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Understanding cumulative risk

Rachel McCloy
University of Reading, Reading, UK

Ruth M. J. Byrne
Trinity College Dublin, University of Dublin, Dublin, Ireland

Philip N. Johnson-Laird
Princeton University, Princeton, NJ, USA

This paper summarizes the theory of simple cumulative risks—for example, the risk of food poisoning
from the consumption of a series of portions of tainted food. Problems concerning such risks are
extraordinarily difficult for naı̈ve individuals, and the paper explains the reasons for this difficulty.
It describes how naı̈ve individuals usually attempt to estimate cumulative risks, and it outlines a
computer program that models these methods. This account predicts that estimates can be improved
if problems of cumulative risk are framed so that individuals can focus on the appropriate subset of
cases. The paper reports two experiments that corroborated this prediction. They also showed that
whether problems are stated in terms of frequencies (80 out of 100 people got food poisoning) or
in terms of percentages (80% of people got food poisoning) did not reliably affect accuracy.

Keywords: Cumulative risk; Probability judgment; Mental models; Frequencies.

Suppose you are trying to decide between two
drugs to reduce blood pressure, and both have a
harmful side effect. The risk of harm from Drug
A is 1% over a year—that is, on average only 1
person out of every 100 using the drug for a year
should suffer the side effect. The risk of harm
from Drug B is 3% over a year. The difference

may seem negligible. But the cumulative risks of
experiencing the side effect at least once over 10
years differ markedly for the two drugs: 10% for
Drug A and 26% for Drug B. A small difference
in short-term risk can become significant in the
long term (Slovic, Fischhoff, & Lichtenstein,
1982).
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Now suppose you are given a drug that has a
risk of a harmful side effect of 5% in a year.
What are the chances that you will not experi-
ence the harmful side effect if you take the
drug for a period of five years? The question
calls for an estimate of a cumulative risk
(Slovic, 2000). The answer is that there is a
78% chance that the harmful side effect will not
occur over five years. Most people find such pro-
blems very difficult. In one study, only 1 or 2
people in every 100 got the right answer (see
Doyle, 1997). Consider the question from
another angle: What are the chances that you
will experience the harmful side effect at least
once in the five-year period? The answer is
22%, but again very few people are correct
(Doyle, 1997; Shaklee & Fischhoff, 1990;
Svenson, 1984, 1985). Cumulative-risk judge-
ments are hard (Kahneman, Slovic, & Tversky,
1982). Yet to make good decisions, people need
to be able to understand the risks that exist and
how they accumulate over time. Our goal in
this paper is to establish why cumulative risk is
so difficult for people to understand and to
devise ways to help individuals to arrive at more
accurate assessments of cumulative risk. We
report the results of two experiments designed
to improve understanding of cumulative risks,
and we describe a computer program that simu-
lates the strategies that people use to estimate
cumulative risks.

Cumulative risk

How risk accumulates depends on its nature
(Bedford & Cooke, 2001; Diamond, 1990).
Consider a simple illustration. You take a drug
over a sequence of trials, and on each trial there
is a certain fixed probability of a harmful
outcome. For simplicity, we assume that the prob-
ability of the harmful outcome is 1/3 on each
occasion that you take the drug. What is the prob-
ability that exactly two harmful outcomes occur in
a series of three trials? On the assumption that the
chances of the harmful outcome are independent—
that is, that what happens on one trial has no effect
on any other trial—the answer is given by the

binomial formula:

Probability (exactlymharmful outcomes inn trials)

¼ (nCm)pm(1� p)n�m

where n is the number of trials, m is the number of
harmful outcomes, (nCm) is the number of differ-
ent ways (combinations) of drawing m cases out
of n events ¼ n!/m!(n – m)!, and p is the prob-
ability of the harmful outcome. Hence:

(3C2) ¼ 3!=2!(3� 2)!¼ 3

pm ¼ (1=3)2
¼ 1=9

(1� p)n�m
¼ (1� 1=3)1

¼ 2=3

and the required probability, which is the product
of these three numbers, is (3)(1/9)(2/3) ¼ 2/9.

Naı̈ve individuals—that is, individuals who
have not mastered the probability calculus—do
not know the binomial formula and certainly do
not use it to compute cumulative risks. But,
there are two special cases that they might be
able to compute by other means, and these two
cases are highly pertinent to risks in daily life.
The first case concerns the conjunctive probability
that no bad outcomes occur in a series of trials—
that is, the bad outcome does not occur on the
first trial and it does not occur on the second
trial and . . . it does not occur on the nth trial. In
this conjunctive case, m ¼ 0, and so the binomial
formula above simplifies to:

Probability (exactly 0 bad outcomes in n trials)

¼ (1 � p)n

In our example of the drug, the probability of no
bad outcomes in three trials is (1 – 1/3)3 ¼ 8/27.
The second special case of the binomial formula
concerns the disjunctive probability of at least one
bad outcome in a series of n trials—that is, the
bad outcome occurs on the first trial or it occurs
on the second trial or . . . it occurs on the nth trial,
where the disjunction allows for the bad outcome
on any or every trial. In this disjunctive case, the
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probability can be obtained by summing the exact
probabilities according to the binomial formula
for 1, 2, . . . and so on, up to m bad outcomes.
But, there is a simpler solution:

Probability (at least 1 bad outcome in n trials)

¼ 1 � probability (exactly 0 bad outcomes

in n trials)

Hence, the disjunctive probability is: 1 – the
conjunctive probability. In the drug example, the
probability of at least one bad outcome in three
trials is (1 – 8/27) ¼ 19/27. Naı̈ve individuals
are, however, unlikely to know even the simpler for-
mulae for these two special cases of conjunctive and
disjunctive cumulative probabilities.

Samuel Pepys, the great diarist, wrote a letter to
Newton asking whether the following three prob-
abilities were the same:

the probability of getting at least 1 six in
throwing 6 dice,

the probability of getting at least 2 sixes in
throwing 12 dice,

and the probability of getting at least 3 sixes
in throwing 18 dice.

The reader is invited to think about this problem
in cumulative probabilities and then to use the
binomial formula to arrive at Newton’s reply.
(For those readers who are disinclined to do the
calculations, the answers can be found at the
end of the paper.) If intelligent individuals
such as Pepys do not use the binomial formula,
or its simpler special cases, how do people
understand conjunctive and disjunctive cumulative
risks?

Naı̈ve cumulative-risk judgements

The evidence so far on naı̈ve individuals’ perform-
ance on simple cumulative-risk judgements shows
that people make substantial and systematic errors
in judging cumulative risk (Doyle, 1997; Knauper,
Kornik, Atkinson, Guberman, & Aydin, 2005;
Shaklee & Fischhoff, 1990). Shaklee and

Fischhoff (1990) found that, when given conjunc-
tive problems about the chances of avoiding
pregnancy using different contraceptives, only half
of their participants realized that this probability
would consistently decrease when looked at cumu-
latively. Other participants assumed that the
probability of avoiding pregnancy would remain
constant, increase, or vary nonmonotonically.
Those participants who realized that the prob-
ability would decrease across time often underesti-
mated the rate of the decrease. They also failed
to notice how a small difference in short-term
risk could translate into a large difference over
time.

Doyle (1997) studied both simple conjunctive
and simple disjunctive cumulative-risk judge-
ments. In four studies, he looked both at the con-
traceptive domain used by Shaklee and Fischhoff,
and also at a novel domain (natural disasters).
He presented his participants with scenarios
such as:

Suppose that the probability that your house
will be hit one or more times by the natural
hazard during an exposure period of one year
is .005. That is, if 1,000 homes like yours
were exposed to the natural hazard for one
year, 5 of the homes would be damaged.
Please estimate the probability that your
home would avoid being hit by the natural
hazard (conjunctive)/would be hit at least
once by the natural hazard (disjunctive) if
exposed to the hazard for a period of . . . .

Doyle then asked his participants to make esti-
mates of the probability for a range of time periods:
1 month, 1 year, 5 years, 10 years, 25 years, and 50
years for natural hazards (1 month, 1 year, 5 years,
10 years, 15 years, and 25 years for contraceptives).
Doyle also varied the single-year probability
across scenarios. Like Shaklee and Fischhoff
(1990), he found that a substantial proportion
of participants failed to realize that the probability
would decrease monotonically over time for con-
junctive cumulative-probability judgements (50%
for the contraceptive domain, 25% for the natural
hazards domain). Of those participants, most
either assumed that the probability would remain
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constant over time (i.e., the single-year probability
at all time periods) or that it would increase over
time. For participants who did show a monotoni-
cally decreasing function, though the majority
used some kind of analytic strategy to compute
their responses, only 2 participants used the
normatively correct strategy to arrive at their
answers. The most common analytic strategies
used were an anchoring and subtraction strategy
(where participants started with the single-year
probability and systematically subtracted a certain
amount each time to arrive at their judgements)
and a multiplicative strategy (where participants
multiply the probability of experiencing the
hazard in a single year by the number of years
and subtract this from 1), both of which drop
more sharply over time than the normatively
correct answers. Few participants employed an
intuitive or guessing strategy, suggesting that
participants generally found the problems to be
tractable, but that they misrepresented them or
employed an inappropriate strategy.

For judgements of disjunctive cumulative
probabilities, Doyle found a similar pattern.
Some participants failed to realize that, for these
judgements, the probability should increase mono-
tonically over time (28% for contraceptives, 16%
for natural hazards). Most participants showed
some form of analytic strategy, although none
used the normatively correct one. The most
popular strategy used on disjunctive cumulative-
probability problems was a multiplicative one
(where participants multiplied the probability of
experiencing the event by the number of years).
This strategy results in probability estimates that
increase more quickly than the normatively
correct answers, and it led some participants to
make probability estimates of greater than 1
(with others abandoning the strategy when it
reached this point). The above evidence suggests
that people are poor at making even the simplest
cumulative-probability judgements (Doyle, 1997;
Shaklee & Fischhoff, 1990), never mind when
they are faced with judgements where the single-
year probability varies over time (Svenson, 1984,
1985). How can we help people better understand
how risk accumulates over time?

Improving risk judgements

Although little work has been carried out specifi-
cally on improving people’s understanding of
cumulative probabilities, research into people’s
performance on other kinds of probability judge-
ment problems may be informative. Another
class of probability judgement problems on
which people traditionally perform poorly are
Bayesian conditional probability judgements,
such as:

The probability that a woman between 40
and 50 years has breast cancer is 0.8%. If a
woman has breast cancer, the probability
that this will be successfully detected by a
mammogram is 90%. If a woman does not
have breast cancer there is a 7% probability
of a false-positive result on the mammo-
gram. A woman (age 45) has just tested
positive on a mammogram; what is the prob-
ability that she actually has breast cancer?

Naı̈ve individuals do not use Bayes’s theorem in
responding to problems such as this one and rarely
arrive at normatively correct solutions (Casscells,
Schoenberger, & Grayboys, 1978; Eddy, 1982;
Hammerton, 1973). They tend to underweight
information on the base rate (here 0.8%, e.g.,
Kahneman & Tversky, 1982; cf. Koehler,
1996), and they tend to confuse the conditional
probability with its converse ( Johnson-Laird,
Legrenzi, Girotto, Sonino-Legrenzi, & Caverni,
1999).

One view of these problems is that errors arise
because the problems are stated in terms of prob-
abilities rather than in terms of frequencies of
the sort observed in daily life—that is, “natural”
samples (Cosmides & Tooby, 1996; Gigerenzer
& Hoffrage, 1995). According to this frequentist
view, probabilities concern repeated events, and
those assigned to unique events in nonextensional
problems are meaningless. An event such as World
War III either happens or does not happen, and it
does not happen with a probability of .85
(Cosmides & Tooby, 1996). Gigerenzer and
Hoffrage (1995) showed that if conditional prob-
ability problems such as the one above were

4 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 0000, 00 (0)

MCCLOY, BYRNE, JOHNSON-LAIRD

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
r
i
n
c
e
t
o
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
0
2
 
1
1
 
A
u
g
u
s
t
 
2
0
0
9



presented in terms of frequencies as opposed to
probabilities, then participants were more likely
to arrive at the correct answer. This result suggests
one way in which we might be able to improve
individuals’ judgements of cumulative probability:
We should present the problems in terms of
natural frequencies rather than in terms of
probabilities.

However, there are another group of studies
that suggest that it is not the numbers (frequencies
or probabilities) in problems that are important.
These studies suggest instead that how infor-
mation is structured is the key to improving
performance (Evans, Handley, Perham, Over, &
Thompson, 2000; Girotto & Gonzalez, 2001;
Johnson-Laird et al., 1999; Macchi, 2000;
Sloman, Over, Slovak, & Stibel, 2003).
Individuals make better judgements of conditional
probabilities when problems are presented in this
way (Girotto & Gonzalez, 2001, p. 253):

A person who was tested has 4 chances out
of 100 of having the infection. 3 of the 4
chances of having the infection were associ-
ated with a positive reaction to the test. 12 of
the remaining 96 chances of not having the
infection were also associated with a positive
reaction to the test. Imagine that Pierre is
tested now. Out of a total of 100 chances,
Pierre has ___ chances of having a positive
reaction, ___ of which will be associated
with having the infection.

These problems used information on chances that
refer to single-event probabilities but can readily
be structured in the same manner as “natural”
frequencies (see also Girotto & Gonzalez, 2002).
And they call for separate estimates of the denomi-
nator and the numerator of the conditional
probability. Girotto and Gonzalez (2001) also
showed that frequency versions of these problems
that do not have this useful structure lead to
poor performance on the task.

One theory that provides a clear account of how
this restructuring of information may help to
improve people’s understanding of conditional
probabilities is the mental model theory of naı̈ve
probability judgement (Johnson-Laird et al.,

1999). We describe some of the relevant aspects
of this theory below and consider how it might
extend to the consideration of cumulative-
probability judgements.

Models and extensional probabilities

The probability calculus embodies several self-
evident principles—notably, the extensional
notion that the probability of an event equals the
sum of the probabilities of the mutually exclusive
ways in which the event can occur. The probability
calculus is therefore a normative theory of exten-
sional reasoning about probabilities. This way of
reasoning aims to be deductive—that is, if no
errors occur, then conclusions must be true given
that the premises are true. It can be contrasted
with nonextensional reasoning about probabilities,
which relies on relevant evidence or a relevant
index. Nonextensional reasoning is inductive—
that is, its conclusions could be false even if the
premises are true. It occurs, for instance, when
individuals infer that because an exemplar is
typical of a category, it is very probably a
member of the category. Kahneman and Tversky
in their seminal studies have shown that nonexten-
sional reasoning depends on a variety of such heur-
istics (see, e.g., Tversky & Kahneman, 1983).

Extensional reasoning about probabilities
depends on thinking about the possibilities in
which an outcome occurs, and reasoners use the
probabilities of these possibilities to infer the
probability of the outcome. People think about
possibilities to make various sorts of deductions
(e.g., Johnson-Laird & Byrne, 1991, 2002), and
a theory of extensional reasoning about probabil-
ities follows from the assumption that individuals
represent possibilities in separate mental models
(Johnson-Laird et al., 1999). This theory suggests
that each model represents only what is true in the
relevant possibility (the “principle of truth”). In
default of information to the contrary, individuals
assume that each model of a possibility is equi-
probable (the “principle of equiprobability”).
People compute the probability of an event by
assessing the proportion of models in which the
event occurs (the “principle of proportionality”).
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This theory was corroborated by various exper-
iments ( Johnson-Laird et al., 1999) that tested
the following prediction: Bayesian inference of
posterior conditional probabilities either about
unique events or about repeated events should be
easier when models directly represent probabilities
according to the basic principles of the theory.

Consider the following well-structured Bayesian
problem, for example:

The chances that Pat has the disease are 4 out
of 10. If she has the disease, then the chances
are 3 out of 4 that she has the symptom. If she
does not have the disease, then the chances
are 2 out of 6 that she has the symptom. If
Pat has the symptom, what are the chances
that Pat has the disease?

Individuals can build a set of equiprobable models
of the possibilities, or they can build models tagged
with their appropriate numerical frequencies:

Frequencies
disease symptom 3
disease : symptom 1
: disease symptom 2

. . . 4

where the ellipsis represents the cases where Pat
has neither the disease nor the symptom (as
people may not fully represent this possibility, in
line with the theory’s principle of truth). The set
of models establishes that the probability that
Pat has the symptom is 5 out of 10 (the combined
frequency of lines 1 and 3 above), and that the
probability that Pat has the disease given the pres-
ence of the symptom is 3 out of 5. The posterior
probability can therefore be computed without
having to use Bayes’s theorem. A simpler pro-
cedure suffices based on the use of subsets of
models ( Johnson-Laird et al., 1999):

Granted equiprobability, a conditional prob-
ability, p(AjB), depends on the subset of B
that is A, and the proportionality of A to B
yields the numerical value. Otherwise, if the
models are tagged with their absolute fre-
quencies (or chances), then the conditional

probability equals the frequency (chance) of
the model of A and B divided by the sum
of all the frequencies (chances) of models
containing B.

Inferences about posterior probabilities should be
easier when the statement of the problem makes
it simple to envisage the required subset, and the
mental arithmetic is easy, regardless of whether
the numbers concern the chances of unique
events or the frequencies of repeated events
(Johnson-Laird et al., 1999). One advantage of
this theory is that it can explain the results of
Gigerenzer and Hoffrage’s (1995) studies without
recourse to a specific adaptation for dealing with
so-called natural frequencies. Many empirical
results are compatible this account (see, e.g.,
Evans et al., 2000; Girotto & Gonzalez, 2001;
Macchi, 1995; but cf. Girotto & Gonzalez, 2002;
Hoffrage, Gigerenzer, Krauss, & Martingnon,
2002). Errors in probabilistic reasoning result
when the mental models that people construct
and the real alternatives relevant to the problem
do not match (e.g., in the Monty Hall problem;
see Johnson-Laird et al., 1999).

The mental model theory extends naturally to
the computation of cumulative risk. Figure 1 pre-
sents a diagram corresponding to the partition of
events in which there are three trials, and on
each of them, as in the example above about the
drug, the probability of a harmful outcome is 1/
3. Naı̈ve individuals may be able to construct
such a diagram in which each complete branch
denotes, in effect, an equiprobable sequence of
three trials. Each node corresponds to a trial, and
the three lines emanating from each node show
that the chance of a harm is 1/3—that is, only
one of the three lines is labelled “harm”. The
right-hand side of the diagram shows the
number of times “harm” occurs in each sequence
of three trials. It is a simple matter to add up the
numbers required for the conjunctive probability:
There is no harmful outcome on any of the three
trials for 8 out of the 27 possible sequences.
Likewise, the disjunctive probability of at least
one harmful outcome in three trials is 19 out of
the 27 possible sequences of trials.
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The partition in Figure 1 represents the
possible sequences of three independent trials.
Suppose that we wanted the figure to represent
three shots in a game of Russian roulette in
which there were bullets in two of the six chambers
in the revolver. The trials are no longer indepen-
dent: If a harmful event occurs, then death
follows, and so there are no further trials.
“Harm” on an edge of the graph is terminal in
the other sense of the word as well—that is, the
graph ends at this point, because the harmful
outcome can occur to a player only once. What is
the probability of a conjunctive sequence—that
is, one in which the harmful outcome does not

occur in a series of three trials? Inspection of
Figure 1 but with all edges terminating with the
label “harm” shows that there are now only 15
possible sequences of trials: A total of 7 terminate
with the ultimate harmful event, and 8 terminate
without the harmful event. Hence, the probability
of death is 7/15 and of continuing life is 8/15.

Consider the risk of pregnancy with a certain
method of contraception. If the risk of pregnancy
is stated over a period of time, such as a year,
then it can be treated as an independent risk over
lengthy periods of time. Strictly speaking,
however, the risk should be stated, not in relation
to a certain period of time—any method will be
risk free if a woman does not have sexual inter-
course during that period of time—but rather it
should be stated as a function of the number of
occurrences of intercourse. However, when a
woman becomes pregnant, there is no further
risk of pregnancy for some time. In terms of the
sort of partition illustrated in Figure 1, when a
woman becomes pregnant she ceases to engage
in further trials at which she is at risk, not perma-
nently as in Russian roulette, but until she is able
to conceive again. A further source of complexity
is that the risk of pregnancy may change over
time depending on hormonal effects from certain
methods of contraception. The moral is that
cumulative risk over a series of dependent events
can be very complicated. For this reason, our
investigation focuses on independent events,
especially as people have been shown still to have
problems with even the most straightforward
kind of cumulative risk (e.g., Doyle, 1997).

According to the model theory, a way to help
naı̈ve individuals to make cumulative estimates is
to step them through each trial in an iterative
way, especially if the iteration focuses on the
relevant subsets. Given, say, the partition in
Figure 1, individuals should be asked to make
the conjunctive estimate in the following sequence
of iterated estimates:

If 27 people take the drug with a probability
of a harmful side effect of 1/3 on each trial,
how many are likely not to suffer the side
effect on the first trial?

Figure 1. Diagram illustrating a series of three trials on which the

probability of harm on any trial is 1/3. The right-hand column

sums the number of harmful events in each sequence of trials.
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[Answer: 18 out of the 27]

How many of these individuals in turn are
likely not to suffer the side effect on the
second trial too?

[Answer: 12 out of the 18]

And how many of these in turn are likely not
to suffer the side effect on the third trial?

[Answer: 8 out of 12]

Each estimate in the iteration should be rela-
tively easy to make.

The theory suggests that differences between
estimates from frequencies and from probabilities
are likely to occur only when they are confounded
with the difficulty of the corresponding mental
arithmetic, or with the ease of recovering the per-
tinent subset. Evidence has corroborated this
prediction for probability estimates (see, e.g.,
Girotto & Gonzalez, 2001). But, in order to
test the frequentist prediction for cumulative
risk, our first study examined the difference
between problems based on probabilities and
those based on frequencies. It also examined
the difference between problems in which the
relevant subset was made salient and problems
in which it was not.

Strategies
As our interest is in helping people to under-
stand cumulative risks, we are concerned not
only with the estimates that people make when
faced with cumulative-risk problems, but also
with the strategies that they employ in calculat-
ing cumulative risks. Doyle (1997) highlighted
a number of erroneous strategies employed by
his participants. For conjunctive cumulative-
risk problems two of the most common strategies
that people use are anchoring and subtraction, and
constant (Doyle, 1997). For the anchoring and
subtraction strategy, participants start with the
single-event probability and subtract a particular
percentage for each subsequent event, and for
the constant strategy, participants assume that
the cumulative probability remains constant and
equal to the single-event probability over the

duration of the time period at question. Doyle’s
participants produced the same (constant) or
similar (anchoring and addition) strategies for
disjunctive cumulative-risk problems. We predict
that, if the relevant subset is made easier to
access, participants will be less likely to use such
erroneous strategies.

EXPERIMENT 1: CONJUNCTIVEAND
DISJUNCTIVE CUMULATIVE RISK

A standard version of a conjunctive risk problem is
shown here:

A. In a remote village there is an outbreak of
an infection, which causes damage to the
retina of the eye, once every year. In any
one year, the probability of a person in the
village becoming ill with the infection is
30%. That is, a person from the village has
a 70% probability of not suffering from the
infection over the course of a year. What is
the probability that a person living in the
village for a period of three years will not
suffer from the infection?

The same premises can be used for a disjunctive
problem, which replaces the final question with:

What is the probability that a person living
in the village for a period of three years
will become ill with the infection at least
once?

Naı̈ve participants find these problems very dif-
ficult (Doyle, 1997). Hence, the present exper-
iment called for the participants to make iterative
estimates before they made cumulative estimates,
the arithmetic was always with whole numbers,
and all estimates were of separate values for the
numerator and the denominator. On each trial,
the participants accordingly answered five ques-
tions illustrated here in the version used for the
eye infection problem:

1. Suppose that 1,000 people live in the
village for one year—how many of these
people do you think would not suffer from
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the infection at all that year? ___ out of ___.
[One-year conjunctive risk]

2. Now suppose that these 1,000 people con-
tinued to live in the village for a second year—
how many of these people do you think
would not suffer from the infection at all
over the two years (bearing in mind that
there is a 70% probability of not suffering
from the infection)? ___ out of ___. [Two-
year conjunctive risk]

3. Now suppose that these 1,000 people live
in the village for a third year—how many of
these people do you think would not suffer
from the infection at all over the three
years (bearing in mind that there is a 70%
probability of not suffering from the infec-
tion)? ___ out of ___. [Three-year conjunc-
tive risk]

4. So, over the three years, how many people
out of the original 1,000 will not have
suffered from the infection at all? ___ out
of 1,000. [Overall conjunctive risk]

5. And how many people out of the original
1,000 will have become ill with the infection
at least once during the three years? ___ out
of 1,000. [Overall disjunctive risk]

The aim of the experiment was to examine two
ways that might enable individuals to improve
their judgements of cumulative risk. First, accord-
ing to the model theory, the presentation of pro-
blems in a way that highlights the pertinent
subset should improve performance. The exper-
iment therefore compared the nonsubset version
of a problem shown above with a subset version
in which the subset was made salient. These pro-
blems were constructed by replacing the questions
2 and 3 above with questions that focused on the
relevant subset of people:

20. Now suppose that those people who did
not suffer from the infection at all in the
first year continued to live in the village for
a second year—how many of those people
who did not suffer from the infection
during the first year do you think would

also not suffer from the infection at all
during the second year (bearing in mind
that there is a 70% probability of not suffer-
ing from the infection)? ___ out of ___.

30. Now suppose that those people who did
not suffer from the infection at all during
the second year continued to live in the
village for a third year—how many of those
people who did not suffer from the infection
during the second year do you think would
also not suffer from the infection at all
during the third year (bearing in mind that
there is a 70% probability of not suffering
from the infection)? ___ out of ___.

Second, according to frequentist accounts (e.g.,
Gigerenzer & Hoffrage, 1995), the statement of
a problem in terms of frequencies should
improve performance. The experiment therefore
compared the probability version of a problem, as
above, with a frequency version. The initial pre-
mises for the eye disease problem were accordingly
as follows:

A0. In a remote village there is an outbreak of
an infection, which causes damage to the
retina of the eye, once every year. In any
one year, 30 out of every 100 people
become ill with the infection. That is, 70
out of every 100 people do not suffer from
the infection over the course of a year.

Likewise, in Questions 2 and 3 the parenthetical
reminder was phrased in frequencies: “bearing in
mind that 70 out of every 100 people do not
suffer from the infection”. If the model theory is
correct, then this manipulation is unlikely to
have as large an effect as the subset manipulation.

Method

Design
There were four separate groups of participants,
which each tackled three problems. The four
groups were defined in terms of whether the
three problems were in a subset version or nonsub-
set version and whether they were stated in terms
of frequencies or probabilities. The three problems
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in each group differed in content and in the prob-
ability of no harmful outcome (90%, 80%, and
70%). The three problems concerned respectively
pregnancy, kapi fruit, and eye infection, and their
premises are stated in the Appendix. Table 1
states their correct answers. Each participant
received the problems in a different random order.

Participants
The participants were from Trinity College
Dublin (30 undergraduates and 7 others) and
took part in the experiment at the end of a practical
class. They were assigned at random to one of the
four groups, subset frequency (n ¼ 9), subset prob-
ability (n ¼ 10), nonsubset frequency (n ¼ 9), and
nonsubset probability (n ¼ 9).

Procedure
The participants were given a five-page booklet,
which consisted of an instruction page, three pro-
blems on separate pages, and a final debriefing
page. The instructions stated that they were to
read through the problems carefully, to write
down their calculations in the rough-work spaces
provided, and to answer the questions and the pro-
blems in the order in which they were given. They
were required to use paper and pencil to arrive at
their answers, and calculators were not provided.
They were allowed as much time as they needed

to complete the problems, and they took about
15 minutes to complete all three.

Results

The participants had to make 8 separate numerical
estimates for each problem (the numerator and
denominator for Questions 1, 2, and 3, and the
conjunctive and disjunctive estimates in
Questions 4 and 5). Across the three problems,
therefore, each participant made a total of 24 esti-
mates (the 8 estimates for each of three problems).
The mean numbers of correct answers (out of 24)
were as follows:1

Subset frequency group: 22.3

Subset probability group: 21.7

Nonsubset frequency group: 14.2

Nonsubset probability group: 16.7.

The participants in the subset groups (mean 22.0)
were significantly more accurate than those in the
nonsubset groups (mean 15.44; Mann–Whitney
U ¼ 70.5, z ¼ 3.12, p, .001). The participants in
the frequency groups were not significantly more
accurate (mean 18.28) than those in the probability
groups (mean 19.32; Mann–Whitney U ¼ 161,
z ¼ 0.31, p, .4).Within the nonsubset groups,
there was no reliable difference between the fre-
quency and the probability groups (mean 14.22 vs.

Table 1. The correct answers for the subset versions of three problems in Experiment 1

Question

Pregnancy

(90%)

Kapi fruit

(80%)

Eye infection

(70%)

1. 1st trial 900/1,000 800/1,000 700/1,000

2. 2nd trial 810/900 640/800 490/700

3. 3rd trial 729/810 512/640 343/490

4. Conjunctive riska 729/1,000 512/1,000 343/1,000

5. Disjunctive riskb 271/1,000 488/1,000 657/1,000

Note: Percentages show the probability of no harmful outcome for each problem. The same answers are accurate for both probability

and frequency versions. The subset and nonsubset problems have the same answers for Questions 1, 4, and 5 and differ only in the

denominator for Questions 2 and 3 (e.g., the nonsubset answer to Question 2 for the pregnancy content is 810/1,000).
aNo harmful outcome over 3 years.b At least one harmful outcome over 3 years.

1 The pattern of results is the same if we consider only correct numerators.
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mean 16.67; Mann–Whitney U ¼ 30.5, z ¼ 0.91,
p, .2). Likewise, within the subset groups, there
was no significant difference between the frequency
and the probability groups (mean 22.33 vs. mean
21.7; Mann–WhitneyU ¼ 38.5, z ¼ 0.56, p, .3).

In their estimates of the conjunctive and
disjunctive probabilities (Questions 4 and 5), the
participants in the subset groups were more accu-
rate (conjunctive mean ¼ 2.32 out of 3, disjunctive
mean ¼ 2.12) than those in the nonsubset groups
(conjunctive mean ¼ 1.28, disjunctive mean ¼

1.06; conjunctive Mann–Whitney U ¼ 110,
z ¼ 2.01, p, .02; disjunctive Mann–Whitney
U ¼ 101.5, z ¼ 2.24, p, .01). There was no
reliable difference in accuracy between the fre-
quency and probability groups (frequency conjunc-
tive mean ¼ 1.56, frequency disjunctive mean ¼

1.39; probability conjunctive mean ¼ 2.05, prob-
ability disjunctive mean ¼ 1.79; conjunctive
Mann–Whitney U ¼ 142, z ¼ 0.957, p, .19;
disjunctive Mann–Whitney U ¼ 140.5, z ¼
0.984, p, .18). Frequency groups performed mar-
ginally worse than probability groups in the non-
subset condition (conjunctive mean 0.67 vs. mean
1.89, Mann–Whitney U ¼ 23.5, z ¼ 1.71,
p , .08, two-tailed; disjunctive mean 0.67 vs.
mean 1.44, Mann–Whitney U ¼ 28.0, z ¼ 1.29,
p , .17, two-tailed), but not in the subset con-
dition (conjunctive mean 2.44 vs. mean 2.20,
Mann–Whitney U ¼ 37.5, z ¼ 0.69, p, .32,
two-tailed; disjunctive mean 2.11 vs. mean 2.10,
Mann–Whitney U ¼ 44.5, z ¼ –0.04, p, .52,
two-tailed). Overall, participants were more accu-
rate on the conjunctive question (mean 1.81) than
on the disjunctive question (mean 1.59) but
this difference was only marginally significant
(Wilcoxon, z ¼ 2.06, p , .07).

Strategies
We were able to discern from the participants’
rough work and responses the strategies that they
had used on 98% of the trials. The majority of par-
ticipants showed some rough work in addition to
the production of answers, which indicates that
they were engaging with the task and endeavouring
to arrive at a correct solution. Participants used
three main strategies. The most frequent strategy

was to use the appropriate subset to calculate the
correct answers. They used this strategy on 65%
of trials, but made some arithmetical errors (54%
correct responses, 11% arithmetical errors). The
participants tried to work out the proportion of
people who had avoided the harmful outcome on
the first occasion, those who continued to avoid it
on the second occasion, and so on. This strategy
accounted for the correct answers in both con-
ditions. A second strategy (19% of trials) was to
assume erroneously that the number of people
avoiding harm decreased by a constant number on
each occasion (cf., anchoring and subtraction;
Doyle, 1997). In the eye infection problem, for
example, these participants assumed that because
the number of people avoiding infection decreased
by 300 in the first year, it would continue to
decrease by 300 in each subsequent year. The
third strategy (14% of trials) was to assume that
the number of people avoiding the harmful
outcome remained constant over the course of the
three occasions (cf., constant; Doyle, 1997). In
the eye infection problem, for example, they
believed that 700 out of 1,000 people would have
avoided being infected at all not only after the
first year, but also after subsequent years.

We predicted that participants in the subset
groups should be more likely to use the subset
strategy than those in the nonsubset groups.
Table 2 shows the number of participants who
used the subset strategy on two or more problems
and the number who used it on fewer than two
problems. A Fisher–Yates exact test showed that
participants in the subset groups were significantly
more likely to use the strategy than those in the
nonsubset groups (p , .002).

Table 2. The number of participants using the subset strategy in the

subset and nonsubset groups in Experiment 1

Subset strategy

Group n

On 2 or more

problems

On fewer than 2

problems

Subset 19 17 2

Nonsubset 18 7 11

Note: Participants include those who made arithmetical errors.
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Discussion

It is possible to help individuals to make accurate
estimates of cumulative risk. In all the groups in
the experiment, performance was much better
than that in previous studies. Hence, iterative esti-
mates, the separation of numerator and denomi-
nator, and the use of simple arithmetic are all
likely to improve estimates. This overall improve-
ment is all the more surprising, given that in this
experiment we employed a strict (exact) criterion
for correct answers, unlike the criteria used in
some previous studies. The experiment showed,
however, that when a problem is framed in terms
of the relevant subset, then performance is reliably
enhanced in comparison with groups who received
problems framed otherwise. The reason for this
improvement was probably because when the
subset is salient, the participants used a strategy
based on its use in estimates. The improvement
occurred whether or not problems were stated
in terms of frequencies or probabilities. Indeed,
contrary to frequentist views, this variable had
no reliable effect on performance, though there
was a tendency, albeit not significant, for fre-
quencies to impair performance with nonsubset
problems.

There was little difference between the
estimates of conjunctive and disjunctive risk.
Participants appear to have based their answers
to the disjunctive question on a simple subtraction
from the conjunctive answer. Indeed, the partici-
pants’ strategies show that differences in accuracy
between the conjunctive and disjunctive estimates
arose from errors in subtraction in making the dis-
junctive estimate. Our next experiment examines
disjunctive cumulative risk in more depth.

EXPERIMENT 2: DISJUNCTIVE
CUMULATIVE RISK

The second experiment aimed to show that the
subset principle can also be applied when people
are focused on estimates of disjunctive risk rather
than conjunctive risk. Consider the kapi fruit
problem used in Experiment 1:

Kapi fruit is a popular delicacy in part of the
world. Even when correctly prepared kapi
fruit may still contain some toxins, and
there is a 20% probability that a person
eating a portion of kapi fruit will suffer
from severe stomach pains and develop
some liver damage. That is, there is an
80% probability that a person eating a
portion of kapi fruit will suffer no ill effects.

In Experiment 1, people were asked a conjunctive
question at each stage about the numbers of people
avoiding harm. In contrast, in our second exper-
iment the iterative questions concerned disjunctive
estimates, which are shown here with their correct
answers:

1. Suppose that 1,000 people each eat a single
portion of kapi fruit. How many of these
people do you believe will suffer from
severe stomach pains? [200 out of 1,000].

2. Now suppose that these 1,000 people each
eat a second portion of kapi fruit—how many
additional people do you believe will suffer
severe stomach pains for the first time from
eating a second portion (bearing in mind
that there is a 20% probability of suffering
from severe stomach pains)? [160 out of
1,000].

3. Now suppose that these 1,000 people each
eat a third portion of kapi fruit—how many
additional people do you believe will suffer
severe stomach pains for the first time from
eating a third portion (bearing in mind
that there is a 20% probability of suffering
from severe stomach pains)? [128 out of
1,000].

The participants were then given the cumulative
disjunctive question:

4. So, out of the original 1,000 people who
ate kapi fruit, how many will have become
ill at least once over the three portions?
[488 out of 1,000].

and finally the (complementary) cumulative con-
junctive question:
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5. And how many out of the original 1,000
will not have suffered any ill effects? [512
out of 1,000].

For the subset version of the problems, the questions
again focused participants on the relevant subset:

20. Now suppose that those people who suf-
fered no ill effects from eating the first
portion of kapi fruit each eat a second
portion of kapi fruit – How many of these
people who did not suffer any ill effects
from the first portion do you believe will
suffer severe stomach pains from eating the
second portion (bearing in mind that there
is a 20% probability of suffering from
severe stomach pains)? [160 out of 800].

Question 3 was modified in the same way, and
its correct answer was 128 out of 640, and the final
two questions were the same as those for the non-
subset group. The subset and nonsubset problems
have the same answers for Questions 1, 4, and 5
and differ only in the denominator for Questions
2 and 3. Because the previous experiment found
no effect of frequencies as opposed to probabilities,
the problems in this experiment were couched only
in terms of probabilities.

Method

Design
There were two groups of participants, a subset
group and a nonsubset group, which each tackled
a single problem (the kapi fruit problem).

Participants
The participants were 58 student volunteers from
Trinity College Dublin (mean age of 21 years),
who were assigned at random to one of the two
groups (31 in the subset group and 27 in the non-
subset group).

Procedure and materials
The participants were tested individually and in
the same way as in the previous experiment.

They were given a booklet consisting of an instruc-
tion page, a single problem with a set of 5 ques-
tions, and a final debriefing page. The kapi fruit
problem couched in probabilities was modified so
that each of the iterative questions concerned
disjunctive estimates.

Results

The participants were more accurate overall in the
subset group (mean 6.08, out of the eight estimates
in the five questions2) than in the nonsubset group
(mean 4.32; Mann–Whitney U ¼ 239, z ¼ 2.87,
p , .01). The same pattern occurred in the cumu-
lative questions (see Table 3). Participants were
significantly more likely to be correct in the
subset group than in the nonsubset group for the
disjunctive estimate (Fisher–Yates exact test,
p , .01) and for the conjunctive estimate (Fisher
exact test, p , .02). Comparing the two experi-
ments, by looking at the kapi fruit problem we
can see that participants found the disjunctive
problems (Experiment 2) more difficult than the
conjunctive problems (Experiment 1; subset
group mean 7.80; nonsubset group mean 4.78).

Strategies
An analysis of the participants’ rough work
revealed three strategies. First, the most frequent
strategy, used by 38 of the 58 participants (25
correct and 13 with an arithmetical error), was
the subset strategy. Second, 12 out of the 58 par-
ticipants assumed that the number of individuals
experiencing the harmful outcome increased by a
constant—that is, the mirror image of the strategy
for conjunctive problems in Experiment 1
(anchoring and addition; Doyle, 1997). Third, 4
of the participants assumed that the number of
individuals experiencing the harmful outcome
remained constant over trials (constant; Doyle,
1997). A further 4 participants used strategies
that could not be categorized. As before, the
subset group were significantly more likely to use
the subset strategy (25 out of 31 participants)

2 Again, the pattern of results is the same if we consider only correct numerators.
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than were the nonsubset group (13 out of 27 par-
ticipants; Fisher–Yates exact probability test,
p , .01).

GENERAL DISCUSSION

Previous studies have shown that individuals who
have not mastered the probability calculus have
great difficulty in estimating cumulative risk
(e.g., Doyle, 1997; Svenson, 1984, 1985). The dif-
ficulty applies to conjunctive problems, such as an
estimate of the number of individuals who suffered
no harm over a series of trials with a fixed prob-
ability of harm. It also applies to disjunctive
problems, such as an estimate of the number of
individuals who suffered harm on at least one
occasion.

According to the model theory, which we
outlined earlier, individuals can envisage simple
partitions of events (see Figure 1). Hence, if the
problem is broken down into several iterative
steps, individuals should be more accurate.
Performance should also improve if the arithmetic
is simple and if it calls for separate estimates of the
denominator and numerator of the probability.
Our experiments made use of both these pro-
cedures, and performance was much better than
that in the previous studies. The key prediction
of the model theory, however, is that estimates
of cumulative probabilities should be easier if the
problem and the iterated questions concern the
appropriate subsets. Experiment 1 showed a
reliable improvement in the estimates of conjunc-
tive probabilities (and in subsequent estimates of
disjunctive probabilities). Experiment 2 likewise
showed improvement in the estimates of

disjunctive probabilities (and in subsequent esti-
mates of conjunctive probabilities).

The analysis of the rough workings that the
participants made showed that they tended to
rely on the subset strategy for problems in which
the relevant subset was salient. Otherwise, they
tended to adopt erroneous strategies. We have
explored these strategies by implementing
various computer simulations of them. One algor-
ithm, in fact, gives rise to the three main sorts of
strategy that we observed in the experiments. For
a conjunctive problem, its first step is to compute
the number of individuals who suffer the harmful
outcome by taking the product of the number of
individuals and the probability of harm:

1: P(harm)n � n (harm)

where P(harm) is the probability of harm, n is the
number of individuals, and n(harm) is the number
of individuals who suffer harm on the trial. The
second step is to compute the current subset of
those individuals who did not suffer harm and to
set this value to be the new value of n:

2: n� n (harm) � n

The result of each subsequent trial is computed by
iterating (with the new value of n) Steps 1 and 2.

As an example of the algorithm, suppose that
the probability of harm is .2, and the initial set
of individuals is 1,000. For the first trial, Step 1
yields a value of n(harm) of 200, and Step 2
yields a new value of n of 800. For the second
trial, Step 1 yields an n(harm) of 160, and Step 2
yields an n of 640. For the third trial, Step 1
yields an n(harm) of 128, and Step 2 yields an n
of 512. The output of each stage is the correct
value of the cumulative conjunctive probability.

If the iterations occur for every successive trial
after the first one, not from Step 1, but from
Step 2, the outputs are as follows. For the first
trial, the new value of n, as before, is 800. For
the second trial, however, Step 2 yields an n of
600. And for the third trial, Step 2 yields an n of
400. This sequence corresponds precisely to the
second strategy that we observed in Experiment

Table 3.The number of participants making correct disjunctive and

conjunctive estimates in the subset and nonsubset groups in

Experiment 2

Disjunctive Conjunctive

Group n Incorrect Correct Correct Incorrect

Subset 31 18 13 16 15

Nonsubset 28 7 21 6 22

14 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 0000, 00 (0)

MCCLOY, BYRNE, JOHNSON-LAIRD

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
P
r
i
n
c
e
t
o
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
0
2
 
1
1
 
A
u
g
u
s
t
 
2
0
0
9



1 in which the participants subtracted a constant
number (the initial value of those who were
harmed on the first trial) on each iteration.
Finally, if the iterations after the first trial fail to
update the value of n but merely subtract
n(harm) from the original value of n, then the
output for the successive trials is: 800, 800, 800.
This sequence corresponds to the third strategy
that we observed for the conjunctive problems in
Experiment 1. A simple alternative to the algor-
ithm generates the cumulative disjunctive pro-
blems, and the same bugs yield the erroneous
strategies too. In sum, the origins of the erroneous
strategies may be simple bugs in the use of the
iterative subset algorithm.

Contrary to frequentist views (Cosmides &
Tooby, 1996; Gigerenzer & Hoffrage, 1995),
the presentation of the problems in terms of fre-
quencies as opposed to probabilities had no
reliable effect on the accuracy of performance. If
anything, frequencies showed a trend to impair
accuracy on the disjunctive problems, although
the effect was marginal. However, it is unclear
what counts as a “natural” sample in the context
of cumulative risk. The format of our problems
may not count as an instance of such a sample.
Another possible criticism from a frequentist
point of view is that, in the iterative questions
used, we asked participants for answers in terms
of frequency ratios. However, in our probability
conditions, both the information in the problem
and that in the reminders at each iterative stage
were presented in a probability format. This prob-
ability information was presented in terms of
percentages and not as easily partitioned chances
(as in Girotto & Gonzalez, 2001). Percentages
represent single-event probabilities and also do
not have the same structure as “natural-
frequency”-based representations (see Girotto &
Gonzalez, 2002). However, our participants
appeared to have little problem in translating
these probabilities into frequency-based represen-
tations of the problems. In fact, problems in a
probability format actually appeared to help
participants to arrive at correct solutions to the
problems in some circumstances (i.e., the control
condition in Experiment 1).

The assessment of cumulative risk is not an
easy task. Yet, as the model theory predicted, it
can be made much easier if the task is presented
in an iterative way, and each iteration focuses on
the pertinent subset of individuals. Finally, the
answer to Pepys’s puzzle in the introduction is
that the probability of getting at least 1 six in
throwing 6 dice is .665, the probability of getting
at least 2 sixes in throwing 12 dice is .619, and
the probability of getting at least 3 sixes in throw-
ing 18 dice is .597. This result is sufficiently sur-
prising for sophisticated gamblers to exploit it in
winning money from naı̈ve individuals. Naive
intuitions, however, are in accord with the mean
number of sixes obtained from large samples: 1
six when 6 dice are thrown, 2 sixes when 12 dice
are thrown, and 3 sixes when 18 dice are thrown.
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APPENDIX

Materials used in Experiment 1

Pregnancy scenario

The probability that a woman using the contraceptive Primon will

experience no unwanted pregnancies at all during a period of one

year is 90%. That is, women using the contraceptive as directed

have a 10% probability of becoming pregnant in any one year.

Food scenario (used in Experiment 2 also)

Kapi fruit is a popular delicacy in part of the world. Even when

correctly prepared kapi fruit may still contain some toxins, and

there is a 20% probability that a person eating a portion of

kapi fruit will suffer from severe stomach pains and develop

some liver damage. That is, there is an 80% probability

that a person eating a portion of kapi fruit will suffer no ill

effects.

Infection scenario

In a remote village there is an outbreak of an infection, which

causes damage to the retina of the eye, once every year. In

any one year, the probability of a person in the village becoming

ill with the infection is 30%. That is, a person from the village

has a 70% probability of not suffering from the infection over

the course of a year.
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