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Abstract. Cognitive models for human reasoning are often specialized
and domain-specific. So the question whether human reasoning across
domains shares the same (or at least a similar) mental representation and
inference mechanism is still an unexplored territory, as is the endeavor
to create cognitive computational models for multiple domains of human
reasoning. In this paper, we consider the theory of mental models for con-
ditionals as a test-case and aim to extend it towards syllogistic reasoning
using a formal translation. The performance of this new cross-domain
theory is comparable to the performance of state-of-the-art domain-
specific theories. Potentials and limitations are discussed.
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1 Introduction

How do people produce conclusions from prior information? Humans do not
always follow the steps proposed by formal logic, and often make logical
errors [14]. One of the goals of cognitive science is to have a better compre-
hension of the way that humans reason. One mean of doing so is by developing
cognitive models that would account for the errors and ultimately predict the
way an individual would reason. That is very important for predicting human
behavior, which, in turn, helps with successful interaction and collaboration with
intelligent systems.

Highly specialized cognitive models of human reasoning are developed for
various domains, e.g.: conditional [8,12], syllogistic [9], spatial [3]. These cog-
nitive models tackle the specific reasoning domain for which they are designed
using different approaches, such as heuristics or probabilistic updating mech-
anisms. A generalizability to explain human reasoning in a different domain is
often not given. However, the question whether human reasoning processes share
specifics across domains is still an open question.
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Example 1. Conditional and syllogistic reasoning problems:

Conditional Syllogism
If the number on the card is 3,
then the card is colored red. Some artists are bakers.
The number on the card is 3. All bakers are chemists.
Therefore, the card is colored red. Therefore, some artists are chemists.

A widely acknowledged account of human reasoning is the Mental Model
Theory (MMT) [5-7]. The MMT suggests that humans construct mental models
of the given information, and inspect and possibly manipulate them mentally to
reach a conclusion. We consider the MMT-based cognitive model for conditional
reasoning proposed by [8], and develop a generalization for syllogistic reasoning
based on a conditional reformulation of the quantifiers. Similar work has been
done by Bara et al. [1], where they created a computational model, also based
on mental models, which is used to make predictions in the syllogistic, relational
and propositional domain. They make an assumption that individuals always
construct the correct mental representation of the premises that they are given.
Since that assumption is rather unlikely to be true, we have a different app-
roach — we try to reverse engineer the construction of the mental representation,
by adapting to the individuals’ responses. That way we also account for logi-
cally erroneous representations individuals might construct, and even different
interpretations of the same premise by the individuals, e.g., the case when some
individuals interpret a conditional as a bi-conditional.

The remainder of this article is structured as follows: First, we give a brief
introduction to conditionals and syllogisms, followed by an introduction to the
relevant points of the Mental Model Theory and its application in both domains,
conditional and syllogistic. A proposal for a generalized cross-domain model
follows. Finally, we present the results in a prediction task for both domains.

1.1 Conditionals

Conditionals are statements, usually of the form “If X then Y” (also written as
X — Y, where X is called the antecedent, and Y, the consequent), often used
to describe a causal relationship between any two propositions. In this paper,

Table 1. The four inference forms for “If X then Y” (short: X — Y)

Inference form Conditional | Minor premise | Conclusion
Modus Ponens (MP) X—-Y X Y
Modus Tollens (MT) XY -y -X
Affirmation of the Consequent (AC) X — Y Y X
Denial of the Antecedent (DA) X—-Y -X -y
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we also consider the form “If X then possibly Y. Research on conditional rea-
soning often relies on acceptance rates for the four inference forms (see Table 1)
that can follow when given a conditional along with a minor premise. The con-
ditional in Example1 is an example of the logically valid Modus Ponens (MP).
The other logically valid inference form is the Modus Tollens (MT). Logically
invalid inference forms are Affirmation of the Consequent (AC), and Denial of
the Antecedent (DA).

1.2 Syllogisms

Syllogisms are quantified assertions consisting of two premises and a conclusion.
They are used to reason about properties of entities by using quantifiers. Here we
take into consideration only the standard quantifiers: “All”, “Some”, “Some not”
and “No”. The syllogisms have been a popular psychological research target for
over 100 years [9], and their general analysis goes all the way back to Aristotelian
times. Example 1. gives an example of a syllogism.

Table 2. Moods of premises and figures of a syllogism.

(a) Moods of a premise/conclusion. (b) Figures of a syllogism.
Mood Premise Figure Premise 1 Premise 2
Universally affirmative (A) All X are Y 1 XY Y-Z
Particular affirmative (I) Some X are Y 2 Y-X 7Y
Universal negative (E) No X are Y 3 XY Z-Y
Particular negative (O) Some X are not Y 4 Y-X Y-Z

Each premise in a syllogism (and the conclusion) can be in one of the four
moods shown in Table 2a. The research done on syllogistic reasoning is focused
on acceptance rates for the possible conclusions. Conclusions contain two terms,
a subject and a predicate (‘artists’ and ‘chemists’ in Example 1). The premises
contain the conclusion’s subject and predicate and relate them to a middle term,
that appears in both premises (‘bakers’). A syllogism can have four different
figures, based on the order of the terms, as shown in Table 2b. In the syllogism
example in the introduction, the moods of the two premises are I, and A, respec-
tively. The order of the terms in the premises is: X-Y, and Y-Z, which is Fig. 1.
This syllogism is of type IA1. The conclusion is in the mood I, and the order of
terms X-Z, which we denote as IXZ.

1.3 Mental Model Theory

The theory of mental models [5-7] is a cognitive theory that assumes that an
individual reasoner constructs an analogous mental representation of the state
of affairs. A reader more familiar with formal logic may think of a truth-table
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like representation that is iconic [5]. Let us consider first a mental model for
the conditional “If X then Y”. According to the mental model theory (MMT),
a reasoner who processes this information constructs an initial mental model
consisting of the antecedent X and the consequent Y, i.e., the reasoner represents
first the case where both are true (and nothing is false): the model X Y. Other
possible interpretations, e.g., the case where X is false (written as =X) are
abbreviated by an ellipsis.

Premise Mental model | Fleshed-out models
IfXthenY | XY XY

=X Y

-X Y

The mental model represents what is true according to the information, but
not what is false. This can be fleshed-out in a second process, leading to all
possible interpretations (see right column). This can explain why the inference
processes MP and AC can be immediately inferred, while for MT and DA the
flesh-out process is necessary. The processes of the Mental Model Theory for
Conditional Reasoning have been formalized as a multinomial process tree by
Oberauer [12] (see Fig. 1)!. The MPT can be interpreted as a binary decision dia-
gram with parameters on its edges (see Fig. 1). Specifically, in the case of MMT,

f pq 1—f None
add / T don’t add

—p—q 1 —p—q 1
a —a a —a
N YN
add don’t add add don’t add
—pPq -pq —pq -pq

o N-e o/ Nime o/ \ie o/ \ime
add don’t add add don’t add add don’t add add don’t add
b—q p—q pb—q pb—q pb—q p—q pb—q p—q

| | | | | | | |
None MP, MT AC, DA All 4 None MP AC MP, AC

Fig. 1. Oberauer’s formalization of the MMT [12] for the conditional “If p then ¢”.
The parameters r, f, a, e take on values in the interval [0, 1], indicating the probability
of taking the respective decision path in the model. The leafs represent the responses.

! In the original model by Oberauer [12], the parameter 1 —r describes the probability
that an individual will not reason, but guess. In our implementation of the model
we do not use guessing.
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the decisions correspond to whether a human reasoner will add a certain model
to their mental representation of the conditional or not. Given a conditional “If
p then ¢”, there are four possible mental models that an individual can add to
their mental model representation of the conditional (pg, -p—gq, —pq, p—q). For
each one of those mental models, there is a certain parameter that describes the
probability of that model being added to the mental representation.

Individuals aim to maintain the information that is provided to them with
the conditional or syllogism and try to reach a conclusion based on that. Often,
individuals would engage in a search for counterexamples. If their search is suc-
cessful, the conclusion is no longer accepted by the individual [9]. Quantifiers are
interpreted by the representation of single entities, representing the respective
set. Consider the premise “All X are Y”.

Premise Mental Models

XY
XY
XY

Y

All X are Y

Again, in a mental model, X and Y means that both properties are true,
and each line represents an entity and contains the properties which are true for
this entity. The first three rows represent a set of entities which are described by
the properties X and Y, whereas the fourth row represents an entity described
only by Y, but not by X. In order to represent a set of entities that have the
same properties, three entities are used?. For a second premise, another mental
model is constructed and integrated into the original. Consider the example in
Table3 “All X are Y” and “Some Y are Z”. The final mental model yields the
conclusion “Some X are Z” (IXZ), or “Some X are not Z” (OXZ). There is no
counterexample to either of these conclusions.

Table 3. Representation of the syllogism AIl using mental models

Premise 1 Mental Models Premise 2 Mental Models Combined Models
XYZ
Y Z
All X are Y Xy Some Y are Z Y Xy
Y Y
Y Y

2 As discussed by Johnson-Laird, no iconic model can show that it represents an entire
set, we have no way of knowing whether a model describes the whole set, or just a
small number of entities that belong to it [5].
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A Common Ground. There is a close relation between conditional premises
and the premises of syllogisms [2]. Consider the conditional premise “If it is a
dog, then it is a mammal”, and the syllogism’s premise “All dogs are mammals”,
their representation using mental models is equal®.

dog mammal

We will build upon this in the following cross-domain modeling.

2 Cross-Domain Reasoning

Our goal is to demonstrate how a cross-domain cognitive theory can be built
for conditional and syllogistic reasoning. We take an already existing formalized
approach for reasoning with conditionals using mental models (see Fig.1) and
extend its application to syllogisms.

Note that p and ¢ in Fig.1 stand for the antecedent and the consequent
respectively, which can take different forms in the concrete application. For
example, for the syllogism AIl (cf. Table3), in the first premise, “All X are
Y”, p corresponds to X and g corresponds to Y, whereas for the second premise,
“Some Y are Z”, p corresponds to Y and ¢ corresponds to Z.

Example 2. Adding models:

“If X then Y Xy 2doee XY

XY

add pma ¥ % (p being Y, and, ¢ being Z)

, add pq

(p being X, and, ¢ being Y)

“If Y then possibly 27 24P, y 7

In the following we describe how we apply the principle of adding models, as
described above, to syllogisms.

Step 1: Translation of syllogistic premises to a pair of conditionals. The trans-
lations of all the possible moods of a syllogism’s premise to a conditional premise,
based on their equal representation using mental models, are shown below:

Mood | Premise Conditional

A All X are Y If X then Y

I Some X are Y If X then possibly Y

E No X are Y If X then not Y

O Some X are not Y | If X then possibly not Y

This process yields two conditional statements which can be treated as condi-
tional reasoning problems, and can therefore be modeled using the formalization
in Fig. 1.

3 From now on we use a compressed version of the models representing sets of the same
entity, i.e., one unique entity only, as we do not consider quantifiers like “Most”.
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Step 2: Obtaining mental model representations. Below, we show a repre-
sentation of the conditionals that describe syllogism AIl. This corresponds to
adding the pq model for the first premise in the syllogism, and adding the pq
and p—q models for the second one.

Syllogistic Premise Conditional Mental Models
All X are Y If X then Y XY

YZ

Some Y are Z  If Y then possibly Z v

Step 3: Merging. After obtaining the two mental models representing the
two premises, the next step is to merge them based on the middle term Y which
appears in both premises, in order to construct the final mental model represen-
tation. In the table above we have the model X Y for the first premise. We will
merge that model with all models of the second premise that also contain Y.
The first such model is Y Z. Merging based on Y, we obtain X Y Z. The second
model is Y, leading to a merged representation X Y. We obtain the following

Y Z
XY

Step 4: Answer prediction. Since what we are interested in is the relation

between X and Z, once the full representation is obtained, we do not take Y into

mental model representation of the syllogism:

consideration anymore (e.g. we would only consider from the representation

X
shown above). Also, model duplicates are eliminated, and models with both ele-
ments being negative are not considered (—X —Z). Based on this representation,
a prediction of the individual’s answer about what follows from the given syllo-
gism can be made. Possible final representations and the corresponding answers
can be found in Table4. In the cases where there is more than one choice for a
possible answer, one is chosen randomly.

Table 4. Final representations and corresponding possible answers.

Number of unique models in the representation
0 1 2 3
X Z
) X Z|X Z|(=X) Z
Models - XZ|X(2)|(-X)7Z (-X) Z|X (=Z)| X (-2) -X) Z
X (—2)
AXZ 1ZX 1X7Z
Answers |NVC AZX EXZ | EZX o0zX | oxz NVC NVC

Note. NVC — No valid conclusion can be drawn from the premises.
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3 Results

To test, how good our cross-domain model is able to perform, we used the
CCOBRA-framework benchmarking tool* which provides empirical benchmark
data from psychological experiments for cognitive models in different domains.
A cognitive model can be trained on specific training data, and needs to predict
for each individual reasoner her putative conclusion for the respective infer-
ence problem. In a first step, we trained our model on the conditional data set
which yielded the probabilities P(pg) = 1.0, P(-p—q) = .65, P(—pq) = .5,
P(p—q) = .05. In the conditional domain, using these parameters yields an
accuracy of 63%, which is only one percent lower than the best performing
model (see Table5b). Applying the same parameter distribution achieved an
accuracy of about 21% on the syllogistic data. Therefore, four further param-
eter optimizations were performed in the syllogistic domain, based on different
criteria, in order to examine the relation between mental models and type of
syllogism. The criteria taken into consideration are mood and figure of the syllo-
gism, and whether the currently analyzed premise is the first or second one. The
last optimization was using no specific criterion, i.e. optimized the four parame-
ters (P(pq), P(—p—q), P(—pq), P(p—q)) for all criteria at once. For the parameter
optimization based on mood and figure, four separate parameters were fit for each
mood or figure, respectively, totaling to 16 parameters. In the case of premise
number, there is a total of 8 parameters, four parameters for each premise. Opti-
mization was done with a randomized search with 10° iterations on values in the
interval [0, 1] with an increment of 0.1. All model specific optimizations had only
an average accuracy of at most 27% which is lower than the general optimiza-
tion. For the general optimization, i.e., without differentiation of mood, figure or
premise number, we conducted a grid search with the same specifics. The best
parameter values for the general optimization were P(pq) = 1.0, P(—p—q) = 1.0,
P(=pq) = .2, P(p~q) = 1.0

08 ° -1

0.6

0.4

0.2

Cross-Domain Conversion Verbal Models

4 orca.informatik.uni-freiburg.de/ccobra,/.
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The model was tested once again on the conditional data set using these
parameters, and its performance dropped down to an accuracy of 38% (compared
to the initial 63%). In Table5, the results of running the Cross-Domain model
on a syllogistic and conditional benchmark are shown.

Table 5. Prediction results, given as percentage of correct predictions, and best and
worst predictive accuracy for individual reasoners.

(a) Selection of Syllogistic Models (b) Selection of Conditional Models
Model® Accuracy Best Worst Model Accuracy
Verbal [13] 34%  61% % Probabilistic [11] 64%
Conversion [15]  32%  67% 3% Dependence [10] 64%
Cross-Domain  29% 81% 0% Cross-Domain 63%
PSYCOP [16] 29% 0% 6% Independence [10]  63%
Atmosphere [17]  24%  44% 4% Suppositional [4] 62%

#The models are taken from the meta-analysis by Khemlani and Johnson-Laird [9].

4 Discussion and Conclusion

Our motivation for our paper was the question, if human reasoners employ a sim-
ilar or a different model representation for conditional and syllogistic reasoning.
To analyze this, we used a computational formalization of the cognitive the-
ory of mental models for human conditional reasoning and extended it towards
reasoning with syllogisms, by translating quantified assertions into condition-
als. While the fitting of our cross-domain model for conditionals demonstrated
a performance comparable to other domain-specific models, the initial trans-
fer of the respective parameters yielded just 21% prediction performance of the
cross-domain model for the syllogistic data. By fitting it to the syllogisms, the
model reached 29%, with several participants fitted better than by the two best-
predictive cognitive models — the Verbal and the Conversion model.

What have we learned? It is possible to bridge the gap between domain-
specific cognitive models by using a theory-preserving translation. It is even
possible to outperform domain-specific models for some individuals. The cogni-
tive processes and interpretations related for each quantifiers are, however, dif-
ferent. This may mean that the internal representations (for our mental model)
are not the same, hence, a general unified theory of human deductive reasoning
is still an open question. For the general optimization process, three out of four
parameters have the value 1.0, which means that the three corresponding models
are always added and only the model —pgq is added only with a probability of 0.2.
This needs to be further investigated empirically. Our results indicate, however,
that the outlined idea needs to be applied to other cognitive theories as well,
such that the cross-domain power (or generalizability) of approaches can be bet-
ter estimated. For this a general theory of how to generalize a cognitive model
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across domains is necessary and identifying general principles across formal and
cognitive theories might be a first step. Still, this work is only a first try towards
successful cognitive modeling of cross-domain human reasoning.

To summarize: Our model has a predictive accuracy comparable to state-
of-the-art cognitive models in both domains. However, our model is capable of
modeling human reasoning in two different domains, whereas the rest of the
models in the benchmark are highly specialized, domain-specific cognitive mod-
els. On the basis of our model lies a reduction of the two tasks to a common
interpretation. This made it possible to compare the mental representations.

While cross-domain data of individual reasoners is rare, in the future, this
type of modeling should be performed on a data set where the same individ-
ual gives responses to both, conditional and syllogistic tasks. This way, we can
learn more about individual differences in reasoning, which would aid in a more
successful simulation of the human mind.
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