
Mental simulation and the construction of informal algorithms  
 

Sangeet Khemlani1 and Phil Johnson-Laird2 
sunny.khemlani.ctr@nrl.navy.mil, phil@princeton.edu 

1Naval Research Laboratory, Washington, DC 20375 USA 
2Princeton University, Princeton NJ 08540 USA

Abstract 
We describe two studies that show that when individuals who 
are not programmers create algorithms, they rely on mental 
simulations. Our studies concerned a railway domain in which 
carriages are rearranged – a simple environment but 
equivalent in computational power to a Turing machine. 
Participants successfully solved rearrangement problems 
(Experiment 1), and created algorithms to solve them 
(Experiment 2) and their performance corroborated the use of 
simulation. The participants tended to use loops and to prefer 
while-loops even though they are of greater computational 
power than for-loops. Their ability to create algorithms for 
abstract problems improved when they first had to create 
algorithms for more concrete problems. We devised a 
computer program that creates its own algorithms for 
rearrangement problems. It generates Lisp functions that 
operate on lists and creates descriptions of them in everyday 
language. The complexity of the resulting algorithms predicts 
participants’ difficulty in devising them. 
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Introduction 
A long controversy about human thinking is whether it 

depends on logic (Rips, 1994), probabilities (Oakford & 
Chater, 2007; Tenenbaum & Griffiths, 2001), or mental 
simulations (Craik, 1943; Johnson-Laird, 1983; Hegarty, 
2004). Many inferences such as syllogistic deductions can 
be explained by mechanisms that depend on any of the three 
approaches (see Khemlani & Johnson-Laird, 2012, for a 
review). Indeed, few inferential tasks unequivocally depend 
on one approach. Computer programming may be such a 
task: it is readily explained by appealing to mental 
simulation (Bornat, Dehnadi, & Simon, 2008; Caspersen, 
Bennedsen, & Larsen, 2007; Kurland & Pea, 1985). To 
debug faulty code, programmers have to mentally simulate 
the algorithm to discover the situations in which the 
computer failed to produce the expected output. It is less 
apparent how mental rules of logic or probabilities could be 
used develop algorithms. Logic can be used to deduce the 
consequences of a program, but the creation of a program 
goes beyond logic (cf. Gulwani, 2010; Kitzelmann, 
Schmidt, Mühlpfordt, & Wysotzki, 2002). Probabilities 
hardly enter into the process, because computer programs 
are deterministic, and the language of the probability 
calculus is ill equipped to operate over the structures of 
programs. Mental simulation is therefore an appropriate 
framework with which to characterize the ability to create 
algorithms, and researchers can benefit from studying the 
simulations programmers use to solve tasks (Holt, Boehm-
Davis, & Schultz, 1987). 

Expert programming depends on more than just mental 
simulation, however. Programmers often have specialized 
knowledge of programming languages, of relevant software 
platforms and tools, and about computer science in general 
(Boehm-Davis & Ross, 1992). For that reason, many studies 
have tested the ability of novice programmers to write 
computer programs (see, e.g., Anderson, Pirolli, & Farrell, 
1988). Few have investigated how those without any 
background in programming try to create algorithms. Miller 
(1974) pioneered such studies. He examined the way college 
students unfamiliar with computers wrote instructions for 
others to follow, and found that they tended not to use loops 
in their instructions, even though they could understand 
them (Miller, 1981). More recently, Pane and his colleagues 
carried out a study in which they presented non-
programmers with static descriptions of an agent moving in 
a popular video game, PacMan, and the participants had to 
summarize how agents moved in general. They again 
preferred not to make use of loops, but when they did, they 
appeared to rely on while-loops (Pane et al., 2001).  

Despite these results, there exists no psychological theory 
of how non-programmers construct algorithms. To develop 
such a theory, and to study algorithmic creativity in non-
programmers, we designed a novel problem-solving task 
environment in which reasoners have to sort the order of a 
list in various ways. We introduce the environment below, 
and then explain how individuals build kinematic mental 
models to construct algorithms for their solutions. We then 
describe two experiments that show that reasoners 
intuitively understand the environment (Experiment 1) and 
that they can mentally create algorithms for the problems in 
the environment (Experiment 2).  

Rearrangement problems 
and the railway environment 

We studied how individuals who have never learned 
computer programming create algorithms in everyday 
language. For problems that they readily understood, we 
used the railway environment shown in Figure 1. The 
environment consists of a railway track and a siding. It is an 
analog of a finite-state device with two stacks – the left 
track (a) holds the input and also acts as a stack, the siding 
(b) acts as another stack, and the right track (c) holds the 
final output. Participants’ task is to move the cars from the 
left track to the right track into a specific order. Cars can 
move only from the siding to and from the left track, and 
from left track to right track. Multiple cars can be moved at 
once, i.e., any move of a selected car applies to all cars in 
front of it. For example, in Figure 1, if you moved the E car 
 



  
 

Figure 1. The railway domain with an example of an initial 
configuration in which a set of cars is on the left side (a) of the 
track, the siding (b) can hold one or more cars while other cars are 
moved to the right side of the track (c). 
 
 
to the right track, then the F car would move along in front 
of it. To restrict the environment to a single stack, cars could 
move from the siding only to the output on the right track. 
In summary, only three sorts of move are possible in the 
railway environment: 

 
R: one or more cars moved from left track to right track. 
S: one or more cars moved from left track to siding. 
L: one or more cars moved from the siding to left track. 

 
One constraint is that cars can be neither removed nor added 
to trains in our rearrangement problems – if they could be, 
then the railway environment would be equivalent to a 
universal Turing machine power. 

Experiment 1 below investigated all 24 possible re-
arrangements of four cars, and examined whether the 
participants perseverated, i.e., made one or more 
unnecessary moves. They can use a simple variant of 
“means-ends” analysis in which they work backwards from 
the required goal, invoking operations relevant to reducing 
the difference between the current state and the goal (e.g., 
Newell & Simon, 1972; Newell, 1990). For rearrangement 
problems, they need only envisage each successive car in 
the goal.  Suppose, for instance, they have to re-arrange the 
order ABCD into ACBD.  The starting state is: ABCD[  ], 
where the square brackets denote the contents of the siding, 
which is empty at the start. Their immediate goal is to get D 
to the far end of the right track: [  ] . . . D. So, they move D 
from left to right track: ABC[  ]D. The next partial goal is to 
get B to the right track, and so they need to move C out of 
the way onto the siding: AB[C]D. Now, they can move B to 
the right: A[C]BD. They move C off the stack: AC[  ]BD. 
The next move is intriguing. They should move both A and 
C together from left to right track. But, if reasoners 
perseverate, they may move only C to the right track. Their 
solution won’t be minimal, because they then have to make 
a separate move of A to right track. 

We investigated how reasoners solve single instances of 
such problems, but our primary goal was to understand the 
processes and representations non-programmers use to 
create algorithms. In the following section, we explain how 
kinematic mental models can be used to construct 
algorithms, and illustrate the predictions that the model-
based theory makes. 

A model-based theory of algorithmic creativity 
How do naïve individuals create informal algorithms? We 

hypothesize that individuals simulate solutions to problems, 
where a simulation consists of a sequence of kinematic 
mental models representing states of the world, real or 
imaginary, and the sequence itself represents a logical or 
temporal order of the states (Johnson-Laird, 1983, Ch. 15). 
Reasoners use such simulations to carry out three separate 
steps to create an algorithm: 1) they solve at least two 
different instances of a rearrangement problem using a 
kinematic sequence of moves; 2) they scan the kinematic 
sequences to abduce a pattern; 3) they translate the pattern 
into a verbal description. We address the three steps in turn. 
 
Step 1: Problem-solving as simulation. The first step is to 
solve two different instances of a rearrangement problem. 
Otherwise, re-arrangements are ambiguous. At any point in 
the simulation, only a single move is made, and so to 
reverse, say, four carriages, reasoners can begin by 
envisaging the transformation from the start state: 
 

 ABCDEF[  ]  → [  ] . . . A 
 
This partial goal calls for a move of five cars onto the 
siding, A[BCDEF], so A can be moved to right track, 
[BCDEF]A. The next partial goal is to get B to right track, 
and so it should be moved to left track, B[CDEF]A, and 
over to right track, [CDEF]BA. A repeated loop of these 
two operations moves each car in turn off the siding and to 
right track, and solves the problem. 

Two variables should affect performance in the solution 
of rearrangement problems: the number of moves and the 
number of their operands. Obviously, the greater the number 
of moves, the more difficult a problem should be – the only 
sort of theory that would not make this prediction would be 
one that made no appeal to simulation. A more subtle 
prediction concerns the number of operands. In a reversal 
problem, such as the one above, each move after the first 
has an operand of one car. We can contrast this case with 
the solution of a palindrome problem, such as: 

 
 ABCCBA[  ] → [  ]AABBCC   

 
There are three cars, BCC, on the left that match the goal, 
but they are blocked, and so to solve the problem, the 
blocking cars are moved onto the siding: ABCC[BA]. The 
three cars on the left are moved to the right: A[BA]BCC. 
One car on the siding matches the goal, and so it is moved 
to the left: AB[A]BCC. Two cars on the left match the goal, 
and so they are moved to the right: [A]ABBCC. The car on 
the stack matches the goal, and so it is moved to the left and 
then over to the right, and the problem is solved. Its minimal 
solution required a total of 10 cars to be moved in 6 moves. 
This solution has a mean number of operands per move 
greater than that for the reversal problems, and so the theory 
predicts that the palindrome problems should be more 
difficult than reversal problems of the same number of 

a. c.

b.



moves. And individuals may make an unnecessary move in 
their solution of the problem, i.e., they may fail to solve the 
problem parsimoniously. Number of operands has a family 
resemblance to “relational complexity”, which concerns the 
number of arguments in a relation, and which affects 
problem difficulty (Halford, Wilson, & Phillips, 1998). 
However, the number of operands concerns, not the number 
of arguments of an operator, but whether the value of a 
single argument is one or more entities. 

 
Step 2: Pattern abstraction and abduction. The second step 
in creating an algorithm is to recover the structure of the 
solutions – the loop they contain, and any operations before 
or after it.  Consider the moves to reverse trains of four and 
five cars, respectively: 
 
  (S3 R1 L1 R1 L1 R1 L1 R1)  
  (S4 R1 L1 R1 L1 R1 L1 R1 L1 R1)  
 
where ‘S3’ means move three cars from left track to the 
Siding, ‘R1’ means move one car from left track to Right 
track, and ‘L1’ means move one car from the siding to Left 
track.  The loop of operations is (R1 L1).  But, how many 
times should it be iterated?  There are two ways to find the 
answer.  The simpler is to observe the conditions in the 
simulation when the loop ceases, respectively: 
 
 D[  ]CBA 
 E[  ]DCBA 
 
In both cases, the siding is empty, and so this condition 
determines that a while-loop should continue until the siding 
is empty. The alternative answer depends on computing the 
number of times that a for-loop should be executed, and it 
calls for the solution of a pair of simultaneous linear 
equations to obtain the values of a and b in: 
 

number-of-iterations = a * train-length + b. 
 

Step 3: Conversion to natural language. The third and final 
step is to map the structure of the solution into a description. 
A general algorithm for reversing the order of cars applies 
to trains of any length. Hence, it needs to describe a loop of 
moves. When reasoners convert the algorithm to a natural 
language description, their responses should yield the 
condition in which the loop stops (an indication that they’ve 
constructed while-loop) or else reflect the number of times 
for which the loop should be executed (an indication that 
they’ve constructed a for-loop). The solution of 
simultaneous equations calls for more than just simulation, 
whereas the halting conditions of a loop can be observed in 
a simulation, and so the theory predicts that correct 
responses should tend to use while-loops more often than 
for-loops. 

We have implemented all three steps in a computer 
program that discovers and outputs algorithms to solve any 
re-arrangement problem that depends on a single loop. It 

outputs a for-loop, a while-loop, and a translation of the 
while-loop into informal English (see Appendix). Each of 
these algorithms solves any instance of the relevant class of 
rearrangements. 

Experiment 1 tested whether solutions to rearrangements 
depend on the number of moves and the number of 
operands. Experiment 2 tested whether reasoners use 
simulation to construct algorithms, and therefore formulate 
while loops, and whether the theory predicts the relative 
difficulty of different sorts of problem. 

Experiment 1 
Experiment 1 tested the effects of number of moves and 

number of operands on the solution of simple rearrangement 
problems in the railway environment. The problems were 
simple and called for the rearrangement of only four cars. 
Hence, our interest was in whether the participants could 
solve the problems without making redundant moves. The 
participants had to solve all the 24 possible rearrangements 
of trains containing four cars. Their minimal solutions call 
for various numbers of moves (1, 4, 5, 6, 7, or 8), and as a 
consequence the theory predicts an increasing trend in 
redundant moves for these problems. The total numbers of 
operands in minimal solutions was (4, 6, 8, 10, or 12), and 
as a consequence there should be an increasing trend in 
redundant moves. Because these two variables are only 
partially correlated, we were able to examine their effects 
independently (see Table 1 below). 

Method 
Participants. Twenty undergraduate students at Princeton 
University served as participants, and none had had any 
prior training in logic or computer science.  
 
Design and procedure. Participants acted as their own 
controls and carried out all 24 problems, which were 
presented in a different random order to each of them. When 
they had completed the experiment, they carried out two of 
the problems again, but they had to think aloud as they did 
so. They were tested individually, and carried out the 
experiment on a PC running LispWorks 4.4. They interacted 
with the system using the mouse and the keyboard of the 
computer. They were shown a three-minute instructional 
video that guided them through the elements of the railway 
environment, and that presented the instructions. The key 
instruction stated that they should try to solve each problem 
with as few moves as possible. 

Results and discussion 
Non-programmers were able to solve rearrangement 

problems with ease: they produced very few incorrect 
solutions. Table 1 presents the participants’ mean numbers 
of moves to solve the problems depending on the minimum 
number of moves and the total number of operands. We 
dropped the two extreme problems from the statistical 
  



# of moves in 
a minimal 
solution 

Total number of operands 
(cars) moved in minimal solutions 

Mean # of 
actual moves 4 6 8 10 12 

1 1.0     1.0 
4  4.3 4.7 4.6  4.5 
5  5.5 5.2   5.4 
6   6.5 6.6  6.6 
7   7.9   7.9 
8   8.3 8.5 8.6 8.4 
Mean # of 
actual moves 1.0 4.9 6.5 6.9 8.6  
 

Table 1. The mean numbers of moves in Experiment 1 in 
rearrangement problems as a function of the total number of moves 
in their minimal solutions and the total number of operands (cars) 
to be moved. 

analysis so that they would not bias the results, i.e., the 
problem that required only one move to solution, and the 
problem that had a total of 12 operands. Given that the 
participants solved the problems, it is hardly surprising that 
the mean number of the participants’ moves increased with 
the minimal number of moves required to solve a problem 
(Page’s trend test, L = 1809.5, z = 8.47, p < .0001). But, the 
results also showed that their mean number of moves also 
increased with the number of operands (Page’s trend test, L 
= 276, z = 5.69, p < .0001). In other words, the participants 
tended to fail to find minimal solutions, and as the mean 
number of operands increased so the number of their moves 
increased, independently of the total number of moves in a 
minimal solution. (For brevity, we spare readers the latency 
results, but their patterns corroborated both of these effects.) 
There was a reliable tendency for the participants to make 
redundant moves. Every participant made at least one 
redundant move (Binomial, p = .520). 

In summary, the experiment shows that naive individuals 
can solve simple rearrangements. It corroborated the 
prediction that the number of moves affected the difficulty 
of the problem, and thereby supported simulation-based 
accounts. Likewise, it corroborated the prediction unique to 
the model-based theory that the number of operands should 
affect the difficulty of a problem. The following experiment 
tested whether non-programmers could formulate general 
solutions for rearrangement problems.  

 
Experiment 2 

In Experiment 2, the participants had to formulate 
algorithms to solve three sorts of rearrangement: reversals, 
such as ABCDEFGH becomes HGFEDCBA; palindromes, 
such as ABCDDCBA becomes AABBCCDD; and parity 
sorts, such as ABCDEFGH becomes ACEGBDFH. 
Participants had to construct the algorithms in their mind’s 
eye with no access to the railway environment. They were 
familiar with the environment, because they had just solved 
five practice problems on it, but these problems were simple 
rearrangements that differed from the problems in the 
experiment proper. They were then shown the inputs and 
outputs for each of the problems, and they had to write 
down algorithms for solving them. They did so for fixed-

length problems in which trains of eight cars had to be 
rearranged, and indefinite-length problems in which trains 
of any number of cars had to be rearranged. The fixed-
length problems should be easier than indefinite-length 
problems, because only the former can be solved without 
loops. Likewise, complexity and number of operands predict 
a trend in difficulty over the three sorts of general 
rearrangements: reversals should be easier than 
palindromes, which in turn should be easier than parity 
sorts. The latter should be the hardest to solve because they 
call for an extra operation in their algorithm (see the 
Appendix). 

Method 
Design and materials. The participants acted as their own 
controls and carried out six problems: the three sorts of 
rearrangement as both fixed-length problems of eight cars 
and indefinite-length problems of any number of cars.  The 
session began with five practice problems akin to those in 
Experiment 1, which the participants merely had to solve by 
interacting with the railway system. These problems were 
unrelated to the experimental problems: each of them had a 
train of 6 cars, and a solution depending on 8 moves. The 
experiment proper followed, and the participants’ task was 
to type out a procedure that would solve each problem, but 
they were not allowed to interact with the railway 
environment. They carried out two blocks of trials, one of 
the definite problems and one of the indefinite problems, 
presented in a counterbalanced order to two groups of 
participants. The order of the three sorts of rearrangement 
was randomized for each participant within the blocks. For 
the indefinite-length problems, the participants were told 
that a car containing an ellipsis stood in place for any 
number of cars that had the same pattern. 
 
Participants and procedure. Twenty students from the same 
population as before took part in the experiment. They 
watched an instructional video and were told how to 
interpret the car containing an ellipsis. They then solved the 
practice problems using the same procedure as before. In the 
experiment proper, the participants were told to write a 
description of a procedure for solving each of the 
experimental problems as efficiently as possible. They were 
free to use their own words in any way that they wanted, but 
they no longer were allowed to manipulate the cars in the 
railway environment. 

Results and discussion 
Two independent raters scored the correctness of the 
algorithms and whether they contained a while-loop, a for 
loop, or no loop whatsoever (see Appendix for examples of 
correct   responses).   Inter-rater   reliability   was   high   for 
judgments of correctness (Cohen’s κ = .82) and the sorts of 
loops that participants devised (κ = .73). A third 
independent rater resolved the disagreements. Performance 
with the fixed-length problems was at ceiling (90% correct) 
 



Figure 2. The percentages of correct algorithms (panel a) and the 
response times in s (panel b) for the indefinite-length problems as a 
function of the sort of rearrangement, and whether they occurred in 
the first or second block of trials. 

and much better than the indefinite-length problems (52% 
correct; Wilcoxon test, z = 3.5, p = .0004; Cliff’s δ = .64). 
Figure 2 accordingly shows only the performance for the 
indefinite-length problems, and the Appendix provides 
examples of participants’ correct algorithms. The three sorts 
of rearrangement yielded the predicted trend in accuracy 
and in the time to respond (see Appendix; Page’s trend tests, 
zs > 3.08, ps < .002). Likewise, the participants used many 
more while-loops (74% of correct solutions) than for-loops 
(26% of correct solutions) for indefinite-length problems. 
The use of while-loops correlated with accuracy (r = .32, p 
< .0005), whereas the use of for-loops did not (r = .14, p = 
.10). The differences in ability were striking: the best 
participant created a correct algorithm for every problem, 
whereas the worst did so for only a third of the fixed-length 
problems and for none of the indefinite-length problems. 

General Discussion 
The ability to create algorithms might seem to be a case 

of competence in pure mathematics with little relation to 
everyday life. Problems in rearranging cars in toy trains may 
similarly seem remote from the exigencies of daily life. 
However, algorithmic thinking is regularly called for, e.g., 
in laying place settings on a table, in determining kinship 
relations, in following a recipe or a set of instructions. Other 
sorts of algorithmic thinking are needed to determine the 
consequences of knitting patterns, instructions for kits, 
maintenance manuals, and, above all, algorithms in 
computer programs. 

Algorithmic thinking is easier when you can manipulate 
an external environment and solve a problem using only 
partial means-ends analysis, i.e., you can use the railway 
environment and solve a rearrangement of the cars in a train, 
one car at a time (Experiment 1). But suppose that your task 
is to devise an algorithm for the general problem of sorting 
cars in this way – so that cars in odd-numbered positions 
precede cars in even-numbered positions. The algorithm for 
this task is not obvious. According to the present theory, the 
way that you carry it out is to make another simulation so 
that you can figure out what is going on. You should then 

notice that there is a loop of two operations (move one car 
to the right, and then one car onto the siding) that has to be 
repeated while more than two cars remain on the left track. 
It follows that while-loops should occur more often than 
for-loops in putative algorithms, because it is easier to 
envisage halting conditions for while-loops from 
simulations than to use them to compute the number of 
iterations for a for-loop. The difficulty of the task also 
depends on the Kolmogorov complexity of the program, as 
indexed in the number of its instructions (in Lisp or in 
everyday language), and on the number of operands 
(Experiment 2). 

Computer scientists often complain about the lack of any 
valid test of the likely ability of naive individuals as 
computer programmers (e.g., Bornat, Dehnadi, & Simon, 
2008).  The rearrangement problems in our experiments 
may provide the basis for such a test.  At the very least, we 
now know that individuals differ reliably in their ability 
both to solve problems in the railway domain (Experiment 
1), and to formulate informal algorithms for their solutions 
(Experiment 2).  The question remains as to whether such 
tasks are reliable predictors of ability.  Mathematicians, 
logicians, and computer programmers, learn to reason about 
the repeated loops of operations that are needed in recursive 
functions. Previous studies have examined how novice 
programmers cope with such reasoning in trying to specify 
algorithms in a programming language (see, e.g., Anderson 
& Jeffries, 1985).  Our studies have shown that naive 
individuals with no training in computer programming are 
able to make simulation-based deductions, to solve 
rearrangement problems, and even to abduce informal 
algorithms for their general solution. 

The evidence we have reported corroborated the theory 
based on mental models.  To the best of our knowledge, no 
other theory of naïve algorithmic creativity exists. But, a 
theory could be developed in principle from an 
axiomatization of the domain in first-order logic (see, e.g., 
McCarthy & Hayes, 1969; McCarthy, 1986; Rips, 1994).  A 
typical axiom would capture the effects of a move, e.g.: 

 
For any x, y, if x is a car & y is a train & z is a train 
& y is on right track & z is on left track & x is at 
the front of y & R 1 is carried out then x is at back 
of z & not (x is at front of y). 

 
No one has proposed such an account, and so it is not yet 
possible to pit it against the model-based theory. But, we 
cannot rule it out, and remark only that the approach runs 
into difficulties. Our participants’ think-aloud protocols 
raise problems for it, because they report moving cars 
around in a mental simulation of the railway environment. 
Likewise, their reliance on simulations predicts their use of 
while-loops in algorithms, because simulations yield the 
halting conditions for while-loops more readily than the 
number of iterations for for-loops. These results seem 
difficult, if not impossible, to explain without recourse to 
the use of mental simulations. 

Indefinite first Indefinite last

0.00

0.25

0.50

0.75

1.00

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

%
 C

or
re

ct

a.

Indefinite first Indefinite last

0

100

200

300

400

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

Rev
ers
al

Pal
ind
rom
e

Parity
 sort

R
es

po
ns

e 
tim

e 
(in

 s
)

b.



Acknowledgements 
This research was supported by a National Science 
Foundation Graduate Research Fellowship to SSK and by 
NSF Grant No. SES 0844851 to PJL to study deductive and 
probabilistic reasoning. We are grateful to Monica 
Bucciarelli, Sam Glucksberg, Adele Goldberg, Geoffrey 
Goodwin, Louis Lee, David Lobina, Max Lotstein, Robert 
Mackiewicz, Paula Rubio, and Carlos Santamaria, for their 
helpful comments and criticisms. 

References 
Anderson, J.R., & Jeffries, R. (1985). Novice Lisp Errors: Undetected 

losses of information from working memory. Human-Computer 
Interaction, 1, 107-131. 

Anderson, J. R., Pirolli, P., & Farrell, R. (1988). Learning to program 
recursive functions. In M. Chi, R. Glaser, & M. Farr (Eds.), The 
nature of expertise (pp. 153-183). Hillsdale, NJ: Erlbaum. 

Boehm-Davis, D., & Ross, L. (1992). Program design methodologies 
and the software development process. International Journal of 
Man-Machine Studies, 36, 1-19. 

Bornat, R., Dehnadi, S., & Simon (2008). Mental models, consistency 
and programming aptitude.  Proceedings of the Tenth conference on 
Australasian Computing Education Conference, 10, 53–61. 

Caspersen, M.E., Bennedsen, J., & Larsen, K.D. (2007). Mental 
models and programming aptitude.  ACM SIGCSE Bulletin, 39. 

Corballis, M. (2011). The recursive mind. Princeton: Princeton 
University Press. 

Craik, K. (1943). The Nature of Explanation. Cambridge, UK: 
Cambridge University Press. 

Gulwani, S. (2010). Dimensions in program synthesis. In Proceedings 
of the 12th International ACM SIGPLAN Conference. Hagenberg, 
Austria.  

Halford, G.S., Wilson, W.H., & Phillips, S. (1998). Processing 
capacity defined by relational complexity: Implications for 

comparative, developmental, and cognitive psychology. Behavioral 
and Brain Sciences, 21, 803-865. 

Hegarty, M. (2004). Mechanical reasoning as mental simulation. 
Trends in Cognitive Sciences, 8, 280-285. 

Holt, R.W., Boehm-Davis, D., & Schultz, A. (1987). Mental 
representations of programs for students and professional 
programmers. In Empirical Studies of Programmers: Second 
Workshop (pp. 33-46). Ablex Publishing Corp. 

Johnson-Laird, P.N. (1983). Mental models. Cambridge: Cambridge 
University Press.  

Khemlani, S., & Johnson-Laird, P.N. (2012). Theories of the 
syllogism: A meta-analysis. Psychological Bulletin, 138. 

Kitzelmann, E., Schmidt, U., Mühlpfordt, M., & Wysotzki, F. (2002). 
Inductive synthesis of functional programs. In Calmet, J., 
Benhamou, B., et al. (Eds.) Artificial Intelligence, Automated 
Reasoning, and Symbolic Computation. New York: Springer.  

Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of 
recursive LOGO programs. Journal of Educational Computing 
Research, 1, 235-244. 

Miller, L. (1974). Programming by non-programmers. International 
Journal of Man-Machine Studies, 6, 237-260. 

Miller, L. (1981). National language programming: Styles, strategies, 
and contrasts. IBM Systems Journal, 20, 184-215. 

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: 
Harvard University Press. 

Newell, A., & Simon, H.A. (1972). Human problem solving. 
Englewood Cliffs, NJ: Prentice-Hall. 

Oaksford, M., & Chater, N. (2007). Bayesian rationality. Oxford: 
Oxford University Press. 

Pane, J.F., Ratanamahatana, C.A., & Myers, B.A. (2001). Studying the 
language and structure in non-programmers’ solutions to 
programming problems. International Journal of Human-Computer 
Studies, 54, 237-264. 

Rips, L.J. (1994). The psychology of proof.  Cambridge, MA:  MIT 
Press. 

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generalization, similarity, 
and Bayesian inference. Behavioral and Brain Sciences, 24.  

 
Appendix.  Natural language solutions (as outputted by the computer program for abducing them) to three sorts of general 
problem: reversals, palindromes, and parity sorts, and examples of correct algorithms created by participants; and the 
percentage of participants’ algorithms that correctly solved the given problems in Experiment 2. 

 

Problem Automatically generated algorithms Examples of correct algorithms % Correct 

Reversal 

1 Move one less than the cars to siding. 
2 While there are > zero cars on siding 
3 ...move one car to right track 
4 ...move one car to left track. 
5 Move one car to right track. 

“i'll move everything in the side track.  then 
i'll move each letter back onto the left track 
and then to the right track.” (Participant 14) 90% 

Palindrome 

1 Move one less than half the cars to siding. 
2 While there are > two cars on left track 
3 ...move two cars to right track 
4 ...move one car to left track. 
5 Move two cars to right track 

“step1: cut the train into half, move the right 
half to siding 
step2: for both half trains on the left and 
siding track, move a pair of carts of the 
same letter to the right. Continue doing so 
until all the carts are on the right track.” 
(Participant 1) 

68% 

Parity sort 

1 While there are > two cars on left track 
2 ...move one car to right track 
3 ...move one car to siding. 
4 Move one car to right track. 
5 Move one less than half the cars to left 
track 

6 Move half the cars to right track 

“Move the rightmost car to the right track, 
and move the next car to the side track. 
Continue alternating between right track 
and side track until the left track is empty. 
Then move all cars from the side track to 
the left track, and then to the right track.” 
(Participant 7) 

55% 

 


