental models are discrete, iconic 

representations of possibilities. Iconicity constrains 
models so that their structure reflects the structure of what 
they represent (see Peirce, 1931-1958, Vol. 4). In the case 
of two or more events, models should be structured to 
reflect the events’ chronology, i.e., the way in which those 
events unfolded. Since models are discrete, they cannot 
directly represent how long one event took relative to 
another. The restriction allows reasoners to efficiently 
compress temporal models to uniformly represent events 
that endure across vastly different timescales, such as 
seconds or decades. 

• Intuition vs. deliberation. Reasoners rely on two 
primary processes of inference: an intuitive construction 
process and a deliberative revision process. The intuitive 
construction process rapidly builds and scans an initial, 
preferred mental model (Jahn et al., 2007). The process is 
subject to various heuristics and biases, and so reasoners 
who engage just the initial process are prone to make 
systematic errors (Khemlani & Johnson-Laird, 2017). A 
slower deliberative process can revise the initial models 
to search for alternative models and counterexamples to 
validate and correct any conclusions inferred by the 
intuitive process. 

• More models, more difficulty. A final assumption of the 
theory is that each model that a reasoner builds demands 
cognitive resources to maintain. Hence, reasoners tend to 
rely on their preferred models most of the time. If a 
reasoning problem can be solved successfully from the 
preferred model, it should be easy: reasoners should be 
faster and their responses should be more accurate. If, 
however, a problem demands that reasoners engage in 
deliberation, they should be slower and less accurate. 

We illustrate how the three principles apply to temporal 
reasoning by contrasting how the model theory treats 
punctate and durative events. Consider the premises in (3): 
 

3.  The meeting happened before the sale. 
The sale happened after the conference. 
The meeting happened before the conference. 

 



The durations of the events in (3) are irrelevant, and so the 
premises can be represented as punctate events. The mental 
model representing the premises in (3) can be depicted in the 
following diagram: 
 
  meeting conference sale  
 
The diagram shows an arrangement of events in which time 
moves from left to right. Only one such arrangement is 
possible for (3). The model is parsimonious; it can be used to 
infer many different relations that are not made explicit in the 
premises: 
 

4a.  The conference happened after the meeting. 
  b. The sale happened after the meeting. 
  c. The conference happened before the sale. 
 

In contrast, the premises in (5) concern a durative relation: 
 

5.  The meeting happened during the sale. 
The meeting happened before the conference. 

 
The description is consistent with the following model: 

      saleSTART         saleEND  
             meeting           conference  
 
The model represents the durative aspect of the sale as two 
separate tokens (following Khemlani et al., 2015a): one token 
marks the sale’s beginning and the other marks its end. And 
the premises in (5) are consistent with at least one other 
model: 

      saleSTART                       saleEND  
              meeting  conference  
 
Hence, the premises in (3) are consistent with just one model, 
while the premises in (5) are consistent with multiple models. 

In general, the model theory predicts that people should be 
less accurate when reasoning about descriptions consistent 
with multiple models than about those consistent with one 
model. No other theory of reasoning makes an analogous 
claim (Khemlani, 2018; Knauff, 1999, p. 286 et seq.). We 
next describe an experiment that tested and corroborated the 
prediction. 

Experiment 
To test whether participants make more errors when 

reasoning about problems that elicit multiple models, our 
experiment presented them with one- and multiple-model 
descriptions of events that consisted of premises that 
described temporal relations. Their task was to evaluate the 
consistency of the premises by assessing whether all of them 
can be true at the same time. Previous studies used similar 
problems, but they examined how participants deductively 
inferred relations between two specified events (Schaeken et 
al., 1996). In daily life, reasoners are seldom provided such 
constraints, and so our experiment used a task that does not 

provide participants with any restriction on which premises 
to consider. The approach also has the advantage of using the 
same question across all problems, and so it uses a uniform 
task to test participants’ durative deductions. 

To balance out participants’ responses, half the problems 
were consistent and half were inconsistent. The theory 
predicts that people should be more accurate in assessing the 
consistency of one-model problems than multiple-model 
problems. 

Method 
Participants. 50 participants completed the experiment for 
monetary compensation ($2 and a 10% chance of a $10 
bonus) through Amazon Mechanical Turk. All of the 
participants were native English speakers, and all but 6 had 
taken one or fewer courses in introductory logic. 5 
participants were excluded from the analysis, either because 
of excessive and inappropriate keypresses, or else because the 
participant produced irrelevant debriefing responses. The 
analyses reported below are based on the remaining 45 
participants (21 female, mean age = 35.0). 
  
Preregistration and data-availability. The predicted effects 
were pre-registered through the Open Science Framework 
platform (https://osf.io/q45mw). The same link makes the 
data from the study available. 
 
Task and design. Participants carried out 16 different 
problems. Each problem comprised 3 premises that describe 
how 3 different events relate to one another. They were asked 
to judge whether the 3 premises could all be true at the same 
time. Half the problems concerned descriptions that were 
designed to yield one-model after the first 2 premises and the 
other half yielded multiple models after the first 2 premises. 
And half the problems used a 3rd premise that was consistent 
with the previous premises, while the rest used a 3rd premise 
that was inconsistent with the previous premises. 

The first premise of each problem was of the form: X 
happened during Y. Hence, the following is an example of a 
problem designed to yield one model:  

 
6a. X happened during Y. YSTART     X     YEND  

b. Y happened before Z. YSTART     X     YEND    Z  
c. X happened before Z. YSTART     X     YEND    Z  

 
A compressed model of events is provided next to each 
premise to show how Khemlani et al.’s (2015a) system would 
update the represention after interpreting new information. 
The bolded text shows how the final model would look. The 
problem presents a consistent description of events, since all 
three premises can be true at the same time. 

In contrast, the set of premises in (7): 
 

7a. X happened during Y.         YSTART        X     YEND  
  b. Z happened before X.    Z  YSTART        X     YEND      (i) 
        YSTART  Z    X     YEND     (ii) 
  c. Y happened during Z.            NO MODEL POSSIBLE 



corresponds to a multiple-model problem, because the 2nd 
premise is consistent with at least two different situations: 
one in which Z happened before Y started (i), and another in 
which Z happened before X and they both happened during 
Y (ii). But neither of those possibilities are consistent with 
the third premise, therefore (7) is an inconsistent multiple-
model problem.  

The sixteen different problems used in the study are 
provided in the Appendix. The experiment implemented a 2 
(problem type: one- vs. multiple-model) x 2 (consistent vs. 
inconsistent) fully repeated-measures design. 
 
Materials. The temporal terms in each problem were replaced 
by descriptions of everyday events, e.g., X was replaced with 
“the meeting” and Y was replaced with “the snowstorm”. The 
materials were drawn from 16 sets of 3 events. Each set was 
designed to describe events that endure at comparable 
timescales, so that any event in the set could take place during 
any other event, e.g., 
 

The meeting happened during the snowstorm. 
The snowstorm happened during the ceremony. 
The meeting happened during the ceremony. 
The snowstorm happened during the meeting. 

 
and so on. Events that elicit strong punctative interpretations, 
such as “the sneeze,” were not used in the study, as they 
would yield peculiar and unbelievable descriptions, e.g., 
“The meeting happened during the sneeze.” Likewise, events 
were chosen so that they did not bear causal relations to one 
another. 

Each of the 16 materials was rotated over the designs for 
each participant. Therefore, across the experiment as a whole, 
each of the 16 material sets was applied to each of the 16 
problems approximately the same number of times. For any 
given participant, once the materials were assigned to the 
problems, the order in which the problems appeared was 
randomized. The counterbalancing scheme eliminated the 
possibilities that order effects and carry-over effects could 
account for participants’ responses.  
 
Procedure. Participants interacted with the experiment by 
registering responses through keyboard presses. For each 
problem, the participants were asked to consider an initial 
premise, and then pressed the spacebar to reveal each of the 
remaining premises on the screen. Previously revealed 
premises remained on the screen whenever the experiment 
displayed the next premise. The sequential display sought to 
encourage participants to read the sentences in the order 
displayed. Once a participant revealed all three premises, a 
prompt would appear that said: “Can all three of these 
sentences be true at the same time?” The ‘f’ and ‘j’ keys were 
used to indicate “yes” and “no” responses, respectively. 
Before taking part in the experiment proper, they completed 
an example problem and were shown a schematic of how 
their fingers should be placed on the keyboard. After 
completing all 16 problems, the participants were asked four 

open response debriefing questions, which probed their 
intuitive definitions of “before” and “during” as well as their 
reasoning strategies. 

Results and discussion 
Figure 1 plots the proportion of participants’ correct 
assessments of consistency as a function of whether the 
premises yielded one model or multiple models, and as a 
function of whether the problem they carried out was 
consistent or inconsistent. Participants were more accurate 
for one-model problems than multiple-model problems (78% 
vs. 69%; Wilcoxon test, z = 3.02, p = .003, Cliff’s 𝛿  = .43). 
The result corroborated the model theory’s central prediction 
that reasoners should find it easier to reason about one-model 
problems than multiple-model problems. The difference 
between participants’ accuracies did not reliably differ 
depending on whether the model was consistent or 
inconsistent (72% vs. 75%; Wilcoxon test, z = 1.12, p = .27, 
Cliff’s 𝛿  = .17). However, the interaction between the 
problem type (one- vs. multiple-model) and the consistency 
of the premises was reliable (Wilcoxon test, z = 4.03, p < 
.0001, Cliff’s 𝛿  = .42). The interaction is evident in Figure 1, 
which shows that consistent problems had a higher accuracy 
rate when the premises yielded one-model rather than 
multiple-models.  There was little difference by model 
quantity for inconsistent problems. 

To test whether the type of problem is robust to participant 
and item random effects, we fit a generalized logistic mixed 
model (GLMM) regression to the data. The fixed effects were 
the problem type (one- or multiple-model), the consistency of 
the problem, and their interaction. The random effects 
components included intercepts and random slopes for all 3 
fixed effects by participant. Intercepts also controlled for the 
items (paired syntax and material sets) and for the pattern of 
temporal relations in the three premises, i.e., 
“during/during/during”, “during/before/during”, etc. The  
 

 
Figure 1. The proportion of correct responses in the experiment as 
a function of the type of problem (one- or multiple-model) and as a 
function of whether the premises was consistent or inconsistent. 
Error bars indicate 95% confidence intervals. 

0.00

0.25

0.50

0.75

1.00

Consistent Inconsistent

P
ro

po
rti

on
 o

f c
or

re
ct

 re
sp

on
se

s

 One Model   
 Multiple Models



temporal relation pattern was included because a handful of 
participants reported making judgments based on the pattern 
alone, and so we treated it as a relevant random effect factor 
beyond the individual items. The analysis revealed a reliable 
difference between one- and multiple-model problems when 
both participants and items were controlled for, b = 2.02, z = 
3.41, p = .0006, and a reliable interaction between 
consistency and the problem type (b = 2.35, z = 3.21, p = 
.0013). The GLMM therefore confirmed the nonparametric 
analyses. However, it further revealed a reliable effect of 
consistency: participants were more accurate on inconsistent 
problems than consistent problems (b = 1.82, z = 4.34, p < 
.0001); the model theory did not predict whether there would 
be an effect of consistency. The results of the regression 
analysis accordingly support the predictions of the model 
theory, though the analysis suggests that future studies should 
examine a broader set of problems to generalize beyond the 
four in each condition of the present experiment. 

General discussion 
How do people mentally represent and reason about 

durative temporal relations, i.e., relations such as “while” and 
“during”? Such relations describe events that persist across 
multiple points in time, and many logical frameworks exist 
that describe ideal temporal reasoning patterns (Fischer et al., 
2005; Goranko et al., 2004). But those frameworks do not 
explain how people represent durations, and so they cannot 
characterize the mental processes or the strategies people use 
when reasoning about time. A recent treatment of temporal 
reasoning explains how people mentally represent durations 
when they reason. It is based on the idea that people construct 
mental models, i.e., iconic mental simulations, to draw 
conclusions from premises or observations (Johnson-Laird, 
2006). Models implement a mental timeline, which people 
use to reason about events (Schaeken et al., 1996). To 
mentally simulate durative relations, reasoners do not 
represent all of the time points across which an event might 
endure. Instead, they construct discrete tokens that stand in 
place of the beginnings and endings of durative events 
(Khemlani et al., 2015a).  

One way to diagnose the model theory is to investigate how 
people assess the consistency of durative premises. In 
principle, the theory should make predictions about people’s 
assessments of consistency. It posits that if they can construct 
a coherent model of the premises, then those premises are 
consistent – they can all be true at the same time. If they fail 
to build a model of the premises, however, then they should 
consider the premises to be inconsistent (Johnson-Laird et al., 
2004). The theory has explained how people reason about the 
consistency of spatial relations (Jahn et al., 2004), and, given 
the strong relationship between temporal and spatial 
metaphors (Casasanto & Boroditsky, 2008; Gentner, 2001), 
it should also explain how people reason about the 
consistency of durative relations.  

We report an experiment that suggests it does. The 
experiment presented participants with a description of 
events as in (8): 

8a.  The burglar alarm happened during the fire. 
b.  The siren happened before the burglar alarm. 
c.  The fire happened during the siren. 

 
The description is inconsistent, and participants capably 
judged such descriptions to be inconsistent. In contrast, they 
had difficulty with descriptions of the following form: 
 

9a.  The burglar alarm happened during the fire. 
b. The siren happened before the burglar alarm. 
c.  The siren happened during the fire. 

 
Many reasoners incorrectly evaluated the three assertions as 
inconsistent. What explains the disparity? The model theory 
suggests that people rapidly constructed a simulation of the 
first two statements to yield a model akin to the following: 

           fireSTART              fireEND  
   siren             burglar alarm           
  
As the theory posits, models cost cognitive resources to 
maintain, and reasoners are reticent to alter the initial models 
of the premises they construct. The premise (9c) does not 
hold in the initial model above, and so reasoners who base 
their judgments of consistency on it should consider (9) 
inconsistent. Only reasoners who construct an alternative 
model of the premises should get the correct answer, as in this 
model: 

   fireSTART                      fireEND  
           siren     burglar alarm  
 
In general, the model theory uniquely predicts that 
participants should find one-model problems easier to reason 
about than multiple-model problems, and the experiment 
corroborated the prediction. 

One concern of the experiment is that the definition of 
“during” as an enclosure relation may have been overly 
restrictive. Consider example (7) above. If people take 
“during” to refer any two overlapping events instead of an 
enclosure relation, then the three premises could yield the 
following model: 

 

ZSTART       ZEND  

     YSTART      X      YEND  
 
Yet, a more permissive notion of “during” does not impact 
the central outcome of the experiment: if a problem is 
consistent under the restrictive construal of “during”, then it 
is consistent under the permissive construal as well. 
Nevertheless, reasoners were least accurate on consistent 
multiple-model problems – a result that corroborates the 
theory on any construal of “during.” 

There are at least three limitations of the experiment we 
report. First, a small set of participants self-reported that they 
adopted reasoning strategies based on rapidly assessing the 
relations in the premises. It is not clear to what extent 



participants’ strategies attenuated or enhanced the difference 
in performance on one-model and multiple-model problems, 
but reasoners can spontaneously discover strategies when 
reasoning about punctate events (Schaeken & Johnson-Laird, 
2000), and so future studies should investigate what kinds of 
strategies participants develop, and how those strategies 
promote or inhibit the construction of models. Second, the 
current design did not explore the nature of participants’ 
errors. It could be that participants attempted to consider 
alternative models of the premises and failed; or it could be 
that participants chose not to consider alternative models in 
the first place. Future studies should explore why multiple-
model problems yield systematic errors. Finally, only a 
limited number of problems could be designed for the study 
given that they described three relations among three events: 
hence, the study examined only the small number of 
configurations possible for three events. Future studies 
should explore an expanded set of problems. Indeed, the 
language used to describe durational events goes beyond the 
preposition “during”. The connective “while” has a similar 
meaning, and both words are in the top 200 most frequent 
words in American English (Davies, 2008). Other words, 
e.g., “when”, can sometimes be used to situate durative 
events, and the various ways people describe and discuss 
events, durative and punctate, can provide insight into how 
people represent and reason about time. 

Temporal reasoning is an essential process that underlies 
how humans conceptualize time (Hoerl & McCormack, 
2019; Kelly, Prabhakar, & Khemlani, 2019). Reasoners 
routinely make inferences about durations in order to carry 
out time-dependent tasks, such as picking a friend up at the 
airport. The model theory provides an explanation of the 
mental representations people build and processes people use 
when they think and reason about temporal sequences. 
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Appendix. The 16 problems used in the experiment. 
 

Number of models Consistency First premise Second premise Third premise 
One model Consistent X happened during Y Y happened before Z X happened before Z 
One model Consistent X happened during Y Z happened during X Z happened during Y 
One model Consistent X happened during Y Y happened during Z X happened during Z 
One model Consistent X happened during Y Z happened before Y Z happened before X 
Multiple models Consistent X happened during Y X happened during Z Z happened during Y 
Multiple models Consistent X happened during Y Z happened during Y Z happened during X 
Multiple models Consistent X happened during Y Z happened before X Z happened during Y 
Multiple models Consistent X happened during Y Z happened during Y X happened before Z 
One model Inconsistent X happened during Y Y happened before Z Z happened during X 
One model Inconsistent X happened during Y Z happened during X Z happened before Y 
One model Inconsistent X happened during Y Y happened during Z X happened before Z 
One model Inconsistent X happened during Y Z happened before Y X happened before Z 
Multiple models Inconsistent X happened during Y Z happened before X Y happened during Z 
Multiple models Inconsistent X happened during Y X happened during Z Z happened before Y 
Multiple models Inconsistent X happened during Y X happened during Z Z happened before X 
Multiple models Inconsistent X happened during Y X happened before Z Z happened before Y 

 


