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1 Abstract

Researchers of reasoning in computer science and psychology are estranged sib-
lings. The tools they use to investigate patterns of inference seldom overlap,
because the goals of each group differ. A computer scientist’s primary goal is
to efficiently engineer systems based on logical calculi. But, human reasoning
systematically violates the constraints imposed by orthodox logic. One logician
described the disparity between logical systems and the everyday inferences they
are intended to capture as “one of the greatest scandals of human existence” [1].
And so the psychological objective is to discover patterns of reasoning in humans,
both normative and fallacious, with the ultimate goal of developing theories ca-
pable of predicting human inference.

Despite their diverging purposes, computer scientists and psychologists face
similar theoretical challenges: how is knowledge represented and integrated into
reasoning processes? What constitutes a normative inference? Why are some
inferences more difficult than others? Human reasoning is predictably irrational,
but it can also be more productive, flexible, and capable than current automated
reasoning systems. Indeed, as some researchers argue, certain kinds of inference
– such as reasoning about defaults, non-monotonic inference, explanatory rea-
soning, and conditional inference – cannot be characterized without reference
to how humans make them [14, 16]. A keen understanding of human reasoning
therefore has both psychological and computational value.

Present day automated reasoning systems do not reason the way humans
do – which may explain their success as inferential tools. The productivity of
automated theorem provers (ATPs) has advanced by orders of magnitude since
McCune’s famous solution to the Robbins problem [13]. ATPs regularly compete
against one another at international competitions to efficiently yield proofs of
thousands of reasoning problems. For instance, the ATPs that entered the 2004
theorem-proving competition at the annual Conference on Automated Deduc-
tion (CADE) [18] were designed to solve two thousand eligible problems. At the
same competition ten years later, the number of eligible problems grew to fif-
teen thousand [17]. As a result of prolonged development, ATPs now routinely
serve as productive analytical tools, and they are instrumental in diverse appli-
cations, such as the verification of transportation systems, electrical circuitry,
and automation systems.

But, ATPs are designed to carry out just one inferential task, i.e., they op-
erate by deriving a valid proof of a conclusion from a given set of premises. This



design constraint allows systems to filter out invalid inferences that may corrupt
further processing, but it represents a stark divergence from human thinking.
Humans do not spontaneously construct logical proofs when they reason [5]. In-
deed, there exists little evidence to suggest that humans make use of any kind
of logical form whatsoever [3, 6], and algorithms capable of recovering the logi-
cal form of an assertion from its description in natural language remain elusive.
Human inference is resistant to logical formalism for three overarching reasons:
first, inferences tend to be rapid and intuitive, and they are prone to system-
atic errors. Reasoners are theoretically capable of correcting their errors through
deliberation, but doing so demands cognitive resources. Second, reasoners carry
out many sorts of inferential task. For example, they can generate their own
conclusions from a set of premises [8], they can consult background knowledge
to explain inconsistencies [7, 4], and they can infer probabilities of unique events
[11]. Finally, humans adopt different strategies when they reason, and so an au-
tomated human reasoning system must be able to account for a variety of human
abilities.

mReasoner is a novel automated reasoning system [8]. It is a computational
implementation of mental model theory, which posits that when people reason,
they construct small-scale mental simulations of the world [2]. Mental models are
discrete representations of real, hypothetical, or imaginary possibilities. They are
iconic in that they mirror the relationships they represent. So, when a mental
model represents a set of objects, the model contains multiple tokens represent-
ing multiple objects. In this way, mental models cannot be processed through
syntactic transformations the way ATPs process formulas. Instead, the theory
posits that reasoners build, scan, and revise models by mapping natural language
input onto simulated structures. mReasoner makes inferences the way humans
do: it heuristically draws initial conclusions by analyzing the structure of mental
models. In doing so, it predicts reasoners’ systematic errors and explains how
they overcome them [10, 15]. The system can carry out multiple inferential tasks,
such as assessing whether a given conclusion is possible, necessary, or consistent
with the premises [12]. Its parameters affect the size and contents of the models
that the system builds, and also the propensity for the system to engage in de-
liberation, i.e., to search for alternative models and counterexamples. Hence, it
can explain individual differences in reasoning too [9].

In sum, mReasoner is a cognitively plausible automated reasoning system. It
eschews logical formalisms in favor of mental models, i.e., discrete, iconic repre-
sentations of possibilities. The system serves as an analytical tool that mimics
both the frailties of human reasoning, e.g., systematic errors, as well as strengths
of human inference, e.g., the ability to spontaneously generate relevant conclu-
sions. Future applications in artificial intelligence and computer science will de-
mand automated reasoning systems that interact with human reasoners. Hence,
mReasoner – and systems like it – provides a foundation for those interactions.
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