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Abstract 

Reasoners distinguish between different types of causal 
relations, such as causes, enabling conditions, and 
preventions. Psychologists disagree about the representations 
that give rise to the different relations, but agree that mental 
simulations play a central role in inferring them. We explore 
how causal relations are extracted from mental simulations. 
The theory of mental models posits that people use a 
kinematic simulation to infer possibilities. It predicts that 
causes should be easier to infer than enabling conditions, and 
that the time it takes to infer a causal relation should correlate 
with the number of moves in a mental simulation. To test 
these two predictions, we adapted a railway domain designed 
to elicit mental simulations, and we devised problems in 
which reasoners had to infer causal relations from simulations 
of the movements of cars in this domain. Two studies 
corroborated the model theory's predictions. We discuss the 
results in light of recent theories of causation and mental 
simulation. 
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Introduction 
A man presses a button on his computer that switches on 

a missile control system. His partner, a woman, presses a 
button on the missile control system to launch the missile, 
and a few minutes later the missile is launched. Did the first 
man cause the missile to launch? Or did he merely enable its 
launch? Reasoners often have to make judgments of the 
distinction between causing and enabling, and in doing so 
they may rely on mental simulations of a sequence of events 
(as in the example above). Many people may conclude that 
the man caused the launch, because the temporal contiguity 
of two events is often all that is required to infer causality 
(Bramley, Gerstenberg, & Lagnado, 2013; Lagnado & 
Sloman, 2006; Rottman & Keil, 2012). In the case of the 
missile launch, the causal inference may be unwarranted, 
because the description is consistent with alternative 
possibilities, such as one in which the woman decides not to 
press the button she controls. Suppressing the initial causal 
inference requires mental simulation too, because reasoners 
may engage in a search for alternative possibilities 
consistent with the description (Frosch & Johnson-Laird, 
2011). 

Causation is controversial; it has vexed scholars for 
centuries, and psychologists disagree on its underlying 
mechanisms (Ahn & Bailenson, 1996; Cheng, 1997; Hilton 
& Erb, 1996; Sloman, 2005; White, 2014; Wolff, 2007). 

What is less controversial is the centrality of mental 
simulation in causal thinking and reasoning: people 
construct small-scale simulations of possibilities to make 
predictions of outcomes (Kahneman & Tversky, 1981), to 
understand mechanisms (Hegarty, 2004) and physical 
scenes (Battaglia, Hamrick, & Tenenbaum, 2013), to resolve 
inconsistencies and contradictions (Khemlani & Johnson-
Laird, 2012, 2013; Park & Sloman, 2014), to deduce the 
consequences of algorithms (Khemlani et al., 2013), and to 
reason about counterfactual scenarios (Byrne, 2005; 
Galinsky & Moskowitz, 2000). 

One challenge for theories of causality is how different 
causal relations are extracted from a mental simulation. 
People distinguish between causal relations such as cause, 
enable, and prevent. For example, they recognize that the 
meaning of, 

 
1. The button caused the missile to launch. 

 
is distinct from, 
 

2. The button enabled the missile to launch. 
 
Theorists have appealed to the transmission of force (Wolff, 
2007), causal model structure (Sloman et al., 2009), and 
mental models of possibilities (Goldvarg & Johnson-Laird, 
2001), to explain the differences in meaning between causal 
relations (for a review, see Khemlani, Barbey, & Johnson-
Laird, 2014). But there exists no account of how causal 
relations are inferred from simulations, and as such no one 
has specified an algorithm that can carry out the task. 

Our goal in the present article is to report studies that 
should help to solve this problem. We begin by illustrating 
how causal relations can be inferred from kinematic models 
by introducing the general tenets of mental model theory. 
We used a domain designed to elicit kinematic mental 
simulations, and so we introduce that domain and describe 
its characteristics. We then describe two studies in which 
participants’ inferences about causal relations depended on 
the number of discrete steps in mental simulations. Finally, 
we evaluate the results in the context of current theories of 
causal reasoning. 

Models of possibilities 
The mental model theory – the “model” theory, for short 

– applies to reasoning across many domains, including 
reasoning based on sentential connectives, such as if, or, and 



and (Johnson-Laird & Byrne, 1991), reasoning based on 
quantifiers (Khemlani, Lotstein, Trafton, & Johnson-Laird, 
2015) and reasoning about temporal, spatial, causal, and 
abstract relations (Goodwin & Johnson-Laird, 2005). Three 
main principles underlie the theory (Johnson-Laird, 2006). 
First, mental models represent discrete possibilities: each 
model captures a distinct set of possibilities. Second, mental 
models are iconic as far as that is possible: the structure of 
the model corresponds to the structure of what it represents 
(see Peirce, 1931-1958, Vol. 4), and so kinematic models 
that unfold in time can represent a temporal sequence of 
events (Johnson-Laird, 1983; Khemlani et al., 2013). But, 
models can also include abstract symbols, e.g., the symbol 
for negation (Khemlani et al., 2012). Third, the model 
theory posits a principle of “truth”: mental models represent 
only what is true and not what is false.  

Inferences that require more models are more difficult 
than those that require fewer models. As a consequence, 
reasoners take longer to draw such inferences and are more 
likely to err, particularly by overlooking possibilities that 
render a given statement false. As such, they often represent 
only possibilities that render a statement true – their mental 
models – though they can flesh out those mental models to 
include additional possibilities to build fully explicit models. 
We illustrate the difference for the case of causal reasoning. 

The model theory resolves the differences in 
interpretation between causal relations by distinguishing the 
sets of possibilities to which those relations refer (Goldvarg 
& Johnson-Laird, 2001), i.e., fully explicit models. A causal 
assertion such as (1) above refers to a conjunction of three 
separate models of possibilities, depicted in this schematic 
diagram: 

 
  button  missile-launch  
   ¬ button  missile-launch 
   ¬ button ¬ missile-launch 
 
Each row in the diagram represents a different temporally 
ordered possibility, e.g., the first row represents the 
possibility in which the button is pushed and the missile 
launches. In other words, the model theory posits that 
causality rules out those situations in which the button is 
pushed and the missile doesn’t launch, as well as those 
situations in which the missile launch precedes the button 
push. In contrast, an enabling assertion, such as the one 
specified in (2), refers to a different conjunction of 
possibilities: 

 
  button  missile-launch  
  button ¬ missile-launch  
   ¬ button ¬ missile-launch 
 
i.e., to say that pushing the button enabled the missile to 
launch is to assert that the missile may or may not launch 
(the first two possibilities above). The enabling condition is 
inconsistent with the possibility in which the missile 
launches without the button being pushed. Reasoners list 
these possibilities for assertions such as (1) and (2)  

(Goldvarg & Johnson-Laird, 2001, Experiment 1).  
However, unless otherwise prompted to do so, reasoners 
build models in accordance with the principle of truth. As 
such, causes and enabling conditions have a single mental 
model representing one possibility: 
 
 button missile-launch 
 
Hence, individuals often fail to distinguish enabling from 
causing (Goldvarg & Johnson-Laird, 2001, Experiment 5). 

When individuals observe or envisage a sequence of 
events, such as a button being pressed before a missile is 
launched, they can infer a causal relation between them. A 
correct inference depends on not only observing the factual 
mental model of the relation (e.g., the button being pressed, 
then the missile launching) but also envisaging the 
counterfactual possibilities to which the relation refers (i.e., 
the set of fully explicit models). If reasoners can envisage 
possibilities that correspond to the first conjunctive set 
above (e.g., the missile launching after the button press, and 
either launching or not in the absence of the button press) 
then they should infer that pressing the button caused the 
missile-launch. In contrast, inferring an enabling condition 
should be more complex. The difference in difficulty 
depends on the assumption that at least one of the following 
causal relations holds between the button and the missile 
launch: causes, enables, or prevents. Reasoners observe 
what happens given that the button is pressed. If the missile 
launches in this case, then they are likely to infer that the 
button causes the missile launch, and they will be correct if 
indeed it does. They will even be correct if they also 
consider the counterfactuals of what happens given that the 
button is not pressed. The only way that they are likely to 
infer that the button enables the missile launch is if they can 
envisage a counterfactual possibility in which the missile 
does not launch when the button is pressed. The asymmetry 
arises because the button press and the missile launch are 
both possible given either causes or enables, but the button 
press and missile not launching is possible only with 
enables. Hence, the theory predicts that when reasoners 
draw causal conclusions from mental simulations, it should 
be more difficult to infer enabling conditions, e.g., that 
pressing the button enabled the missile launch.  

When individuals need to simulate a sequence of events 
in a kinematic model, the theory makes a direct prediction: 
the more events that occur in the sequence, the harder the 
inference should be – it should take longer and be more 
likely to yield an error.  

In order to test the theory’s predictions we adapted an 
experimental domain used to elicit kinematic mental 
simulations in order to study causal inferences. We describe 
that experimental domain in the next section. 

Kinematic models in a railway domain 
We sought to investigate how individuals without any 

formal training in logic, probability, or causal reasoning 
were able to infer causal relations by carrying out mental 



simulations. Accordingly, we developed a domain based on 
the railway environment shown in Figure 1. The 
environment is composed of a railway track and a siding, 
and recent studies demonstrate its ability to elicit kinematic 
simulations underlying deductive and abductive inferences 
(Khemlani et al., 2013). The environment is simple enough 
for children to understand and to reason about (Bucciarelli 
et al., under review). Cars are prohibited from moving from 
the siding directly to the right track and vice versa, and they 
are prohibited from moving from the right track back to the 
left track. In other words, there are only three legal moves in 
the environment: i) a move from the left track to the siding, 
ii) a move from the siding to the left track, and iii) a move 
from the left track to the right track. Multiple cars can be 
moved at once such that any move of a selected car applies 
to all cars in front of it. In Figure 1, if you moved the D car 
to the right track, then the E car would move along in front 
of it. Because both the siding and the left track function as 
stacks in an automaton, the environment in principle has the 
computational power of a universal Turing machine. To 
restrict the environment to a single stack, cars could move 
from the siding only to the output on the right track. 

 

 
 

Figure 1. The railway domain with an example of an initial 
configuration in which a set of cars is on the left side of the track, 
the siding can hold one or more cars while other cars are moved to 
the right side of the track. 

 
Consider the problem of reversing the order of five cars, 

ABCDE, i.e., to produce the sequence, EDCBA on the right 
track. The environment can be depicted in this diagram: 

 
ABCDE[    ] 

 
where the brackets denote the siding, the area to the left of 
the brackets denotes the left track, and the area to the right 
of the brackets denotes the right track. This sort of notation 
is used in a computer program that solves such problems 
and infers algorithms for solving them (Khemlani et al., 
2013). To reverse the order of the train, a reasoner can move 
the cars as follows: 
 
   A[BCDE] Move all but A to the siding.  
    [BCDE]A Move A to the left track. 
   B[CDE ]A Move B to the left track… 
    [CDE ]BA …then to the right track. 
   C[DE  ]BA Repeat for all the remaining cars. 
    [DE  ]CBA 
   D[E   ]CBA 
    [E   ]DCBA 
   E[    ]DCBA 
    [    ]EDCBA 

Reasoners can mentally simulate such a sequence of 
moves.  Indeed, a reasoner who carried out the steps above 
to reverse the train ABCDE may have made causal 
inferences in passing. Consider the first move in the 
sequence: 
 
ABCDE[    ]  
    A[BCDE]  

 
those who envision moving car B from the left track to the 
siding might recognize that doing so caused cars C, D, and 
E to move along with it. The inference can be drawn 
because the causation relation refers to three separate 
possibilities in a situation, such as Figure 1: 
 
  B moves-to siding   C moves-to siding 
 ¬ B moves-to siding  C moves-to siding 
 ¬ B moves-to siding ¬ C moves-to siding 
 
In reversing the order of the cars, individuals can simulate 
the first possibility. They might also simulate counterfactual 
possibilities, e.g., if B hadn’t moved to the siding, C may or 
may not have moved to the siding. 

Reasoners can infer enabling conditions in a similar 
fashion. For example, reasoners can infer that moving B to 
the siding enabled A to move alone to the right track on a 
subsequent move. How might reasoners infer the relation? 
They may envisage that if B moves to the siding then A can 
move alone to the right track: 
 
  B moves-to siding   A moves-to right track 
 
Some reasoners may therefore infer that B’s move causes 
A’s move.  But, the inference is erroneous. To make the 
correct inference, reasoners need to consider two 
counterfactual moves: 
 
 ¬ B moves-to siding  A moves-to right track 
 ¬ B moves-to siding ¬ A moves-to right track 
 
In other words, A could have remained on the left track 
even if B had moved to the siding; but, A could not have 
moved alone to the right track if B hadn’t moved to the 
siding. The three models together suffice to infer the 
enabling relation: moving B to the siding enabled A to move 
to the right-track alone. But, the inference should be more 
difficult than inferring that A’s move to the right track 
caused B to move there too. 

We carried out two studies in which reasoners made such 
inferences about the railway environment. The model theory 
makes two main predictions about errors and latencies: 
 

1. Inferences that one event causes another should 
be easier than inferences that one event enables 
another for the reasons we explain above. 

2. The number of moves required to carry out the 
simulation should predict the difficulty of an 
inference. 



Experiment 1 
Experiment 1 aimed to test the two predictions, and thereby 
to corroborate the model theory’s account of causal 
meanings and the role of kinematic models.  On each trial, 
participants saw a picture of three cars on the railway track, 
such as one corresponding to the situation: 
 

ABC[    ]  
 
They then had to understand a supposition, such as: Suppose 
B has just moved to the empty siding. In this case, they have 
to simulate a single move: A[BC]. Finally, they had to 
answer a question, such as: Did that move cause C to move 
to the siding? In this case, the theory predicts that they 
should respond: Yes.  The experiment manipulated the 
number of moves required in the simulation in order to 
respond to the question: 0, 1, 2, or 3, whether the question 
referred to “cause” or “enable”, and whether the predicted 
answer should be “yes” or “no”.   

Method 
Participants. Thirty-six students at the University of 
Pennsylvania completed the experiment for partial course 
credit. All of the participants were native English speakers, 
and none had had any prior training in formal logic. 
 
Design. Participants acted as their own controls and carried 
out 16 problems in a fully repeated measures design, which 
manipulated the number of moves in a simulation (4), the 
causal or enabling relation (2), and the correct answer (2). 
The 16 problems in the study are in the Appendix. The 
study measured the accuracy of participants’ responses to 
the questions and their latencies. 
 
Procedure. The instructions explained the railway 
environment, and that moving a car moved all of the cars in 
front of it too. As a screening procedure, participants had to 
manipulate cars in the environment to reverse the order of a 
five-car train. All the participants passed this test. They 
were told that all of the descriptions of moves that they 
would receive were a result of making the fewest moves 
possible. They were also told (bold text in the original): 
 

“When we ask about whether one move causes another, 
we are concerned with whether the first move makes 
the second move occur. When we ask about whether 
one move enables a second, we are concerned with 
whether that second move immediately becomes 
possible as a result of the first.” 
 
On each trial in the experiment, participants saw an image 

of the empty railway track. After a 1000 ms delay, cars in a 
specified arrangement appeared on the track. After another 
2000 ms delay, a premise and a question appeared in the 
center of the screen, below the railway track, together with 
two buttons marked “Yes” and “No”, which participants 
clicked with the mouse to record their responses. The 

experiment recorded the latency from the appearance of the 
premise and question to when participants clicked one of the 
buttons. 

Results and discussion 
The participants’ inferences were more accurate for causal 
relations than for enabling relations (66% vs. 59%, 
Wilcoxon test, z = 1.74, p = .04, one-tailed, Cliff’s δ = .07), 
which corroborated the model theory’s first prediction. 
Figure 2 presents the proportion of correct responses (left 
panel) and the Winsorized latencies of all of the 
participants’ responses, both correct and incorrect (right-
panel) as a function of the number of moves in the 
simulation. Accuracies did not differ as a function of the 
number of moves in simulation (Page’s trend test, z = .03, p 
= .98). But, latencies yielded a significant trend depending 
on the number of moves (Page’s trend test, z = 3.98, p < 
.0007). The effect was more pronounced when isolating 
only correct responses (Page’s trend test, z = 4.10, p < 
.0001). This result corroborated the model theory’s second 
prediction. 

An immediate concern is whether participants were in fact 
simulating moves in the environment, or whether the 
significant trend in latency is attributable to the number of 
words in each of the problems. To address the issue, we 
conducted a linear regression analysis on log-transformed 
latencies that included the number of words and the moves 
required as predictors. Both were significant predictors, but 
number of words had a lower regression coefficient (B = 
.09, p = .02) than moves required (B = .13, p = .007). We 
likewise conducted a hierarchical analysis in which two 
regression models were contrasted against one another: 
Model 1 regressed the latencies on the number of words 
alone, while Model 2 regressed latencies on the number of 
words in the problem as well as the number of moves 
required. An analysis of deviance showed a significant 
increase in model fit from Model 1 to Model 2 (Model 1 R2 
= .46 vs. Model 2 R2 = .67, F = 10.23, p = .007). 

The results corroborated the model theory’s prediction 
that causes should be easier to envisage from simulation 
than enabling conditions.  The results also corroborated the  

Figure 2. The proportion of correct responses (left-panel) and the 
response latencies from all responses (right-panel) in Experiment 1 
as a function of the number of moves required to carry out a 
simulation. 
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prediction that latencies should correlate with the number of 
steps in a simulation needed to infer a causal relation. Both 
of the results suggest that participants extracted causal and 
enabling relations by carrying out and inspecting mental 
simulations.  As the Figure shows, problems calling for zero 
moves in a simulation were not reliably easier than those 
calling for one move. A simple explanation is that 
individuals nevertheless envisaged the move described in 
the supposition even though its effects were depicted in the 
picture of the railway. 

One shortcoming of the present experiment was that the 
tenses in the verb phrase of the stimuli were held constant 
across the problems. This constancy eliminated some 
confounds, but introduced an oddity: for problems that 
require at least one or more simulations, the premise used 
the past tense to refer to moves that had yet to occur. For 
example, consider the first 1-move problem. Participants 
saw the a track corresponding to: 

 
ABC[    ]  

 
and they were told: 
 

Suppose B moved to the empty siding. 
Did that move cause C to move to the siding? [Y/N] 

 
The premise uses the past tense of “move” to refer to a 
situation to be simulated. A more natural formulation would 
use premises and questions that fit the temporal constraints 
of the simulation, e.g., 
 

Suppose B moves to the empty siding. 
Does that move cause C to move to the siding? 

 
Experiment 2 accordingly replicated Experiment 1 using the 
more natural present tense when appropriate. 

Experiment 2 
Experiment 2 used the same task and design as the 

previous study, however it used slightly modified materials. 
That is, the descriptions used the present tense to refer to 
arrangements in the environment that reasoners had to 
simulate.  

Method 
Participants. Twenty-one participants were recruited from 
the same subject pool as in the previous study, and they 
completed the study for course credit. All of them were 
native English speakers; all of them passed the screening 
described in Experiment 1; and none of them had received 
any training in formal logic. 
 
Design and procedure. Same as Experiment 1. 
 
Materials. Modifications to the materials are shown in the 
Appendix. 

Figure 3. The proportion of correct responses (left-panel) and the 
response latencies (right-panel) in Experiment 2 as a function of 
the number of moves required to carry out a simulation. 
 

Results and discussion 
Experiment 2 measured participants’ accuracies and 
latencies. Their responses were again more accurate for 
causal relations than for enabling conditions (69% vs. 57%, 
Wilcoxon test, z = 1.71, p = .04, one-tailed, Cliff’s δ = .12). 
Figure 3 presents the proportion of correct responses (left 
panel) and the Winsorized latencies of all of the 
participants’ responses (right-panel) depending on the 
number of moves in the simulation. As in Experiment 1, 
accuracies did not reflect the number of moves in a 
simulation (Page’s trend test, z = .64, p = .52), but latencies 
did for all responses and correct responses (Page’s trend 
tests, z > 2.95, p < .003). 

General discussion 
Experiments 1 and 2 corroborated the model theory’s two 

predictions: causes were easier to infer than enabling 
conditions, and the number of moves in a mental simulation 
predicted response latencies.  The distinction in the 
meanings of “causes” and “enables” depends on a semantics 
for causal relations capable of building discrete 
representations, i.e., one that is deterministic (Frosch & 
Johnson-Laird, 2011; Khemlani et al., 2014). This 
distinction cannot be captured in a probabilistic account 
(pace, e.g., Suppes, 1970; Cheng & Novick, 1991). 
 Previous studies have suggested that mental simulation 
underlies reasoning about mechanical systems (Hegarty, 
2004), about instabilities in physical systems (Battaglia et 
al., 2013), and about the consequences of algorithms 
(Khemlani et al., 2013). The present studies also 
demonstrate for the first time that the number of discrete 
steps in a simulation has a direct effect on the time that it 
takes individuals to make inferences. This result 
corroborates the use of kinematic mental models in 
reasoning. 
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Appendix. The 16 problems used in Experiments 1 and 2. Where relevant, changes to the stimuli between Experiment 1 and 
Experiment 2 are marked in bolded text. 

# of 
moves 

Initial 
conf. Premise Question Causal 

reln. 
Correct 
answer 

0 A[BC] Suppose B has just moved to the empty siding. Did that move cause C to move to the siding? Cause Yes 
0 A[BC] Suppose B has just moved to the empty siding. Did that move enable C to move to the siding? Enable No 
0 A[BC] Suppose B has just moved to the empty siding. Did that move cause A to stay on the left track? Cause No 
0 A[BC] Suppose B has just moved to the empty siding. Did that move enable A to stay on the left track? Enable Yes 
1 ABC[] Suppose B moved/moves to the empty siding. Did/Does that move cause C to move to the siding? Cause Yes 
1 ABC[] Suppose B moved/moves to the empty siding. Did/Does that move enable C to move to the siding? Enable No 
1 ABC[] Suppose B moved/moves to the empty siding. Did/Does that move cause A to stay on the left track? Cause No 
1 ABC[] Suppose B moved/moves to the empty siding. Did/Does that move enable A to stay on the left track?   Enable Yes 
2 ABC[] Suppose A moved/moves to be alone on the right track. Did/With that move, does B cause C to move to the siding? Cause Yes 
2 ABC[] Suppose A moved/moves to be alone on the right track. Did/With that move, does B enable C to move to the siding? Enable No 
2 ABC[] Suppose A moved/moves to be alone on the right track. Did/Does that move cause B to move to the left track?   Cause No 
2 ABC[] Suppose A moved/moves to be alone on the right track. Did/Does that move enable B to move to the left track? Enable Yes 
3 [ABC] Suppose C moved/moves to be alone on the left track. Did/With that move, does A cause B to move to the right track? Cause Yes 
3 [ABC] Suppose C moved/moves to be alone on the left track. Did/With that move, does A enable B to move to the right track? Enable No 
3 [ABC] Suppose C moved/moves to be alone on the left track. Did/Does that move cause C to move to the right track? Cause No 
3 [ABC] Suppose C moved/moves to be alone on the left track. Did/Does that move enable C to move to the right track? Enable Yes 

 


