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A B S T R A C T   

All explanations are incomplete, but reasoners think some explanations are more complete than others. To explain this 
behavior, we propose a novel theory of how people assess explanatory incompleteness. The account assumes that 
reasoners represent explanations as causal mental models – iconic representations of possible arrangements of causes 
and effects. A complete explanation refers to a single integrated model, whereas an incomplete explanation refers to 
multiple models. The theory predicts that if there exists an unspecified causal relation – a gap – anywhere within an 
explanation, reasoners must maintain multiple models to handle the gap. They should treat such explanations as less 
complete than those without a gap. Four experiments provided participants with causal descriptions, some of which 
yield one explanatory model, e.g., A causes B and B causes C, and some of which demand multiple models, e.g., A causes 
X and B causes C. Participants across the studies preferred one-model descriptions to multiple-model ones on tasks that 
implicitly and explicitly required them to assess explanatory completeness. The studies corroborate the theory. They are 
the first to reveal the mental processes that underlie the assessment of explanatory completeness. We conclude by 
reviewing the theory in light of extant accounts of causal reasoning.   

1. Introduction 

Suppose that a man begins to sneeze on a hike through the woods. 
Here is one explanation for his experience:  

1a. Being outside caused him to breathe in pollen.  
b. Breathing in pollen caused sneezing.  

The explanation may seem acceptable because it provides a sensible 
sequence of events to explain the sneezing. But, you can elaborate it 
further: you may hypothesize why the man was outside in the first 
place. Human curiosity may depend on the realization that a putative 
explanation is incomplete. 

Some philosophers of science hold that the notion of a “complete” 
explanation is nonsensical. Hempel, for instance, observed that scien
tists should judge an explanation to be complete “only if an explanatory 
account…had been provided for all of its aspects”, but that the notion of 
completeness was “self-defeating” because any explanation can have 
“infinitely many aspects” (Hempel, 1965/2002). Other theorists 
concur: for instance, Rescher argued that “the finitude of human in
tellect” demands that we do not equate the adequacy of an explanation 

with how complete it is (Rescher, 1995, p. 8; see also Josephson, 2000;  
Railton, 1981, p. 239). 

However, while explanatory completeness is an intractable notion 
in the abstract, the finitude of human intellect does not prevent rea
soners in daily life from judging that some explanations are more 
complete than others. Pioneering work by Miyake (1986) showed that 
when people try to explain a particular phenomenon (e.g., how a 
sewing machine works), they often alternate between feeling, on the 
one hand, that their understanding of the phenomenon is satisfactory 
and complete, and on the other, that their understanding needs ela
boration. In Miyake's studies, there often came a “bottoming out” point 
at which reasoners found it too difficult to elaborate on the mechanisms 
of sewing machines any further, either because the relevant information 
was uncertain or unavailable, or because they failed to recognize what 
they did not know. Psychologists such as Keil (2006) argue that the 
overwhelming complexity of the world puts highly detailed explana
tions of phenomena beyond the reach of individuals, and so people 
have no choice but to get by with incomplete, partial explanations that 
they nevertheless construe as complete. 

More recently, Zemla et al. (2017) asked participants to evaluate 
natural explanations. They found that assessments of an explanation's 
incompleteness predicted judgments of that explanation's quality − 
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when people judged an explanation to be incomplete, they construed it 
as a bad explanation (r = −0.65). As Zemla et al.'s analysis suggests, 
explanatory completeness and quality can, at times, diverge: explana
tions can be complete but unconvincing. Scientific investigations rou
tinely yield convincing but tentative, incomplete explanations, i.e., 
those that explain available facts but whose internal mechanisms leave 
relevant causal relations unspecified. Contemporary astronomers, for 
instance, posit the existence of an as-yet-unobserved ninth planet to 
explain why the Solar System wobbles away from its center (Batygin & 
Brown, 2016). Such an explanation is “good” insofar as it accounts for 
many different observations, but it's incomplete without an articulation 
of what the planet is made of and how it affects its nearest celestial 
bodies. Without specifying these and other relevant facts, the causal 
relation between the explanation (the planet's existence) and the re
levant phenomenon in question (the wobbling of the Solar System) 
remains underspecified; that is, the explanation is incomplete. Assess
ments of completeness can therefore diverge from assessments of 
quality: an explanation's quality depends on corroboratory evidence, 
while an explanation's completeness depends on specifying the relevant 
causal relations between it and the phenomenon in need of explanation. 

As Hempel, (1965/2002), Keil (2006), and others observe, people 
can elaborate on causal explanations ad infinitum because they can 
infer earlier and earlier root causes. For example, you could generate an 
explanation for why a person wanted to go on a hike (e.g., perhaps he's 
looking for tranquility), then you could generate an explanation for why 
he's looking for tranquility, and so on. Hence, people are justified in 
construing any explanation as incomplete. The present discussion fo
cuses instead on how people make systematic judgments of complete
ness. These judgments may reflect reasoners' assessments of where gaps 
emerge in the specification of an explanation, and they may help ex
plain the processes by which reasoners generate explanations (Horne 
et al., 2019). 

To assess whether an explanation is complete or not, reasoners must 
mentally represent its components and assess its structure for un
specified causal relations, i.e., causal gaps. If the process discovers 
causal gaps, then the explanation should be deemed incomplete; 
otherwise, it should be deemed complete. Consider the explanations for 
the initial example in (2a) and (2b) below:  

2a. An interest in tranquility caused a person to go outside.  
b. Being outside caused the person to breathe in pollen, and that 

caused sneezing. 

In isolation, (2a) seems like an incomplete explanation for why some
body sneezed outside. Incompleteness judgments may call on reasoners 
to consider background knowledge – i.e., reasoners may already know, 
based on a weather report, that being outside would cause pollen intake 
– but, in the absence of such specific knowledge, they should judge (2a) 
to be incomplete. In contrast, (2b) seems more complete – it is analo
gous to (1) above – because it provides the connection between being 
outside and sneezing. As far as we know, no studies have examined 
what kinds of explanations people consider complete. 

In what follows, we present a novel theory that accounts for the 
mental representations that permit the rapid, online evaluation of ex
planatory completeness. The theory is based on the idea that humans 
build small-scale mental simulations – mental models – when they 
reason. Its central prediction is that reasoners should systematically 
judge an explanation to be incomplete when they are unable to build an 
integrated explanatory mental model of a phenomenon. We highlight 
several corollary predictions of the account, and then describe four 
novel experiments that tested and validated those predictions. We 
conclude by summarizing how extant theories of causal reasoning 
might be extended to deal with incomplete explanations. 

1.1. A model-based theory of explanatory completeness 

We present a novel account of explanatory completeness based on 
the assumption that people reason by constructing and inspecting 
small-scale mental simulations of possibilities. The theory abides by the 
constraints of the mental model theory of reasoning – the “model” 
theory, for short – which applies to reasoning in a variety of domains, 
including explanatory reasoning (Johnson-Laird et al., 2004; Khemlani 
& Johnson-Laird, 2011, 2012), and reasoning about causal, spatio
temporal, and abstract relations (Goldvarg & Johnson-Laird, 2001;  
Goodwin & Johnson-Laird, 2005; Kelly et al., under review). The theory 
makes three central claims:  

• First, mental models are sets of iconic possibilities (Khemlani, 
Byrne, & Johnson-Laird, 2018). Iconicity implies that the structure 
of a model corresponds to the structure of what it represents (see  
Peirce, 1931-1958, Vol. 4). Hence, reasoners can represent causal 
sequences by mentally simulating the events in order in which they 
take place (Khemlani et al., 2014). Models are distinguished from 
mental imagery because they can represent abstract symbols, e.g., 
the symbol for negation (Khemlani et al., 2012). 

• Second, reasoners distinguish mental models – which are initial, in
complete representations that represent only what is true of a given 
description – from fully-explicit models that represent both what is 
true and what is false in a given description. The theory posits two 
primary processes of inference: an intuitive construction process 
rapidly builds and scans initial mental models, but it is subject to 
various heuristics and biases. A slower, deliberative process revises 
the initial models into fully-explicit models, and it can eliminate 
systematic errors in reasoning (see, e.g., Khemlani & Johnson-Laird, 
2017).  

• Third, reasoners tend to be parsimonious: the more models that are 
required to solve a problem, the harder that problem will be, and 
most reasoners prefer to draw conclusions based on a single mental 
model. 

The model theory explains how reasoners represent and make 
inferences from causal statements (Johnson-Laird & Khemlani, 2017;  
Khemlani et al., 2014), which underlie causal explanations. It posits 
that people understand causal statements as sets of possibilities. The 
meaning of a causal statement, such as pollen causes sneezing, refers to a 
set of three separate possibilities, depicted in this schematic diagram:  

where ‘¬’ denotes negation. Each row in the diagram represents a dif
ferent temporally ordered possibility, e.g., the first row represents the 
possibility in which the cause and effect both occur, i.e., the possibility 
in which the person inhales pollen and then starts sneezing. The 
statement rules out the situation in which somebody inhales pollen and 
sneezing does not occur – and so the possibility is not included in the 
rows above. Hence, if it's true that pollen causes sneezing, there should 
not be any situation in which pollen is present but sneezing doesn't 
occur. If such a situation does occur, it acts as a counterexample to 
pollen causes sneezing – and a single counterexample can prompt rea
soners to abandon, reject, or lower their belief in the relation (Frosch & 
Johnson-Laird, 2011). Some theorists counter that causal statements 
are probabilistic (e.g., Ali et al., 2011), i.e., reasoners should treat pollen 
causes sneezing as: probably, pollen causes sneezing. Recent evidence 
suggests that they should distinguish statements that include prob
abilistic qualifiers from those that don't (Goodwin, 2014), a result that 
contravenes the probabilistic account (see also Khemlani et al., 2014). 
And, as Pearl (2009) points out, conditional probabilities alone cannot 
distinguish statements such as pollen causes sneezing and sneezing causes 
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pollen. The model theory argues that reasoners represent causes by re
presenting possibilities, not probabilities. 

A strong prediction of the model theory is that when prompted to 
list the possibilities consistent with a given causal statement, reasoners 
should list the three possibilities above. Several laboratory studies 
corroborate the prediction (e.g., Goldvarg & Johnson-Laird, 2001;  
Khemlani, Wasylyshyn, et al., 2018). In daily life, however, reasoning 
based on the full meanings of causal statements demands significant 
cognitive resources to maintain each possibility in working memory. 
So, instead, reasoners rely on a single mental model to represent pollen 
causes sneezing:  

A single model permits rapid inferences, since reasoners need to 
maintain only one possibility in memory. It also permits the rapid 
construction of a causal sequence of events. The theory posits, for in
stance, that when reasoners comprehend the causal statement in (2b), 
they should build an initial model of the first clause, e.g.,  

and then they should combine the contents of the second clause with 
the model of the first, e.g.,  

to create a single model of the phenomenon. One advantage to re
presenting the causal sequence as a single possibility is that reasoners 
can scan the possibility to rapidly draw temporal inferences, e.g.,  

3a. The person breathed in pollen before sneezing.  
b. The person sneezed after he went outside. 

The inference in (3a) comes about as a result of scanning the possibility 
from the earliest to the most recent event in the sequence. The inference 
in (3b) reflects a scan of the possibility in the opposite direction. 

Explanations are often causal in nature (but not always; see  
Khemlani, 2018). Hempel and Oppenheim (1948) distinguished two 
elements of any explanation: the phenomenon to be explained (which 
they referred to as the explanandum) and the set of propositions that 
serve as explanations of the phenomenon (which they referred to as the 
explanans). The philosophers were interested in scientific explanations, 
but psychologists have applied it to everyday explanations elicited by 
naïve reasoners. The model theory posits that an explanatory mental 
model is one that represents an explanans and an explanandum, as in 
the model below:  

In the model, sneezing serves as the explanandum and the two events 
that precede it serve as the explanans. Hence, an explanatory mental 
model is an efficient way to represent an explanation: it permits rea
soners to draw a variety of relevant temporal and causal inferences. 

What makes an explanation complete? To account for how people 
detect incompleteness, we posit the following hypothesis:   

The completeness hypothesis. A complete causal explanation is an 
explanatory mental model – a model that contains both an ex
planandum and an explanans – of a single possibility. Incomplete 
explanations are those that either do not represent an explanans, do 
not represent an explanandum, or represent two or more possibi
lities that may or may not have events in common. Reasoners should 

spontaneously construct and prefer complete explanatory models to 
incomplete ones.  

The hypothesis explains why (2a) above should be considered in
complete: its mental model does not represent an explanandum;  

The hypothesis also predicts that the explanation for sneezing in 
(4) below should be considered incomplete:  

4. Hearing an alarm caused a person to be outside, and having a cold 
caused sneezing. 

Reasoners must represent the two clauses with two separate models, 
e.g.:  

The model represents an explanans – the cold – as well as an ex
planandum – the sneezing. But it represents two possibilities instead of 
one, and so (4) alone cannot yield an integrated model. Some reasoners 
may spontaneously consult background knowledge to reconcile the two 
possibilities, but, absent such reconciliation, the two possibilities refer 
to an incomplete explanation. 

Complete and incomplete explanations can produce several typical 
sorts of models, and Table 1 provides a list of them. The first two rows 
of the table show that the theory allows for the indefinite elaboration of 
complete explanations: for any complete model (of, e.g., A causes C) 
reasoners can integrate additional knowledge of the intervening causes 
that lead from a cause to an effect without impacting the model's 
completeness (e.g., A causes B and B causes C). Of course, it may well be 
the case that people consider elaborate explanations—those with more 
intervening causes—more complete than explanations with fewer in
tervening causes. While no other theory of explanatory completeness 
exists, we suspect that any potential account of how reasoners detect 
incompleteness should make the same prediction, and so it is not ne
cessarily diagnostic of the model theory. Hence, in Table 2, we outline 
four predictions unique to the model theory. 

First, the model theory predicts that in some cases, reasoners should 
be unable to combine separate sets of possibilities to yield an integrated 
explanatory model, such as when constructing a causal sequence of 
events. Preliminary evidence in support of the idea comes from Hegarty 
(2004), who showed that reasoners understand mechanical and phy
sical devices in a piecemeal fashion, i.e., they consider the inter
dependencies between their internal components one after the other, 
and they have difficulty mentally integrating all but the simplest types 
of physical systems. In many cases, reasoners should have difficulty 
building and maintaining even simple networks of interconnected 
causal relations. Consider various explanations for a headache in 

Table 1 
Mental models for complete and incomplete explanations.      

Explanatory completeness Verbal description Mental model(s) # of models  

Complete A causes C. 1 
Complete A causes B. 

B causes C. 
1 

Incomplete A causes B. 
A causes C. 

2 

Incomplete A causes C. 
B causes C. 

2 

Incomplete A causes X. 
B causes C. 

2 
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examples (5a-c) below: 

5a. Breathing in pollen caused sneezing, and sneezing caused a head
ache. [causal chain]  

b. Breathing in pollen caused sneezing, and breathing in pollen caused 
a headache. [common cause]  

c. Breathing in pollen caused a headache, and having a cold caused a 
headache. [common effect] 

The completeness hypothesis predicts that people should judge (5a) 
as more complete than (5b) or (5c), since only (5a) yields an integrated 
model of the three events in the premises. The model theory treats both 
“common cause” (5b) and “common effect” (5c) explanations as in
complete (cf. Read, 1988; Rehder & Hastie, 2004; Salmon, 1978). Other 
theories treat causal relations as graphical networks (e.g., Ali et al., 
2011; Rips, 2010; Sloman et al., 2009) where a set of nodes represents 
causal events, and directed connections between nodes represent causal 
relations (see Fig. 1). No causal network account makes any prediction 
about completeness judgments, but in principle, such theories may posit 
that reasoners should make completeness judgments based on the 
completeness of a network. A network may be considered complete if it 
can be represented as a connected graph, i.e., a graph in which there 
exists at least one path between any two nodes. Such an account would 
make no such distinction between (5a) and (5b and c), because all three 
cases can be modeled by connected graphical networks. 

For the same reason, theories based on causal networks should as
sume that reasoners treat the two causal structures depicted in Fig. 1 as 

analogously complete. The figure depicts a graph representation of a 
chain structure (panel 1) as well as a “diamond” structure, both of 
which contain four interconnected nodes. Since both types of structures 
yield connected graphs, theories based on causal networks should treat 
as complete any explanations that mimic their structures. Other ac
counts of explanatory reasoning base explanatory preferences on “root 
causes” (e.g., Pacer & Lombrozo, 2017); such accounts would likewise 
treat both structures in Fig. 1 as complete, because they both have a 
single root cause (node A). The model theory, in contrast, treats causal 
sequences (panel 1) as complete but diamond sequences (panel 2) as 
incomplete (see Table 2). 

Third, the completeness hypothesis predicts that reasoners should 
prefer complete explanations to incomplete explanations on tasks that 
do not explicitly require them to think about completeness (cf. Zemla 
et al., 2017). One such task is to assess whether a particular causal 
explanation is an accurate summary of a causal description of events. 
Consider (6a) and (6b) below:  

6a. Being outside caused a person to breathe in pollen.   
Breathing in pollen caused sneezing.  

b. Being outside caused a person to breathe in pollen.   
Neural activity caused sneezing. 

The theory predicts that the following statement:   

Being outside leads to sneezing. 

is an accurate summary of (6a) but not (6b). The former set of causal 
statements is compatible with a single explanatory model, but the latter 
is not, because (6b) does not make explicit how breathing in pollen 
relates to neural activity. 

Finally, the theory predicts that when reasoners seek out additional 
information, they should do so relative to the information missing in 
their explanatory mental models. For instance, when given the oppor
tunity, reasoners should wonder what breathing in pollen causes more 
often for (6b) than for (6a). 

Four preregistered experiments tested the theory's predictions. In 
Experiments 1 and 2, participants directly compared the relative com
pleteness of causal chain structures, common-cause and common-effect 
structures (Experiment 1), and diamond structures (Experiment 2). 
Experiments 3 and 4 assessed the way reasoners detect explanatory 
incompleteness in more implicit ways: Experiment 3 asked participants 
to judge the accuracy of summary conclusions for complete and in
complete descriptions, and Experiment 4 asked participants to select 
one or more events in an incomplete causal chain to investigate further. 
All four studies corroborated the predictions outlined in Table 2. 

2. Experiment 1 

Experiment 1 explored the conditions under which reasoners di
rectly evaluate an explanation as complete or incomplete, i.e., it tested 
the theory's first prediction: reasoners should consider explanations in 

Table 2 
Corollaries of the completeness hypothesis, specific predictions of the corollary, 
and a list of experiments below that tested the prediction.      

# Corollary Prediction Experiment  

1 Reasoners should consider 
explanations in the form of a causal 
chain to be more complete than 
those in the form of “common 
cause” and “common-effect” 
relations. 

Reasoners should judge 
(i) complete more often 
than (ii):   

i. A causes B. 
B causes C.  

ii. A causes C. 
B causes C. 

1 

2 Reasoners should consider causal 
chains as more complete than 
“diamond” sequences, even though 
both have only one root cause. 

Reasoners should judge 
(i) complete more often 
than (ii):   

i. A causes B. 
B causes C. 
C causes D. 
D causes E.  

ii. A causes B. 
A causes C. 
B causes D. 
C causes D. 

2 

3 Reasoners should spontaneously 
distinguish completeness f 
incompleteness in explanations as a 
function of the number of models 
the explanation yields. 

Reasoners should judge 
the explanation A leads 
to C as a more accurate 
summary of (i) than of 
(ii):   

i. A causes B. 
B causes C.  

ii. A causes X. 
B causes C. 

3 

4 Reasoners should seek out 
information that could potentially 
reconcile multiple explanatory 
models into a single, integrated 
explanatory model. 

Reasoners should ask for 
information about B 
more often for (ii) than 
for (i):   

i. A causes B. 
B causes C.  

ii. A causes X. 
B causes C. 

4 

Fig. 1. Causal graphical network depictions of a causal chain structure (panel 
1) and a “diamond” structure (panel 2). Both networks are integrated, i.e., such 
that each node in the network is connected to at least one other node. And both 
networks have one root cause (node A) and one resulting effect (node D). 
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the form of causal chains (e.g., A causes B and B causes C) more com
plete than those including the same three components, but taking the 
form of common-cause structures (e.g., A causes B and A causes C) or 
common-effect structures (e.g., A causes C and B causes C). The ex
periment served as a strong test of the completeness hypothesis: if an 
explanation's perceived completeness depends on the number of pos
sibilities represented, then they should judge causal chains to be more 
complete than common-cause or common-effect structures. 

2.1. Method 

2.1.1. Participants 
50 participants completed the experiment for monetary compensa

tion through Amazon Mechanical Turk. All of the participants were 
native English speakers, and all but 8 had taken one or fewer courses in 
introductory logic. 

2.1.2. Preregistration and data availability 
The predicted effects were pre-registered through the Open Science 

Framework platform. The data, analysis scripts, preregistrations, and 
experimental code for Experiment 1 and all subsequent experiments are 
available at: https://osf.io/s6fb7/. 

2.1.3. Design and procedure 
The experiment invited participants to think of themselves as tea

chers who had to evaluate their students' notes on novel phenomena. 
The notes consisted of causal explanations for an event, C, that linked 
several events together. Participants carried out 8 problems altogether. 
On half of the problems, participants received explanatory causal 
chains in the following schematic:   

A causes B.   
B causes C. 

where A, B, and C stood for various properties and behaviors of ima
ginary entities. The theory predicts that reasoners should build a single 
integrated mental model of the explanation above, e.g.,  

The remaining half of the problems presented participants with pro
blems that the theory construed as incomplete. 2 of those problems 
made use of explanations for an effect, C, with a common-cause 
structure:   

A causes B.   
A causes C. 

where the causal relation between B and C is unspecified. And the other 
2 made use of a common-effect structure, e.g.,   

A causes C.   
B causes C. 

where the relation between A and B went unspecified. The theory 
predicts that reasoners should be unable to construct an integrated 
mental model from common-cause or common-effect explanatory 
structures, and so they should be judged relatively less complete. 

For each problem, participants evaluated whether an explanation 
for event C (the explanandum) was complete by using a slider bar to 
indicate a number on a Likert scale from 1 (definitely incomplete) to 5 
(definitely complete). The slider bar's default position was set to 3 (I 
cannot be certain), but participants were not permitted to proceed to 
the next trial until they shifted the slider bar from the default position 
to some other position. This constraint served as an attention-check 
mechanism: it sought to prevent participants from answering without 

processing the meaning of the text. The instructions presented partici
pants with an example of set of notes for a fictitious phenomenon – i.e., 
notes that explained why a species of lizard called a Sclerdid is a good 
swimmer – and then provided them with the following instruction:  

Your task will be to assess whether the student's notes explaining why 
Sclerdids are good swimmers are complete, or whether the notes are 
missing one or more pieces of information (and are incomplete). 

Participants acted as their own controls and carried out all 8 problems 
in a fully repeated measures design. They completed two practice trials 
(one yielding a single mental model, another requiring multiple 
models), and they received the rest of the problems in a randomized 
order. 

2.1.4. Materials 
Materials were drawn from four separate domains (natural, biolo

gical, social, and mechanical). Each set of materials was a collection of 
candidate causal events that concerned properties or behaviors of an 
imaginary entity. These properties and behaviors were designed such 
that any one property or behavior could serve as a cause or a resulting 
effect of any other (see Appendices A and B). Participants received 
premises in the following format:   

[Event A] causes the Zindo to [event B].   
[Event B] causes the Zindo to [event C]. 

where events A, B, and C were assigned randomly from a pool of five 
candidate events. For instance, one set of materials concerned a me
chanical device used in factories called a “Zindo,” and so some parti
cipants may have received the following set of premises:   

Releasing a valve causes the Zindo to engage a pump.   
Narrowing an aperture causes the Zindo to engage a pump. 

Participants assessed whether the premises provide a complete or an 
incomplete explanation for, e.g., why the Zindo engages a pump (the 
explanandum). For each problem, the experiment randomly assigned 
the three events (releasing valve, narrowing an aperture, and engaging 
a pump) to events A, B, and C according to the three types of problems 
in the study. The contents were rotated around the conditions so that 
only one problem in the study was assigned to a particular condition – 
for instance, the materials describing the “Zindo” appeared as only a 
complete description or else as an incomplete description for a parti
cular participant. Across the study as a whole, that material appeared 
the same number of times in complete or incomplete conditions. For 
examples of problems presented to participants in Experiment 1 and all 
subsequent experiments, see Appendix B. 

2.2. Results and discussion 

Fig. 2 presents the mean completeness ratings participants gave for 
each of the three types of problems presented in Experiment 1. Parti
cipants rated causal chains as more complete (M = 3.26) than common- 
cause structures (M = 2.64, Wilcoxon test, z = 3.19, p = .001, Cliff's 
δ = 0.62) or common effect structures (M = 2.83, Wilcoxon test, 
z = 2.05, p = .04, Cliff's δ = 0.43). The predicted pattern of responses 
was robust, and additional experiments (not reported here) replicated 
the effect. A parallel analysis excluded participants with outlying re
action times − it revealed similar effects for Experiment 1 and all fur
ther experiments, and so we omit those analyses for brevity. 

One concern with the nonparametric analyses is that they do not 
control for the variance contributed by the materials or the individual 
participants. So, we ran a generalized linear mixed model regression 
that treated participants' judgments of completeness as the outcome 
variable and the three types of problem as a fixed effect; it controlled 
for material and participant noise. The analysis revealed that the 
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problem types reliably predicted judgments of completeness 
(β = −0.49, p  <  .0001), further corroborating the theory's first pre
diction. 

The distribution of participants' responses exhibited a bimodal 
pattern (Hartigan's dip test, D = 0.13, p  <  .0001): participants tended 
not to endorse the midpoint of the scale (likely because of the attention- 
check mechanism the experiment implemented), and instead preferred 
to select the upper and lower values of the scale. For complete pro
blems, they selected the upper values of the scale (4 and 5) 54% of the 
time. For incomplete problems, they selected the upper values of the 
scale 36% of the time (Wilcoxon test, z = 3.59, p = .0003, Cliff's 
δ = 0.18). 

In sum, Experiment 1 corroborated the first prediction of the com
pleteness hypothesis: participants penalized common-cause and 
common-effect structures, i.e., they evaluated them as relatively less 
complete. Experiment 2 sought to test the theory's second prediction. 

3. Experiment 2 

Experiment 2 was similar to Experiment 1, but it included materials 
designed to test the theory's second prediction: reasoners should con
sider explanations in the form of causal chains to be more complete 
than those explanations in the form of diamond structures (see Fig. 1 
and Table 2). Participants in the study therefore evaluated two types of 
explanation: the first described a causal chain, and the second described 
a diamond structure. A preference for causal chains over diamond 
structures suggests that reasoners base completeness judgments on the 
number of possibilities represented, and it rules out the hypotheses that 
reasoners base completeness judgments on network structures or on the 
number of root causes in an explanation. 

3.1. Method 

3.1.1. Participants 
51 participants completed the experiment for monetary compensa

tion through Amazon Mechanical Turk. All of the participants were 
native English speakers, and all but 5 had taken one or fewer courses in 
introductory logic. 

3.1.2. Preregistration and data availability 
The predicted effects were pre-registered through the Open Science 

Framework platform. 

3.1.3. Design and procedure 
The experiment used a design, procedure, and task identical to 

Experiment 1. Participants carried out 8 problems altogether. On half 
the problems, participants received explanatory causal chains in the 
following schematic:   

A causes B.   
B causes C.   
C causes D.   
D causes E. 

where A, B, C, D, and E stood for various properties and behaviors of 
imaginary entities. The theory predicts that reasoners should build a 
single integrated mental model of the explanation above, e.g.,  

The other half of the problems presented participants with a diamond 
structure, which the theory treats as an incomplete explanation. 
Premises conformed to the following schematic:   

A causes B.   
A causes C.   
B causes D.   
C causes D. 

The completeness hypothesis predicts that people should represent two 
possibilities when constructing a model of the premises above:  

A network-based theory, however, would predict that people should 
construct a single network integrating all four premises (see Fig. 1, 
panel 2). As in the previous study, participants were provided an ex
planandum, i.e., event D, and evaluated whether the explanation was 
complete by using a slider bar to indicate a number on a Likert scale 
from 1 (definitely incomplete) to 5 (definitely complete). As in the 
previous study, the default position of the slider on each trial was set to 
3 (I cannot be certain), and participants were required to modify the 
default position to select a response. The experiment implemented a 
fully repeated measures design using the same programming frame
work as in Experiment 1. Participants completed two practice trials 
(one yielding a single mental model, another requiring multiple 
models), and they received the rest of the problems in a randomized 
order. 

3.1.4. Materials 
The materials were the same as those used in Experiment 1. 

However, Experiment 1 made use of only 3 of the 5 available causes for 
each material (see Appendix A). Experiment 2 made use of all 5 of the 
available causes. 

3.2. Results and discussion 

Fig. 3 presents the mean completeness ratings participants gave for 
the 2 types of problems in Experiment 2. Participants provided higher 
ratings for causal chains, which can be represented with a single ex
planatory mental model (M = 3.35), than for diamond structures 
(M = 2.86, Wilcoxon test, z = 3.88, p = .0001, Cliff's δ = 0.20). A 
generalized linear mixed model regression analysis that treated parti
cipants' judgments of completeness as the outcome variable, the types 
of problem as a fixed effect, and material and participants as random 
effects revealed that the problem types reliably predicted judgments of 
completeness (β = −0.41, p = .0004), further corroborating the 
completeness hypothesis's second prediction. 

As in the previous study, the attention-check mechanism may have 
reduced participants' tendency to select midpoint responses, and so 
their responses exhibited a bimodal pattern (Hartigan's dip test, 
D = 0.13, p  <  .0001). For causal chains problems, they selected the 
upper values of the scale (4 and 5) 50% of the time. For diamond 

Causal
chain

Common
cause

Common
effect

1 2 3 4 5
Completeness

Fig. 2. Density plots of participants' responses to the three conditions in 
Experiment 1; the width of each shape is proportional to participants' response 
frequencies. 
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structures, they selected the upper values of the scale 41% of the time 
(Wilcoxon test, z = 3.64, p = .0003, Cliff's δ = 0.18). 

Experiments 1 and 2 corroborated the first and second predictions of 
the completeness hypothesis (see Table 2): reasoners judged explana
tions more complete when their premises could be integrated into a 
single mental model compared to sets of premises that yield multiple 
models. Nevertheless, participants may have distinguished between 
complete and incomplete explanations in accordance with the model 
theory only because the task prompted them to consider an ex
planation's completeness. Accordingly, rather than soliciting explicit 
judgments of completeness, Experiment 3 assessed whether reasoners 
spontaneously distinguish complete from incomplete explanations 
based on judgments of accuracy. Unlike Experiments 1 and 2, it also 
employed a design that varied the number of causal statements that 
participants considered. 

4. Experiment 3 

Experiment 3 tested the third prediction of the completeness hy
pothesis (see Table 2). The experiment presented participants with 
causal descriptions of events; it manipulated whether those descriptions 
concerned relations that could be integrated into a single model or 
whether the relations were systematically underspecified such that they 
could only be represented with multiple models. Unlike the previous 
studies, participants in Experiment 3 did not directly evaluate whether 
explanations were complete or incomplete. Instead, they received a 
description of causal relations and assessed the accuracy of a single- 
model explanation that summarized the description. The experiment 
also presented participants with descriptions of two different lengths. 

4.1. Method 

4.1.1. Participants 
30 participants completed the experiment for monetary compensa

tion through Amazon Mechanical Turk. All of the participants were 
native English speakers, and all but 2 had taken one or fewer courses in 
introductory logic. 

4.1.2. Design and procedure 
As in the previous study, Experiment 3 invited participants to think 

of themselves as teachers who had to evaluate their students' notes on 
novel phenomena. The notes consisted of a set of causal statements that 
linked novel events together. On half of the problems, participants re
ceived causal statements in the following schematic:   

A causes B.   
B causes C.   
C causes D. 

where A, B, C, and D stood for various properties and behaviors of 
imaginary entities. The participant then received a summary explana
tion, e.g.,   

A leads to D. 

The summary explanation served to link an initial event, i.e., event A, to 
the expanandum, i.e., event D. Participants were told that the student 
had drawn such an explanation from their notes. For each problem, 
participants evaluated whether the summary explanation was correct 
by clicking “Yes” or “No.” The model theory predicts that most rea
soners should build a single integrated mental model of the statements 
above, e.g.,  

Hence, they should be likely to judge the summary explanation as ac
curate. 

The other half of the problems provided participants with a set of 
statements that could not be integrated into a single model, e.g.:   

A causes X.   
B causes C.   
C causes D.  

X is not a cause of B, C, or D, and so the theory predicts that reasoners 
will maintain separate models in order to represent the statements, e.g.:  

Half of the problems concerned two premises (A caused B and B caused 
C) and the other half concerned three (the previous two, plus C caused 
D). Hence, the length of the descriptions for one-model and multiple- 
model problems was held constant (see Appendix B). 

Participants acted as their own controls and carried out 8 problems 
in a fully repeated measures design that manipulated whether the de
scriptions yielded one model or multiple models, and whether the 
problems comprised two premises or three. Participants completed 2 
practice trials (a one-model problem and a multiple-model problem), 
and they received the remaining problems in a randomized order. The 
experiment randomized the positions of the “yes” and “no” buttons on 
the screen. 

4.1.3. Materials 
The experiment drew on the same materials used in Experiments 1 

and 2. Each set of materials consisted of 5 separate events that could 
serve as both a cause and an effect. As before, for each problem, the 
experiment randomly assigned the materials to the different events in 
the explanation (e.g., A, B, C, D or X) such that every participant re
ceived a unique set of problem contents. The following is an example 
multiple-model problem:   

Releasing a valve causes the Zindo to open a glass pane.   
Engaging a pump causes the Zindo to flip a switch.   
Flipping a switch causes the Zindo to narrow an aperture. 

Those who received the problem had to evaluate the accuracy of the 
following summary explanation for why the Zindo narrows an aperture:   

Releasing a valve leads the Zindo to narrow an aperture. 

The summary explanation employed the construction: A leads [the en
tity] to do D, where event A is the initial event and event D is the ex
planandum. By evaluating the accuracy of this explanation as a sum
mary of the causal description provided in the premises, reasoners 
indirectly indicated whether they detected an explanatory gap some
where between A and D. 

Causal
chain

Diamond

1 2 3 4 5
Completeness

Fig. 3. Violin plot of participants' responses to diamond structure problems and 
causal chain problems in Experiment 2. The width of each shape is proportional 
to participants' response frequencies. 
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4.2. Results and discussion 

Fig. 4 presents the proportions of trials on which participants ac
cepted the summary explanations in Experiment 3. Participants eval
uated summary explanations as more accurate for one-model descrip
tions than for multiple-model descriptions (81% vs. 18%; Wilcoxon test, 
z = 7.86, p  <  .0001, Cliff's δ = 0.63). The number of premises did not 
affect participants' evaluations, either overall (49% vs. 50%; Wilcoxon 
test, z = 0.13, p = .90, Cliff's δ = 0.01), or for multiple-model pro
blems in particular (15% vs. 22%; Wilcoxon test, z = 1.07, p = .29, 
Cliff's δ = 0.07). A generalized linear mixed model regression con
trolled for material and participant noise; the analysis yielded a similar 
outcome, i.e., that the presence of a gap was the only significant main 
effect (β = −4.89, p = .005). 

The results from Experiment 3 corroborated the third prediction of 
the completeness hypothesis: participants detected whether summary 
explanations were incomplete on the basis of whether they could be 
represented by a single model, or whether they required multiple- 
models. Two potential deflationary accounts might explain the finding. 
First, descriptions that yielded multiple models may have contained 
more words and syllables than those that yielded one model. However, 
the structure of the premises and the random assignment of materials to 
events prevented any such systematic confound. Indeed, the random 
assignment algorithm routinely generated one-model problems that 
contained more words than multiple-model problems. A more serious 
limitation in the design is that all multiple-model descriptions con
cerned one additional event – X – relative to one-model descriptions. 
However, if participants responded on the basis of the number of events 
in a problem, then their judgments of accuracy should differ between 
two-premise problems and three-premise problems. In fact, their judg
ments did not differ as a function of the number of events (see Fig. 3). 

Other theories of causal reasoning may account for the results re
ported in Experiment 3 – for instance, a theory based on graphical 
networks may explain the results as a failure to build an integrated 
network instead of appealing to multiple models. Hence, the model 
theory's third prediction (see Table 2) is not uniquely diagnostic of the 
theory. But, no alternative account derives the third prediction based 
on the construction of mental models. We return to this issue by con
sidering two alternative accounts – network-based theories and theories 
based on root-causes – in the General Discussion. 

As one reviewer noted, the effects described in Experiment 3 may be 
trivial – that is, any theory of causal reasoning should explain them as a 
failure to make a transitive inference. The claim depends on the view 
that causation is a transitive relation, e.g., if A causes B and B causes C, 
then A causes C. Theorists have pointed out limitations in treating 
causation as transitive (Hall, 2000; McDermott, 1995). In certain con
texts, reasoners appear to systematically reject causal transitivity 
(Johnson & Ahn, 2015). Moreover, the problems given to participants 
cannot be treated as logically valid or logically invalid, because some 
systems of causal logic permit transitive inferences and others do not. 
Nevertheless, people often accept transitive conclusions from causal 

premises (von Sydow, Hagmayer, & Meder, 2016), and the design of 
Experiment 3 cannot rule out the possibility that considerations of 
transitivity, not completeness, drove participants' behavior. 

The value of explanations in daily life is that they are instructive: 
they serve as the basis for decisions, and they imply consequences. 
Suppose, for instance, that you turn a light switch on and observe that 
the bulb to which it's attached doesn't light up. At least three ex
planations seem reasonable: the bulb is out, the power is out, or the 
switch is malfunctioning. Your subsequent decisions – whether to 
change the lightbulb or call the power company – depend on your ex
planation. You might gather additional information to validate your 
initial explanation, e.g., you may unscrew the lightbulb under the as
sumption that the bulb is fused. The experiments reported thus far used 
tasks designed to capture reasoners' evaluations of explanations, but 
reasoners in daily life may use a gap in an explanation as the basis for 
investigating additional information. The completeness hypothesis 
predicts that reasoners should search for information that reconciles 
multiple explanatory models into one integrated model. Experiment 4 
sought to test this final prediction of the hypothesis. 

5. Experiment 4 

Experiment 4 tested the fourth prediction of the completeness hypoth
esis, which states that when given the opportunity, reasoners should seek 
out additional information that allows them to build a single integrated 
explanatory mental model. In other words, their search for information 
should be deliberative – they should consider irrelevant any new informa
tion that does not help reconcile a set of models. 

5.1. Method 

5.1.1. Participants 
30 participants from the same pool as the previous studies com

pleted the experiment for monetary compensation. All of the partici
pants were native English speakers, and all but three had taken one or 
fewer courses in introductory logic. 

5.1.2. Materials and design 
The materials and design were the same as in Experiment 3. Participants 

acted as their own controls and carried out 8 problems in a fully repeated 
measures design, which manipulated whether the descriptions referred to 
one model or multiple models. As in previous studies, materials were ran
domly assigned to the different events in the explanation such that every 
participant received a unique set of problems. Additionally, the study em
ployed the same nested design used in Experiment 3: two of the multiple- 
model problems placed the gap in the first premise the other two placed the 
gap in the second premise. Participants completed two practice trials (one 
that yielded one model and one that yielded multiple models), and they 
received the problems in a randomized order. 

5.1.3. Procedure 
The procedure was similar to that used in Experiment 3. Experiment 

4 presented participants with students' notes about imaginary entities 
and the students' conclusions from these notes; the conclusions took the 
same form as they had in previous studies (e.g., A leads to D). Unlike in 
Experiment 3, however, the participants' task was to select which one of 
the four candidate causal events (A, B, C, or D) to research further. The 
task is illustrated in the following example of a multiple-model pro
blem: 

Here are some research notes your student took about the Zindo, a 
mechanical device used in factory assembly lines:  

• Flipping a switch causes the Zindo to open a glass pane. [A causes X]  
• Releasing a valve causes the Zindo to narrow an aperture. [B causes C]  
• Narrowing an aperture causes the Zindo to engage a pump. [C causes D] 

2 premises 3 premises
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Fig. 4. Percentages of responses for which participants accepted the summary 
statements in Experiment 3 as a function of whether the description of events in 
the problem yielded one model or multiple models, and as a function of the 
number of premises in the description. Error bars show 95% confidence intervals. 
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From the above notes, your student concludes the following:   

Flipping a switch leads the Zindo to engage a pump.   

Given the conclusion the student has reached, which item from 
among those below should you tell your student to research further?  

1. What leads the Zindo to flip a switch. [A]  
2. What leads the Zindo to release a valve. [B]  
3. What leads the Zindo to narrow an aperture. [C]  
4. What leads the Zindo to engage a pump. [D]  

Participants had to select an appropriate answer among options cor
responding to the four events common to problems with and without 
gaps. The experiment randomized the order of the options. 

5.2. Results 

Figure 5 provides the proportions of participants' selections of 
causal events as a function of the different conditions in the study. 
Participants preferred to ask questions about distinct events in the 
causal description as a function of the presence of a gap, and as a 
function of the location of the gap within the description. The experi
ment measured their selections among the A, B, C, or D events, which 
were dummy-coded and subjected to multiple Friedman non-para
metric analyses of variances. These tests served as omnibus assessments 
of differences among the three problem types: one model, multiple 
model (gap in the first premise, at the B event), and multiple model 
(gap in the second premise, at the C event). As predicted, there were 
differences among the three problem types in the endorsement of each 
of the respective gap events (Friedman tests, χ2  >  7.35, ps ≤ 0.03). 
Participants also differed across the three problem types in their en
dorsement of A, the first event in the chain (Friedman test, χ2 = 19.05, 
p  <  .0001). 

Beyond these omnibus tests, planned comparisons examined specific 
differences across conditions. Participants selected the first event in the 
chain overwhelmingly more often for one-model than multiple-model 
problems (70% vs. 36%; Wilcoxon test, z = 5.74, p  <  .0001, Cliff's 
δ = 0.34). The pattern is sensible, because the task required partici
pants to select 1 of the 4 events, and so they appeared to ask about the 
only event in the chain that lacked a causal antecedent, i.e., event A 
(Fig. 5). 

In contrast, participants selected the middle options (B or C) more 
often for multiple-model problems than for one-model problems (43% 
vs. 14%; Wilcoxon test, z = 5.01, p  <  .001, Cliff's δ = 0.28). For 
multiple-model problems that positioned the gap in the first premise 
(i.e., for the B event), participants selected the B event more often than 
the C event (30% vs. 8%; Wilcoxon test, z = 2.71, p = .007, Cliff's 

δ = 0.22), and the opposite pattern held for multiple-model problems 
that positioned the gap in the second premise (i.e., at the C event; 37% 
vs. 10%; Wilcoxon test, z = 3.02, p = .002, Cliff's δ = 0.27. The results 
corroborated the fourth prediction of the completeness hypothesis: 
reasoners' based their selections on their detection of an unspecified 
causal relation in the provided description. When a causal description 
lent itself to the construction of multiple explanatory models, partici
pants sought additional information that them to reconcile the scenario 
into a single explanatory mental model. 

6. General discussion 

Reasoners think “complete” explanations are better than incomplete 
ones (Zemla et al., 2017). Early studies showed that construing an ex
planation as incomplete allows people to ask meaningful questions in 
order to fill in gaps in their understanding (Miyake, 1986). But on any 
objective notion of completeness, all explanations are incomplete 
(Hempel, 1965/2002). So what makes people judge an explanation as 
more or less complete? We developed an account that assumes that a 
complete explanation refers to causal representation of a single possi
bility, whereas an incomplete representation refers to multiple possi
bilities. We described a theory based on the view that reasoners con
struct mental models of causal relations to distinguish complete from 
incomplete explanations. 

The theory makes four unique predictions: first, reasoners should 
consider explanations in the form of simple causal chains, e.g.,   

A causes B and B causes C. 

as more complete than explanations in the form of a common-cause 
structure, e.g.,   

A causes B and A causes C 

or a common-effect structure, e.g.,   

A causes C and B causes C. 

We conducted a study that tested and corroborated the prediction 
(Experiment 1). Second, reasoners should consider causal chains more 
complete than “diamond” structures, i.e., causal sequences that com
bine common-cause and common-effect structures; Experiment 2 cor
roborated the prediction. Third, reasoners should distinguish complete 
from incomplete explanations as a function of the number of models 
that a causal description yields. For instance, these two descriptions 
each yield one model:   

A causes B.   
A causes B and B causes C. 

but this description yields multiple models:   

A causes X and B causes C. 

because reasoners cannot reconcile how X is related to B or C. Hence, 
reasoners should consider one-model problems complete but multiple- 
model problems incomplete. Experiment 3 tested and validated the 
theory's third prediction. The fourth and final prediction of the theory is 
that reasoners should seek out additional information in order to re
concile multiple models into a single explanatory model. Experiment 4 
validated the prediction. 

In what follows, we discuss criticisms of the completeness hypoth
esis as well as potential alternative accounts for the phenomena we 
describe. We conclude by describing how the present research can help 
in understanding how people generate explanations. 
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Fig. 5. Proportion of selections of causal events in the causal description as a 
function of whether the premises described a one-model problem, a multiple- 
model problem with a gap at the B event (highlighted in gray), or else a mul
tiple-model problem with the gap at the C event (highlighted in gray). 
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6.1. Criticisms of the completeness hypothesis 

Experiments 1–4 finesse a dilemma in the evaluation of explanatory 
completeness: the infinite regress of root causes. In principle, as phi
losophers observe, all explanations are incomplete – but our studies 
sought to capture the more limited notion of people's subjective eva
luations of completeness, and thus they made use of explanations with 
artificially fixed boundaries; to explain event C, for example, studies 
provided participants with causal relations in the form A causes B and B 
causes C, and so the explanation's root cause was fixed at, e.g., event A. 
If the experiments hadn't fixed the root cause, then some participants 
may have evaluated every explanation as incomplete – a justifiable 
response. Nevertheless, an open question concerns how and when 
reasoners choose to accept a proposed explanation or else infer a 
plausible mechanism that explains the events leading up to those de
scribed in the proposed explanation. Future studies should examine 
how reasoners generate explanations, and how they choose to stop the 
generative process (see, e.g., Horne et al., 2019). 

One criticism of the results of these studies is that their results are 
all obvious: each experiment describes results that accord with intui
tions. Hence, any theory of explanatory completeness – the model 
theory proposed here, or some other theory – should explain them. 
Readers who hold such a view may find it surprising that no extant 
theory of causal reasoning can explain the results from our studies, i.e., 
no alternative theory explains how or why reasoners should be sensitive 
to explanatory completeness. Yet, as Zemla et al. (2017) show, rea
soners systematically rate some explanations as more complete than 
others, and those judgments predict participants' ratings of how good 
an explanation is. Without a theory of explanatory completeness, those 
patterns are inexplicable. 

Another criticism may concern the first prediction of the com
pleteness hypothesis, which states that common-cause arrangements 
are incomplete explanations. Common-cause explanations require rea
soners to consider two different causes as separate possibilities, i.e., 
reasoners should interpret.   

A causes B and A causes C. 

as the following set of mental models:  

because the premise leaves unspecified the relation between B and C. 
Skeptics may wonder if the treatment is sensible for all situations. As  
Salmon (1978) observed, it is reasonable for people to infer that a set of 
related events, such as the lights turning off at the same time in several 
homes, can be traced back to a common cause, such as a power outage 
(see also Reichenbach, 1956). The power outage explanation is sen
sible, but it would seem that the completeness hypothesis would treat it 
as yielding an incomplete set of models, i.e., a set of multiple models 
depicted in this diagram:  

Each row represents the separate possibility in which the power outage 
leads to a blackout in a specific home. To cope with such situations, the 
theory could be extended to deal with common-cause explanations by 
allowing for models of generalized events, e.g.:  

Hence, an inductive strategy would combine the three models above to 
a model of a generalization, in which people represent a property that 

applies to a set of entities as a property that applies to a single re
presentative entity that stands in place of the set:  

Such a component yields a testable prediction: common-cause ex
planations should be more sensible for similar events (those that can be 
generalized) than dissimilar events. It also predicts that reasoners 
should take additional time to construct common-cause explanations – 
such explanations should be difficult to construct because of the need to 
deliberatively generalize across multiple events. The model theory is 
well-suited to explain both inferences about quantifiers (Khemlani, 
Lotstein, et al., 2015) as well as the distinction between the cognitive 
processes that underlie intuitive and deliberative processing (Khemlani, 
Byrne, & Johnson-Laird, 2018; Khemlani & Johnson-Laird, 2013). The 
extended account maintains the prediction of the completeness hy
pothesis that reasoners should attempt to coerce a set of multiple 
models into a single integrated model. 

A special class of causation may challenge the present account: 
conjunctive causes. Conjunctive causes are situations in which an effect 
comes about from two independent events, neither of which is sufficient 
to bring about the effect on its own. For instance, consider the scenario 
in which two people work together to lift a heavy bookcase. One re
viewer worried that the model theory would represent such causes as 
two separate models:  

As the reviewer observed, such an account would treat conjunctive 
causes as incomplete explanations. But the approach is inconsistent 
with the model theory at the outset, because the models above suggest 
that each individual can lift the bookcase independently, while they 
were intended to represent the scenario in which neither individual was 
sufficient. A better way to represent joint causation is to simulate both 
causes as a single scenario in a model such as the following:  

where the brackets denote the joint interaction between two separate 
individuals to create a single event. This approach yields an integrated 
model of the situation, i.e., a complete explanation. An alternative 
approach may represent the sequence of events that unfold in time in a 
series of steps that mirror what would happen in the real world: the two 
individuals do not hold the bookcase; one person lifts one side; then the 
second person lifts the other side; then they both lift the bookcase to
gether. Reasoners use kinematic simulations to solve problems and 
engage in abductive and deductive reasoning (Khemlani et al., 2013), 
and they can infer causal relations from such sequences (Khemlani, 
Goodwin, & Johnson-Laird, 2015). Kinematic simulations may explain 
how people interpret conjunctive causes. 

6.2. Potential alternative theories and mitigating factors 

Psychological theories of causal reasoning are not fixed in stone, and 
any of them can be amended to accept the four predictions we outline. 
Yet no account prior to the present one focused on how and why rea
soners distinguish complete from incomplete explanations. Unlike other 
theories of causal reasoning, the model theory characterizes the in
creased representational burden that incomplete explanations impose on 
reasoners: it is more difficult for reasoners to represent multiple possi
bilities in mind and to draw inferences from multiple possibilities 
(Johnson-Laird, 1983; Khemlani & Johnson-Laird, 2017). The model 
theory thus makes the clear prediction that reasoners should detect in
complete explanations when they represent multiple possibilities. 
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Other accounts focus less on how reasoners maintain multiple re
presentations; they depend instead on alternative mechanisms to ex
plain causal inference. For instance, some theorists argue that causal 
reasoning requires the mental representation of causal Bayesian gra
phical networks (Ali et al., 2011; Rips, 2010; Sloman, 2005; Sloman 
et al., 2009). However, to explain the present data, any account that 
appeals to network representations would need to go beyond what 
current network-based theories propose. It would need to compare 
networks of varying sizes, and it would need to represent missing causal 
connections – gaps – between the nodes in a graph. Missing connections 
are difficult to express using causal networks, because networks typi
cally treat gaps implicitly, i.e., as the absence of a connection between 
two nodes. And counting the number of absent connections for any non- 
trivial network leads to combinatoric explosion. The results we show in 
Experiment 4 demonstrate that people privilege some absent connec
tions over others. Participants in that study made productive use of 
their detection of incompleteness: they were able to identify an event 
that could allow reasoners to integrate their incomplete representation. 
A network-based theory thus needs to explain how people identify 
privileged connections. Unlike causal networks, the present model- 
based theory allows for the direct representation of gap in a causal 
sequence – gaps yield multiple models – and makes predictions about 
the consequences of the increased representational burden. 

It is possible to extend network-based theories with mechanisms 
that maintain, align, and compare multiple networks at a time. On such 
accounts, a “complete” causal network would refer to a single, in
tegrated network, i.e., a network that could be represented as a con
nected graph. An incomplete causal net would refer to a graph in which 
there exists two nodes for which no path could be drawn. Theorists 
have yet to propose such an account, but it is a reasonable extension of 
existing proposals (see Ali et al., 2011). But, as we note above, a major 
constraint of the idea is that causal networks need to distinguish be
tween causal chain structures, common-cause structures, common-ef
fect structures, and diamond structures: all four structures can be re
presented as connected graphs. As Experiments 1 and 2 show, however, 
people privilege causal chains over other structures. 

A more plausible idea comes from research on how reasoners 
compare one explanation to another. Lombrozo and colleagues argue 
that the fewer unexplained root causes an explanation has, the higher 
the quality of the explanation (Pacer & Lombrozo, 2017; Lombrozo & 
Vasilyeva, 2017). It may be that in our experiments, reasoners focused 
on root causes over the internal causal structures. In other words, one- 
model problems in Experiments 1, 2, and 4 had just one root cause, 
whereas multiple-model problems had more than one root cause. Yet, 
an account based on considering root causes alone could not explain 
why participants distinguished causal chains from other structures 
(Experiment 1), even when those structures were matched on their root 
causes (Experiment 2). 

Other factors may affect how people evaluate the completeness of 
an explanation. For instance, the expectations of the person processing 
an explanation may dictate what constitutes a complete or an in
complete explanation. Contrast this explanation,   

Customer A: What is causing the engine to smoke?   
Mechanic: The engine must have overheated. 

with this one:   

Customer B: What is causing the engine to smoke?   
Mechanic: The engine must have overheated, which caused the oil 
to be saturated with water. That forced the oil to overheat and 
flushed the cooling system with hot gases. The mixture of hot gases 
in the cooling system resulted in smoke. 

The same mechanic provided two customers with explanations that 
differed in length. Which explanation is better? One might assume that 

an explanation's length is a cue to its fitness, because lengthy ex
planations provide a more detailed understanding of how explanandum 
came about. That is, the mechanic's second explanation contains many 
more causes and effects than the first, and so we might infer that the 
second conveys a better understanding of the physical mechanisms that 
result in engine smoke. However, an explanation's strength depends on 
context. On the one hand, the extra details may be useful and relevant 
for a customer with extensive knowledge and an interest in learning 
about what happened to their car – but for customers in a hurry, the 
explanation may seem unnecessarily verbose. On the other hand, cus
tomers with extensive background knowledge of what usually makes an 
engine smoke may prefer the first explanation. If a customer already has 
an understanding of, e.g., three different mechanisms that could lead to 
a car's engine smoking, then the mechanic's first explanation could 
narrow down the cause to one possible reason. In general, when asked 
for an explanation, reasoners might vary their responses by predicting 
the intentions and objectives of their audience, in particular their au
dience's preferred level of explanatory depth. 

An explanation's scope may affect whether people perceive it as 
complete or incomplete (see, e.g., Johnson, Rajeev-Kumar, & Keil, 
2016; Khemlani et al., 2011; Read & Marcus-Newhall, 1993; Sussman 
et al., 2014). Some explanations have broader scope than others. For 
instance, consider two explanations for why your friend Devon never 
showed up at a social event:   

Explanation 1: Devon had a scheduling conflict.   
Explanation 2: Devon is clinically depressed. 

The first explanation has narrower scope than the second, e.g., it can 
explain Devon's absence from only one event, whereas the second ex
planation can account for absences from many events. It may be that 
reasoners construe explanations with broader scope as more incomplete 
and in need of further elaboration. Concerned friends may hypothesize 
about, e.g., when the depression started, what caused it, and the other 
things it could cause Devon to do, such as engage in substance abuse. 

These, and other factors, could affect how people assess whether an 
explanation is complete or incomplete. At present, the model theory 
and the completeness hypothesis best account for how reasoners detect 
explanatory incompleteness in the first place. We conclude by con
sidering how the detection of explanatory completeness can inform 
theories of how reasoners generate explanations. 

6.3. The halting problem in generating explanations 

Theorists have proposed several predictors of explanatory fitness, 
including: an explanation's simplicity (e.g., Walker et al., 2017), its 
coherence (e.g., Read & Marcus-Newhall, 1993), its relevance (e.g.,  
Hilton, 1996), and its scope (Khemlani et al., 2011). Explanatory 
completeness may be yet another predictor of fitness. We argue, how
ever, that completeness is unlike any of the extant predictors of fitness 
because the detection of completeness is fundamental to how reasoners 
generate explanations (Horne et al., 2019). When reasoners generate a 
novel explanation, the primary way they know not to generate ante
cedent causes ad infinitum is if they evaluate the completeness of their 
explanation. Suppose you're expecting a phone call from a friend, but 
you don't get a call. You might explain its absence by generating the 
following explanation:   

Your friend is unable to make the call. 

You could accept the explanation as is, or you could elaborate on it by 
generating a preceding cause, e.g.:   

Your friend does not have reception, and is unable to make the call. 

The failure to generate a complete explanation may cause you to 
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generate additional preceding causes, e.g., to consider what caused her 
to go to an area without reception, and so on. And those deliberations 
can result in delays of decisions, such as whether to call your friend or 
to wait longer. Incomplete explanations can therefore impose a cogni
tive and emotional tax, and they can deter reasoners from making de
cisions on the basis of their explanation. Yet as Miyake (1986) noted, 
people often reach stopping places in their generation of explanations – 
points in the process at which they deem an explanation sufficiently 
complete. The present theory provides a foundation for a more com
prehensive account of when and how people choose to stop generating 
an explanation: a precondition for halting may be to infer explanatory 
completeness. 

CRediT authorship contribution statement 

Joanna Korman: Conceptualization, Data curation, Formal 

analysis, Methodology, Visualization, Writing - original draft. Sangeet 
Khemlani: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Methodology, Project administration, Resources, 
Supervision, Visualization, Writing - original draft. 

Acknowledgements 

We thank Paul Bello, Monica Bucciarelli, Ruth Byrne, Felipe de 
Brigard, Andrei Cimpian, Tony Harrison, Hillary Harner, Laura Hiatt, 
Zach Horne, Phil Johnson-Laird, Laura Kelly, Bertram Malle, Robert 
Mackiewicz, Greg Trafton, and Jeff Zemla for advice. We also thank 
Kalyan Gupta, Kevin Zish, and Knexus Research Corp. for their assis
tance in data collection.   

Appendix A. Materials used in Experiments 1–4         

Material Domain Description Event 1 Event 2 Event 3 Event 4 Event 5  

1 Biological Hinolus are birds who live in the 
mountains of China. 

…have slow diges
tion 

…have thin 
feathers 

…have Hexadrine 
ions in their blood 

…have excellent 
night vision 

…tolerate cold tem
peratures 

2 Biological Roobans are large animals living in 
Central Canada. 

…eat mostly plants …have pointed 
ears 

…have thick coats …hear high-fre
quency sounds 

…have low levels of 
Meretin hormone 

3 Mechanical The Andon is a machine used alongside 
large construction equipment. 

…engage a Tark ac
tuator 

…produce 
steam 

…move its pistons …pull a metal lever …create a large shaft 

4 Mechanical The Zindo is a mechanical device used 
in factory assembly lines. 

…release a valve …engage a 
pump 

…narrow an aperture …open a glass pane …flip a switch 

5 Natural Nerron Caves are found in the Eastern 
Hemisphere. 

…have a limestone 
bed 

…absorb nat
ural acid 

…form at cold tem
peratures 

…become enlarged 
over time 

…accumulate sedi
ments 

6 Natural The Standinsk region is located in 
northern Europe. 

…have trees with 
thick bark 

…have abun
dant tall grass 

…have mineral-rich 
soil 

…have frequent 
heavy winds 

…have crystalline 
rocks 

7 Socioeconomic The nation of Nelstadt is an island 
nation in the Pacific Ocean. 

…create a new social 
welfare policy 

…make gam
bling illegal 

…sign an interna
tional treaty 

…declare a new 
national holiday 

…invest in scientific 
research 

8 Socioeconomic The Drenbow Corporation is located in 
Ireland. 

…develop a new 
media strategy 

…relocate its 
headquarters 

…adjust the price of 
its products 

…hire a new legal 
team 

…remodel its stores  

Appendix B. Schematics for complete and incomplete problems in Experiments 1–4 as well as examples of complete and incomplete 
problems using Material #4 in Appendix A above     

Experiment Completeness Schematic Example  

1 Complete Event A causes Event B. 
Event B causes Event C. 

Engaging a pump causes the Zindo to open a glass pane. 
Opening a glass pane causes the Zindo to narrow an aperture. 

1 Incomplete 
(common-cause) 

Event A causes Event B. 
Event A causes Event C. 

Engaging a pump causes the Zindo to open a glass pane. 
Engaging a pump causes the Zindo to narrow an aperture. 

1 Incomplete 
(common-effect) 

Event A causes Event C. 
Event B causes Event C. 

Engaging a pump causes the Zindo to open a glass pane. 
Narrowing an aperture causes the Zindo to open a glass pane. 

2 Complete Event A causes Event B. 
Event B causes Event C. 
Event C causes Event D. 
Event D causes Event E. 

Engaging a pump causes the Zindo to open a glass pane. 
Opening a glass pane causes the Zindo to narrow an aperture. 
Narrowing an aperture causes the Zindo to release a valve. 
Releasing a valve causes the Zindo to flip a switch. 

2 Incomplete 
(diamond structure) 

Event A causes Event B. 
Event A causes Event C. 
Event C causes Event D. 
Event B causes Event D. 

Engaging a pump causes the Zindo to open a glass pane. 
Engaging a pump causes the Zindo to narrow an aperture. 
Narrowing an aperture causes the Zindo to release a valve. 
Opening a glass pane causes the Zindo to release a valve. 

3a Complete Event A causes Event B. 
Event B causes Event C. 

Engaging a pump causes the Zindo to open a glass pane. 
Opening a glass pane causes the Zindo to narrow an aperture. 

3 Incomplete Event A causes Event X. 
Event B causes Event C. 

Engaging a pump causes the Zindo to flip a switch. 
Opening a glass pane causes the Zindo to narrow an aperture. 

4 Complete Event A causes Event B. 
Event B causes Event C. 
Event C causes Event D. 

Engaging a pump causes the Zindo to open a glass pane. 
Opening a glass pane causes the Zindo to narrow an aperture. 
Narrowing an aperture causes the Zindo to release a valve. 

4b Incomplete Event A causes Event X. 
Event B causes Event C. 
Event C causes Event D. 

Engaging a pump causes the Zindo to flip a switch. 
Opening a glass pane causes the Zindo to narrow an aperture. 
Narrowing an aperture causes the Zindo to release a valve. 

a Experiment 3 contained both two- and three- premise problems. The example above shows only the two-premise case. 
b Experiment 4 contained incomplete problems with a gap at both the B event (shown above) and at the C event (not shown).  
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