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Abstract
AI has never come to grips with how human beings reason in daily life. Many automated theorem-proving technologies exist, 
but they cannot serve as a foundation for automated reasoning systems. In this paper, we trace their limitations back to two 
historical developments in AI: the motivation to establish automated theorem-provers for systems of mathematical logic, 
and the formulation of nonmonotonic systems of reasoning. We then describe why human reasoning cannot be simulated 
by current machine reasoning or deep learning methodologies. People can generate inferences on their own instead of just 
evaluating them. They use strategies and fallible shortcuts when they reason. The discovery of an inconsistency does not 
result in an explosion of inferences—instead, it often prompts reasoners to abandon a premise. And the connectives they 
use in natural language have different meanings than those in classical logic. Only recently have cognitive scientists begun 
to implement automated reasoning systems that reflect these human patterns of reasoning. A key constraint of these recent 
implementations is that they compute, not proofs or truth values, but possibilities.
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1  Introduction

The great commercial success of deep learning has pushed 
studies of reasoning in artificial intelligence into the back-
ground. Perhaps as a consequence, Alexa, Siri, and other 
such “home helpers” have a conspicuous inability to reason, 
which in turn may be because AI has never come to grips 
with how human beings reason in daily life. Many automated 
theorem-provers that implement reasoning procedures exist 
online, but they remain highly specialized technologies. One 
of their main uses is as an aid to mathematicians, who seek 
simpler proofs (see [38, 72] for the notion of simplicity 
in proofs—a problem that goes back to one of Hilbert’s 

problems for mathematicians). Their other uses include the 
verification of computer programs and the design of com-
puter chips. The field has its own journal: the Journal of 
Automated Reasoning. There have even been efforts to use 
machine learning to assist theorem-provers [20].

Deep learning systems were inspired by human learners, 
but they do not learn concepts and categories the same way 
humans do, and so they can be fooled in trivial ways known 
as “adversarial attacks” [52, 54, 66]. Nevertheless, they have 
achieved success and pervasiveness despite such failings, 
because they can discover latent patterns of relevance—
they do so by analyzing vast amounts of data generated by 
humans. Theorem-provers likewise diverge from human rea-
soning, and yet they rarely enter our everyday technologies. 
Why not? The central thesis of this paper is that theorem-
provers—and other automated reasoning systems—cannot 
simulate human reasoning abilities. Any machine reasoning 
system built to interact with humans needs to understand 
how people think and reason [12]. But theorem-provers 
have no way of discovering human-level reasoning compe-
tence on their own, and they implement principles that yield 
counterintuitive patterns of reasoning. In what follows, we 
trace their limitations back to two historical developments in 
AI: the motivation to establish automated theorem-provers 
for systems of mathematical logic (see, e.g., [3]), and the 
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formulation of nonmonotonic systems of reasoning. We then 
describe human reasoning patterns that no machine reason-
ing system—or deep learning system, for that matter—can 
mimic. Finally, we present the functions that any future auto-
mated reasoning system should perform in order to approach 
human-level thinking abilities.

2 � Automated theorem‑proving

Automated theorem-proving aimed originally to find logi-
cal proofs in an efficient way. A central constraint of such 
systems is that they are built on the foundation of math-
ematical logic. Most theorem-proving programs take as 
input the logical form of an argument, and then search for a 
derivation of the conclusion using formal rules of inference 
and perhaps axioms to capture general knowledge. In the 
early days, some theorem-provers aimed to simulate human 
performance [53]. But, most others were exercises in imple-
menting a logical system [64] or intended to help users to 
discover novel mathematical proofs [71], and so they were 
not intended to embody human patterns of reasoning. For 
instance, theorem-provers operate by searching for deriva-
tions of given conclusions rather than generating conclu-
sions of their own. The main differences among them are in 
the nature of the logical rules of inference on which they rely 
and in the methods they use to search for proofs.

The first theorem-provers relied on mathematical logic, 
as did contemporary psychological theories of reasoning. 
The latter uses rules of inference from logic as formulated 
in a “natural deduction” system [5, 63]. The idea of natural 
deduction was due to the logician Gentzen [9], and intended 
to provide a more “natural” way of doing logic than axi-
omatic systems. So, it eschews axioms, and it relies on for-
mal rules that can introduce each sentential connective into 
a proof, e.g.:

A.
Therefore, A ∨ B , [disjunction introduction]

where ‘ ∨ ’ is a symbol for inclusive disjunction (A or B or 
both), and can eliminate it from a proof, e.g.:

A ∨ B.
¬A.
Therefore, B. [disjunction elimination]

where ‘ ¬ ’ denotes negation. Likewise, some AI systems 
adopted natural deduction too [2]. The challenge for those 
theorem-provers, of course, was to determine which natural 
deduction rules of inference to try next as they searched for 
proofs.

One answer that seemed attractive was instead to use just 
a single rule of inference, the resolution rule, in one of its 
many variants [43]. The rule calls for all the premises and 
conclusion to be transformed into inclusive disjunctions, 
which is feasible in classical logic. For example, material 

implication, A → B , in logic, which is analogous to if A then 
B, can be transformed into: ¬A ∨ B , because both A → B and 
¬A ∨ B are false if and only if A is true and B is false. Other 
connectives, such as material equivalence (‘↔ ’) can likewise 
be transformed into inclusive disjunctions. In its simplest 
form, the resolution rule is:

A ∨ B.
¬A ∨ C.
Therefore, B ∨ C.

Not surprisingly, naive individuals presented with two such 
disjunctive premises and asked what follows seldom draw 
the conclusion in the rule [24].

Inferences in classical logic concern relations between 
entire sentences, where each sentence can be true or false. 
The predicate calculus includes the sentential calculus, but 
also allows inferences that depend on the constituents of 
sentences. For example:

Any actuary is a statistician.
Jean is an actuary.
Therefore, Jean is a statistician.

The quantifier “any actuary” ranges over individual entities. 
The first-order predicate calculus concerns only quantifica-
tion of entities, whereas the second-order predicate calculus 
allows quantifiers also to range over properties. The calculus 
treats the above quantified statement as:

∀x(x is an actuary → x is a statistician)
where ‘ ∀x ’ ranges over all values of x. Theorem-provers 
exist for most branches of logic—the sentential calculus, 
the predicate calculus, and modal logics, which concern 
‘possible’ and ‘necessary,’ temporal relations, and deontic 
relations such as permissions and obligations. Most theorem-
provers dealing with the predicate calculus are restricted to 
first-order logic, because second-order logic cannot have a 
complete proof procedure. But, quantifiers such as “more 
than half of the actuaries” cannot be expressed in first-order 
logic.

One standard way to cope with universal quantifiers in 
automated proofs (e.g. “any actuary is a statistician”) is to 
delete the determiner ( ∀x ), and to transform the remaining 
formula, such as:

x is an actuary → x is a statistician
into its disjunctive equivalent:

x is a not an actuary ∨ x is a statistician.
The process of unification can set the value of a variable in 
one expression to its value in another expression that has the 
same predicate. So, the unification of these two formulas:

x is an actuary
Jean is an actuary

sets the value of x equal to Jean. (It is equivalent to the 
rule of universal instantiation in predicate logic [19].) The 
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resolution rule with unification applies to the following 
premises:

x is not an actuary ∨ x is a statistician.
Jean is not a statistician ∨ Jean is a probabilist.

It cancels out the one clause and its negation and unifies the 
two remaining clauses to yield:

Jean is not an actuary ∨ Jean is a probabilist.
It follows that:

Jean is an actuary → Jean is a probabilist.
A more complex treatment, which we spare readers, is 
needed for existential quantifiers, such as: “Some statisti-
cians,” which as the name suggests establish the existence of 
entities, whereas universal quantifiers, such as “any,” do not.

The formal derivation of a deductive conclusion resem-
bles the execution of a computer program, and the anal-
ogy was exploited in the development of programming 
languages, such as PROLOG, which compute in a way 
analogous to a proof that a statement follows from others in 
a fragment of the predicate calculus [39]. The programmer 
formulates a set of declarative statements that characterizes 
a problem and the constraints on its solution; computation 
consists in a search for a solution based on a form of resolu-
tion theorem-proving.

In logic, an influential proof procedure—the tree method 
[65], which is also known as the method of “semantic tab-
leaux”—adopts a different approach to the formal proce-
dures of resolution and unification. A valid inference yields 
a conclusion that is true given that the premises are true, and 
so the negation of its conclusion together with the premises 
yields an inconsistent set of sentences. An inconsistent set 
of sentences cannot refer to any situation, e.g., nothing can 
be both a square and not a square. So, the method proceeds 
as follows:

1.	 Make a list of the premises and the negation of the puta-
tive conclusion.

2.	 Search for a case in which they are all true, using rules 
for each connective.

3.	 If the search fails, then the conclusion follows validly 
from the premises, and if it succeeds, then it discovers 
a counterexample to the inference, i.e., a case in which 
the premises are true but the conclusion is false.

For an inference such as modus ponens:
A → B

A
Therefore, B

the first step is to list the premises and the negation of the 
conclusion:

A → B

A
¬B

The rule for the material implication in the first prem-
ise allows the list to be expanded into an “inverted tree,” 
because the connective is equivalent to: ¬A ∨ B . Each alter-
native is added to the list as follows:

A → B

A

¬B

¬A B

The left-hand branch of the tree contains two contradictory 
elements: A and ¬A , so that case fails; and the right-hand 
branch of the tree contains two contradictory elements: ¬B 
and B, so that case fails. So, there is no situation in which the 
premises and the negation of the conclusion are true: they 
are inconsistent. And, so, the original conclusion is a valid 
inference from the premises. The tree method extends natu-
rally to quantifiers, to a lucid pedagogy [19], and to modal 
logics [11]. It also underlies methods in the representation of 
knowledge [14], and in automated theorem-provers [4, 40].

Propositional logic is computationally intractable, and 
so as the number of atomic propositions in inferences gets 
larger so the search for a proof calls for more memory and 
takes longer—until it is beyond the competence of any finite 
organism in the lifetime of the universe [8]. Hence, whether 
a theorem-prover is based on natural deduction, resolution, 
or trees, the search for a proof becomes intractable for prob-
lems with multiple premises. The same applies, of course, to 
human reasoners, who cease to be able to infer valid conclu-
sions long before AI programs do. Earlier theorem-provers 
were often incomplete in that they were unable to find proofs 
for certain valid theorems [57]. The advent of sets of test 
problems and an annual competition has led to complete 
theorem-provers [67].

As logicians and computer scientists began to implement 
automated reasoning systems, they discovered that those sys-
tems were brittle and often impractical. The reason was sim-
ple: orthodox logic can operate sensibly when information 
is static, i.e., when the same set of assumptions exists from 
one moment to the next. Real life, however, affords no such 
stasis: new information often overturns old assumptions. 
The scientists who recognized this disparity between logic 
and life developed methods that grant additional flexibility 
to systems of logic.

3 � Nonmonotonic reasoning

One of the pioneers of AI, the late Marvin Minsky wrote:
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‘Logic’ is the word we use for certain ways to chain 
ideas. But I doubt that pure deductive logic plays much 
of a role in ordinary thinking [51].

Others too have long been pessimistic about the prospects of 
artificial intelligence based on formal logic [48]. Part of this 
pessimism comes from the pertinent discovery in AI of the 
need for “nonmonotonic” reasoning—the idea that individu-
als draw a tentative conclusion that they may withdraw later. 
To use a once hackneyed example:

Fido is a dog.
Dogs have four legs.
(So, Fido has four legs.)
But, Fido lost at least one leg in an accident.
So, Fido does not have four legs.

Classical logic is monotonic in that no subsequent prem-
ise can lead to the withdrawal of a valid conclusion: further 
premises can only add to the set of valid conclusions. In 
daily life, people abandon such conclusions in the face of 
definitive evidence to the contrary, and so everyday reason-
ing cannot be based on classical logic. One defense of logic 
is to argue that the premise, “Dogs have four legs,” is false 
if it is interpreted to mean that all dogs have four legs. One 
should assume instead:

If a dog is born intact, has not been in any accidents, 
has not had a leg amputated, or lost one as result of 
accident or illness, and so on ..., then it has four legs.

This solution is problematic, however, because no guarantee 
can exist that all the relevant conditions have been taken into 
account. In contrast, people often make inferences in daily 
life without knowing the complete information. It is useful 
to assume that dogs have four legs, humans have two legs, 
fish have no legs. The inferences that these claims support 
usually yield true conclusions.

An alternative stratagem first developed by Minsky [50] 
is the idea that conclusions can be withdrawn in the light of 
subsequent information. The concept of a mammal includes a 
variable with a value denoting number-of-legs, and, if there 
is no information to the contrary, then by default this value 
is equal to four. Dogs are mammals, and so they inherit the 
default value from this class inclusion. The idea is analo-
gous to Wittgenstein’s notion of a criterion [70]. He argued 
that many concepts have no essential conditions, but depend 
instead on criteria. The criteria for doghood includes hav-
ing four legs. But, criteria are neither necessary conditions 
for doghood—a particular dog might be three-legged—nor 
inductions from observation, because one could not count 
the number of legs on dogs until one had some way of iden-
tifying dogs. Criteria are fixed by our concepts.

Various attempts were made in AI to incorporate default 
values in hierarchies of concepts, and Touretzsky formulated 
a semantic theory for such systems [69]. The attempts in part 
led to “object-oriented” programming languages, such as 
Java and Common Lisp. They allow for a hierarchy of class 
inclusions, such as terrier → dog → mammal → animal, in 
which default values for variables can be set up at any level 
in the hierarchy, and overruled by specific values lower in 
the hierarchy. A new class can be a child of one or more 
existing classes in a “tangled” hierarchy, e.g., a terrier is also 
a member of the hierarchy: terrier → dog → pet → animal, 
and the new class inherits variables and default values from 
its parents [27].

AI systems of nonmonotonic reasoning began with 
attempts to model “common sense” reasoning: individuals 
draw a conclusion on the basis of incomplete information, 
and so later they may withdraw the conclusion [10, 45]. An 
intelligent robot has the same problem, and so there was a 
rapid development of AI systems of nonmonotonic reason-
ing. Some of these systems originally took a “proof theo-
retic” approach to the problem [62], invoking formal rules 
of inference in a default logic, such as:

For any x, if x is a dog and it is consistent to assume 
that x barks, then one can infer that x barks.

Other systems captured the same idea with a clause to the 
effect that it is not disprovable that x barks [49]. Still other 
systems took a semantic or “model theoretic” approach to 
the problem. Circumscription minimizes the number of 
entities to which a predicate applies. It is then feasible to 
restrict those entities that are abnormal, such as dogs that 
do not have four legs [46]. The various approaches to non-
monotonic reasoning continue to be extended to yield novel 
advances [6, 18, 44]. Indeed, the foundations of human rea-
soning, as we will argue, are nonmonotonic, and so non-
monotonic logics appear well-poised to express “common 
sense” patterns of thinking. But they, too, fail to explain 
much of human reasoning [59].

What makes human reasoning so difficult for theorem-
provers and nonmonotonic logics to capture? The answer 
may be that such systems are not constrained by data on 
human reasoning: they developed independently from dis-
coveries of how people think. The lack of such a constraint 
may have resulted in highly creative formal frameworks for 
possible ways of computing inferences. But these frame-
works cannot progress towards the flexibility of human-level 
reasoning capacities without a clear picture of what is unique 
about human reasoning.
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4 � What separates human from machine 
reasoning

A salient difference between the two sorts of reasoning are 
their respective starting points. Machine reasoning typically 
starts with the logical form of premises, whereas if human 
reasoning starts with verbal premises, they are in everyday 
language. A logic has a simple unambiguous grammar, with 
rules of the sort:

sentence → sentence connective sentence
and a simple lexicon that specifies, for example:

∨ → connective
So, it is simple to parse an input such as:
A ∨ B

as a well-formed sentence. Indeed, such well-formed sen-
tences in logic are unambiguous. In contrast, assertions in 
natural language are often ambiguous, and thereby create a 
major headache for theorists trying to establish their logical 
form. But, consider the following conditional assertion:

If she plays a musical instrument then she doesn’t play 
a harp.

It looks as though its logical form is:
she plays a musical instrument → ¬ she plays a harp
The material implication here allows one to prove an infer-
ence of the form known as modus tollens:

A → ¬B

B
Therefore, ¬A

But, such an inference is catastrophically wrong in the pre-
sent case:

If she plays a musical instrument then she doesn’t play 
a harp. ( A → ¬B)
She plays a harp. (B, i.e., ¬¬B )
Therefore, she doesn’t play a musical instrument. ( ¬A)

How can such an error be avoided? Only by taking into 
account that harps are musical instruments. A theorem-
prover might be programmed to retrieve any pertinent 
knowledge to a premise, and to add it as a further premise:

If she plays a harp then she plays a music instrument.

So, now the set of premises is:
A → ¬B

B
B → A

Alas, because logic is monotonic, it is still possible to prove 
the modus tollens inference. A better strategy is to use 
knowledge to interpret the original conditional premise by 
constraining the set of finite alternatives—i.e., the possibili-
ties—to which it refers:

She plays an instrument ∧ ¬ She plays a harp

¬ She plays an instrument ∧ ¬ She plays a harp

where ‘ ∧ ’ is the symbol for conjunction. It is now obvious 
that the further premise:

   She plays a harp
contradicts the conditional premise. If we follow this 
approach, we no longer need logical form. We can reason 
on the basis of possibilities.

At best, theorem-provers and nonmonotonic logics advo-
cate a narrow view of human reasoning. For instance, neither 
sort of approach focuses on how inferences are generated: 
theorem-provers generate proofs, but they cannot decide on 
what to prove. Indeed, they cannot operate unless they are 
provided with a conclusion—a theorem—to evaluate. And 
they are designed to generate proofs for any valid conclu-
sion, where “validity” refers to a conclusion that is true in 
every case that the premises are true [19]. But not every 
valid conclusion is interesting or useful. In fact, most aren’t; 
any set of premises, including the empty set, yields a limit-
less number of valid conclusions. For example, theorem-
provers can easily find proofs of the following conclusions:

A.
Therefore, A or not-A.
Therefore, A or not-A or B.
Therefore, A or not-A or B or not-B.

The pattern reveals a cascading infinitude of “vapid” deduc-
tions [26]. People eschew such vapidity. They can generate 
their own conclusions from scratch without any guidance 
apart from the premises. The conclusions they generate are 
systematic: they refrain from generating conclusions that are 
mere repetitions of the premises, or those throw semantic 
information away, e.g., by adding disjunctive alternatives to 
possibilities supposed by the premises [23], because such 
conclusions are uninformative. And they exhibit biases in 
the way they generate their own conclusions: they gener-
ate some conclusions faster and more often than others [22, 
61], they adopt various reasoning strategies [16], and they 
fall prey to systematic reasoning errors [33]. These patterns 
reflect cognitive trade-offs that people must make in order 
to lower the computational costs of engaging in reasoning. 
Hence, people are discerning in the inferences they draw. 
Indeed, reasoners often refrain from drawing a conclusion 
from a set of premises: they spontaneously respond that 
“nothing follows” when faced with certain reasoning prob-
lems [35].

Perhaps a more subtle distinction between human and 
machine reasoning systems is that humans do not “com-
partmentalize” different sorts of reasoning—they have no 
trouble making inferences about different causal, spatiotem-
poral, and quantificational relations all at once. Consider 
this inference:
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Anyone standing to the right of Talia before 5pm 
makes her nervous.
Aly is standing next to Talia at 4pm.
Is it possible that Talia is nervous?
Is it necessary that Talia’s nervous?

Few people should have difficulty inferring that it’s possi-
ble but not necessary that Talia is nervous. The inference is 
easy for people, but challenging for machines. The reason 
is because logical calculi typically describe valid inferences 
that pertain to a particular domain of reasoning—the calculi 
used to reason about time can operate on wholly separate 
assumptions from those used to reason about space. Sev-
eral systems of logic would need to be stitched together to 
describe the spatiotemporal, causal, quantificational, and 
modal relations described in the premises above, and it is 
unclear whether any contemporary machine reasoning sys-
tem could explain why the inferences are trivial.

In theorem-provers based on first-order logic, any conclu-
sion whatsoever follows from a contradiction. Hence, when 
a theorem-prover can derive a contradiction from a set of 
premises, it can also be used to prove any arbitrary theorem. 
The detection of an inconsistent set of premises does not cur-
tail the operations of the theorem-prover. Human intuitions 
diverge. Reasoners tend not to draw any decisive conclusion 
from a contradiction. In line with nonmonotonic reasoning 
systems, people often withdraw one of the premises, and 
inferences in daily life are accordingly defeasible, i.e., they 
are subject to be overturned. People are also capable of a dif-
ferent strategy for reasoning their way out of inconsistencies: 
when they possess relevant background knowledge about 
the topics that led to an inconsistency, they can construct 
an explanation of why the conflict arose in the first place 
[25, 34]. And those explanations make it faster and easier to 
know which premises to withdraw [28, 35].

The biggest single difference between theorem-provers 
and human reasoning is that the former are based on logic, 
whereas the latter is not. As we show below, the meaning 
of logical connectives differs from the meaning of their 
counterparts in logic. Connectives in natural language have 
meanings that can be overridden, i.e., they hold in default 
of information to the contrary. As a consequence, reasoning 
in daily life is always defeasible. What is valid in logic is in 
some cases invalid in everyday reasoning, and what is inva-
lid in logic is sometimes valid in everyday reasoning. Per-
haps, the simplest illustration of the difference between logic 
and life are the following pair of contrasting inferences:

It is possible that Trump is in NY or he is in DC.
Therefore, it is possible that he is in NY.

In daily life, we make such inferences, but they are invalid 
in all normal modal logics, e.g., those based on “System 
K” [60].

It is possible that Trump is in NY.
Therefore, it is possible that he is in NY or that he is 
in DC.

In daily life, we reject such inferences, but they are valid in 
all normal modal logics.

Researchers in AI continue to build and deploy systems 
based on formal logic, but recent developments in the last two 
decades have pushed the community to embrace probabilistic 
computation [41]. The central motivation was to build sys-
tems that take into account uncertainty in human reasoning, 
which can be computed using probability distributions. For 
instance, we might assume, all things being equal, that the 
uncertainty of Trump being in NY in the preceding example 
can be treated as a probabilistic statement, e.g., P (Trump is in 
NY) ≈ 0.50 . The strength of such systems is that they can learn 
in a “rational” way: they can leverage Bayesian inference to 
update probabilities depending on the strength of new informa-
tion. This connection to rational computation prompted many 
cognitive scientists to argue that human reasoning is best 
modeled using probabilities [1, 7, 55, 58]. Moreover, studies 
suggest that people treat the probability of a natural language 
conditional, e.g.,

The probability that if Trump is in NY, he’s in Trump 
Tower

as equivalent to a conditional probability, e.g.,

P (Trump is in NY | Trump is in New York).

The result—known as the equation—forms the backbone of 
many probabilistic theories of reasoning. But because prob-
ability theory is an extension of logic, such theories inherit 
many of the same limitations exhibited by systems based on 
formal logic: for instance, they treat the vapid deductions 
above as valid; they have difficulty inferring that “nothing fol-
lows”; and they do not explain why some inferences are easy 
and why some are difficult, or why reasoners fall prey to sys-
tematic fallacies. Recent approaches attempt to resolve some 
of the limitations by integrating possibilities with probabilistic 
computation [15, 30, 68].

In sum, human reasoning diverges from contemporary 
machine reasoning in many ways. Humans generate inferences 
as well as evaluate them. They use strategies and fallible short-
cuts when reasoning. They can reason about many different 
domains at once. The discovery of an inconsistency does not 
result in an explosion of inferences—instead, it often prompts 
reasoners to build explanations that help them know which 
premise to abandon. And the connectives people use in natu-
ral language—words such as “if” and “and” and “or”—have 
different meanings than those in classical logic and in proba-
bilistic extensions of logic. Cognitive scientists have begun to 
implement automated systems that explain these patterns of 
human reasoning. A key feature of these implementations is 
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that they compute, not truth values or probability distributions, 
but possibilities.

5 � Case studies in computing 
with possibilities

In this section, we describe recent computational simu-
lations of human deductive reasoning. These automated 
reasoning systems are based on the notion that to reason 
about the world, people mentally simulate real, hypotheti-
cal, or imaginary situations [21, 22]—mental models. Like 
model theory in logic, mental models concern the seman-
tics that make certain statements true or false. But, mental 
model theory postulates that all reasoning concerns pos-
sibilities, so even inferences from premises that make no 
reference to them, and that have a logical treatment in the 
classical sentential calculus, refer to possibilities.

A series of inferences can illustrate why reasoning about 
possibilities is fundamental. Recent studies show that people 
have no difficulty making the following inferences:

Either it rained or it is hot, or both.
Therefore, it’s possible that it rained.
Therefore, it’s possible that it’s hot.
Therefore, it’s possible that it rained and it’s hot.

Indeed, the inferences seem obvious—and yet each 
inference above is invalid in all of the normal systems of 
modal logic [17, 60]. For instance, consider a scenario 
in which it is impossible that it rained but it is hot. The 
disjunctive premise is true, but the first conclusion above 
is false. Hence, the inference is invalid. Analogous argu-
ments hold for the two remaining conclusions. And yet 
reasoners readily infer such modal conclusions from non-
modal premises.

In general, the theory of mental models postulates that 
all compound assertions refer to possibilities, which hold in 
default of information to the contrary. So, they interpret the 
first premise as referring to these default possibilities and 
one impossibity:

possible(rained)
possible(hot)
possible(rained & hot)
impossible(didn’t-rain & not-hot)

Together, these four cases are in a conjunction, because 
possibilities can be conjoined even when their constitu-
ent propositions are incompatible with one another, e.g., 
it possible that it is raining and it is possible that it is not 

raining. Reasoners make all four of the inferences above 
[17, 60].

This treatment explains our earlier contrasting pair of 
inferences. The inference:

It is possible that Trump is in NY or he is in DC.
Therefore, it is possible that he is in NY.

is valid because the premise yields a conjunction of pos-
sibilities, and one of the corresponds to the conclusion. In 
contrast, the inference:

It is possible that Trump is in NY.
Therefore, it is possible that he is in NY or that he is 
in DC.

is invalid, because the premise does not imply the possibil-
ity that Trump is in DC, which is one of the possibilities 
in the conjunction to which the conclusion refers. Another 
consequence is that inferences from exclusive disjunctions 
to inclusive disjunctions are valid in logic, e.g.:

Either it rained or it is hot, but not both.
Therefore, either it rained or it is hot, or both.

Readers new to how theorem-provers work should con-
sider the inference bizarre—the conclusion describes a 
situation explicitly ruled out by the premise. But those 
familiar with theorem-provers will recognize that theorem-
provers cannot treat the inference as anything but valid! 
After all, any situation that renders the premise true will 
render the conclusion true as well. The antidote is to com-
pute with conjunctions of possibilities instead of truth-
values [31]. The premise denies the possibility in which 
both clauses hold (“...but not both”), but the conclusion 
directly refers to that possibility (“...or both”), and so the 
mismatch should cause reasoners to reject the inference. A 
recent computational implementation interprets sentential 
connectives into corresponding possibilities, and it closely 
mimics human reasoning (see Fig. 1).

Recent advances show how automated reasoning sys-
tems based in possibilities can explain human reason-
ing patterns across several different domains, including 
reasoning about spatial and temporal relations [32, 61], 
counterfactual relations [31], probabilities [36], kinemat-
ics [37], and quantifiers [29, 30]. A primary constraint 
imposed on each of these systems is that the possibilities 
they build are iconic, i.e., the structures of those possibili-
ties reflect the structures of the situations they represent 
[56]. Hence, when a possibility-based system for reasoning 
about quantifiers interprets the assertion, “all the actuaries 
are statisticians”, it recognizes that the assertion refers to 
a set of individual entities, and so it builds a possibility 
consisting of a small set of tokens that represent those 
entities, as depicted in this diagram;
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actuary statistician
actuary statistician
actuary statistician

The number of tokens is derived stochastically. The struc-
tures of these resulting representations can be modified 
in various ways, e.g., tokens can be added, removed, or 
swapped to yield a different possibility consistent with 
the quantifier:

actuary statistician
actuary statistician
actuary statistician

statistician

The structures of these possibilities can then be “scanned” 
to yield inferences. For instance, in the first possibility, all of 
the statisticians are actuaries. In the second possibility, some 
of the statisticians are not actuaries. In general, the kinds of 
inferences that reasoners can draw are emergent properties 
of the iconic structures of the possibilities [13]. This method 
of drawing conclusions from iconic possibilities deviates 
from the way theorem provers operate (see above). The fun-
damental computational processes of inference concern how 
possibilities are constructed, how they’re scanned, and how 
they’re revised [29]. In principle, a computational system 
capable of efficiently exploring the entire space of possibili-
ties consistent with various assertions can achieve perfect 
reasoning ability. In practice, however, reasoners make mis-
takes [33], and the account above explains them: possibili-
ties impose a computational processing cost on humans and 
machines alike. If a reasoning problem can only be solved 
by considering multiple possibilities, reasoners are likely 
to err; but if the initial possibility suffices to yield a correct 
answer, people should be adept at delivering it.

In sum, the construction and manipulation of finite, 
iconic representations of possibilities appears to be a 
promising foundation for automated reasoning systems. 

When provided with unlimited processing resources, those 
systems can in principle achieve performance approaching 
logical inference. But when those resources are restricted 
to reasoning from just one possibility, they can be used to 
mimic the frailties of human reasoning, e.g., systematic 
errors and biased conclusions. Because an infinite set 
of possibilities can be captured by finite alternatives, 
and because conclusions emerge from their structures, 
representations based on possibilities yield many strengths 
of human inference for “free.” For instance, they can be 
used to infer modal conclusions from non-modal premises; 
they can be restricted to yield only relevant and informative 
conclusions; and they can infer that “nothing follows” from 
a set of premises.

6 � Conclusions

Why should any automated reasoning system be con-
strained by human reasoning patterns? After all, a major 
goal of artificial intelligence is to leverage technologies to 
exceed human abilities. Perhaps it is better that machines 
don’t reason the way people do, because by ignoring human 
reasoning, machines can avoid the costly mistakes people 
are apt to make. At first blush, this perspective seems sen-
sible. It has permitted researchers to build rich systems in a 
variety of domains that can solve novel problems, and the 
automated theorem-proving technologies that emerged from 
these explorations have helped generate unique solutions to 
long-standing puzzles (see, e.g., [47]). But, it has a devastat-
ing consequence: it overlooks three vast differences between 
reasoning based on logical form and reasoning in daily life.

First, logical form is not transparent in utterances in natu-
ral language: its recovery depends on grasping the meaning 
of assertions, but meaning suffices for reasoning, so logical 
form is superfluous. Second, validity in a logic depends on 
the conditions in which assertions are true; the dependence 
on truth values yields counterintuitive and vapid inferences. 
Third, reasoning about possibilities appears fundamental to 
human thinking. Logical systems known as “modal” logics 

Fig. 1   Patterns of human data 
(white bars) from two experi-
ments conducted by Hinterecker 
et al. [17] for different infer-
ences that relate modal conclu-
sions to non-modal premises, 
along with the results generated 
by an automated reasoning sys-
tem (black bars) that is based on 
computations of possibilities
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were designed to make deductions about possibilities, and 
there exists a countable infinity of them: they differ in the 
meanings that they assign to “possible” (and to “necessary”). 
But typical systems of modal logic treat as invalid certain 
inferences that humans consider obvious and uncontrover-
sial. In daily life, the meanings of the word “possible” fall 
into three main categories: alethic modals, as in, “The con-
clusion follows as a possibility from the premises”, deontic 
modals, as in, “It is not permissible for you to do that”, and 
epistemic modals, as in “It is not possible for you to do 
that.” Deontic modals raise severe problems for modal log-
ics, because of inferences, such as the following one, that 
illustrate the well-known paradox of “free choice”:

You can have the soup or the salad.
Therefore, you can have the soup.

Epistemic modals do not conform to any of the normal 
modal logics, and are akin to non-numerical subjective 
probabilities [42, 60]. The model theory accordingly treats 
compound assertions, such as disjunctions, as referring to 
conjunctions of possibilities, and the result explains the dis-
crepancies we have illustrated between validity in human 
reasoning and validity in modal logics.

There may be an urgent need to reconcile the differences 
between machine and human reasoning: today’s best interac-
tive AI and robotic systems cannot reason. The popularity 
and prevalence of machine learning in everyday household 
technologies reveals that advances can be made without the 
need to engage in collaborative reasoning. Nevertheless, 
many sorts of scientist aim to develop machines that can 
form rich, meaningful interactions. Interactive technologies 
cannot function successfully without understanding how and 
why humans make certain inferences. Such systems need to 
infer that a human driving a car is, say, pressed for time, and 
to tailor their interactions to prevent distracting the driver. 
They should infer that a human lacks a critical piece of 
information, and provide it in a lucid format. In some cases, 
they should suggest a counterintuitive course of action, and 
provide a well-reasoned justification for it. To achieve these 
goals, cognitive scientists can learn from researchers in AI 
to design computational theories that are explicit, efficient, 
and principled. And researchers in AI can learn from cogni-
tive scientists how individuals reason—both their systematic 
errors and their striking explanatory ability.
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