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Introduction

The theory of mental models has a long history going back to the logic diagrams of C. S. Peirce 
in the nineteenth century. But it was the psychologist and physiologist Kenneth Craik who 
first introduced mental models into psychology. Individuals build a model of the world in their 
minds, so that they can simulate future events and thereby make prescient decisions (Craik, 
1943). But reasoning, he thought, depends on verbal rules. He died tragically young, and had no 
chance to test these ideas. The current “model” theory began with the hypothesis that reasoning 
too depends on simulations using mental models (Johnson-Laird, 1980).

Reasoning is a systematic process that starts with semantic information in a set of premises, 
and transfers it to a conclusion. Semantic information increases with the number of possibilities 
that an assertion eliminates, and so it is inversely related to an assertion’s probability ( Johnson-
Laird, 1983, Ch. 2; Adams, 1998). And semantic information yields a taxonomy of reasoning. 
Deductions do not increase semantic information even if they concern probabilities, but induc-
tions do increase it. Simple inductions, such as generalizations, rule out more possibilities than 
the premises do. Abductions, which are a special case of induction, introduce concepts that are 
not in the premises in order to create explanations (see Koslowski, this volume). The present 
chapter illustrates how the model theory elucidates these three major sorts of reasoning: deduc-
tion, abduction, and induction.

Deductions yield valid inferences in which true premises are bound to yield true conclusions. 
Psychologists sometimes suggest that deductions play less of a role in daily life than probabilities. 
However, the maintenance of consistent beliefs is necessary for sensible decisions, because if 
beliefs are inconsistent then at least one of them is false, and to act on a false belief is a recipe 
for disaster (see Collins & Hahn, this volume). To test consistency, however, is to use a deductive 
procedure. Indeed, some systems of logic work on the principle that a deduction is valid because 
its premises are inconsistent with the denial of its conclusion ( Jeffrey, 1981). And deductions can 
be about uncertainties, possibilities, and probabilities. So they are crucial in everyday life.

Abductions of explanations serve diverse purposes. They can resolve inconsistencies. You 
know that your friends have gone shopping, and that if so they’ll be back in fifteen minutes. 
When they haven’t returned in two hours, you worry. You inferred their imminent return, and 
their absence conflicts with your conclusion. In orthodox logic, you don’t have to withdraw 
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your conclusion. Logic is monotonic: new facts imply new conclusions, never the need to retract 
old ones, not even those that facts contradict. Everyday reasoning, however, is not monotonic, 
and so theorists have devised various “nonmonotonic” logics that allow facts to undermine con-
clusions (see Stenning & Varga, this volume, and Oaksford & Chater, this volume). The model 
theory takes a different tack: your main concern is not to withdraw your conclusion, but to 
determine what’s happened to your friends. You need an explanation of their delay so that you 
can decide what to do. Abduction generates explanations, and, as we show, it can lead to the 
withdrawal of conclusions. Abduction also underlies the development of computer programs – 
they are, in effect, explanations of how to get from a start to an end. And mental simulations 
underlie their abduction.

Simple inductions turn facts into general rules. You keep your money in a bank, because it 
will be safe. Your model of banks has gone beyond observation to generalization (for an account 
of the process, see Johnson-Laird, 1993). But canny inductions yield probabilities. You keep your 
money in a bank, because it is almost certain to be safe. You might even be prepared to infer a 
numerical value, say, 95%. The economist John Maynard Keynes tried to meld probability and 
deduction. That goal, too, is one to which the model theory aspires. In what follows, we review 
case studies illustrating the role of models in the three sorts of reasoning: deductions that draw 
conclusions from conditionals, abductions that resolve inconsistencies and that create programs, 
and inductions that yield numerical probabilities.

Deductions from conditionals

The model theory

The basic model theory is simple. People think about possibilities. They represent possibilities 
in mental models. And a model is a model because its structure corresponds to the structure of 
what it represents. So, a sequence of events can be simulated in a kinematic model that unfolds 
in time. An inference from premises is valid if its conclusion holds in all of their models. Intuitive 
reasoning copes only with a single mental model at a time, because it has no access to working 
memory, whereas deliberative reasoning can access working memory, and so it can construct 
alternative models and carry our more powerful computations ( Johnson-Laird, 1983, Ch. 6). 
Like many “dual process” accounts (e.g., Kahneman, 2011), the model theory postulates one sys-
tem (1) for intuitions and another system (2) for deliberations. In contrast, Evans (this volume) 
distinguishes, not two different systems, but two different sorts of process. Unlike other accounts, 
however, the model theory’s two systems and the interactions between them are embodied in 
a computer program, mReasoner (Khemlani & Johnson-Laird, 2013). To illustrate the theory, we 
describe deductions from conditional assertions, because if is central to everyday reasoning.

Consider the following inference:

If the car started, then the battery has power.
The car started.
What follows?

The conclusion is immediate: the battery has power. In contrast, consider this inference:

If the car started, then the battery has power.
The battery doesn’t have power.
What follows?
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The inference is harder, and those individuals who rely only on intuition respond: “nothing fol-
lows”. The conditional yields two mental models, which we represent in the following diagram:

     car started         . . .          battery has power

The first model represents the possibility in which both clauses in the conditional are true. For 
convenience, the diagram omits a symbol for conjunction, and uses English phrases, whereas 
actual models are representations of the world. The second mental model, shown as an ellipsis, 
has no explicit content, but stands in for the other possibilities in which the car didn’t start. In 
the first inference, the premise that the car started picks out the explicit model, which yields 
the conclusion: the battery has power. But, in the second inference, the premise that the battery 
doesn’t have power eliminates the explicit model, and nothing follows from the implicit model, 
because it has no content. Which explains the intuition that nothing follows. However, those 
who deliberate can flesh out mental models into fully explicit models of all the possibilities to 
which the conditional refers. These models enable them to draw a valid conclusion. Individuals 
can also list these possibilities (e.g., Barrouillet, Grosset, & Lecas, 2000). For a basic conditional (If 
A then C), where knowledge does not affect interpretation, they list them in the following order:

      car started       battery has power (A C: the explicit mental model)
not (car started) not (battery has power) (not-A not-C)
not (car started)       battery has power (not-A C)

They also list the following case as not possible:

         car started not (battery has power) (A not-C)

The premise that the battery doesn’t have power rules out the first and third possibilities above, 
and the second possibility yields the valid conclusion:

The car didn’t start.

Table 19.1 summarizes these models, and those for other sorts of conditionals, which we discuss.

Table 19.1 � The sets of possibilities to which various sorts of conditional refer, depending on whether the 
conditionals are affirmed or denied. These possibilities correspond to fully explicit models of 
the conditionals, and the empty cells are cases that are not possible according to the condi-
tionals. The two scopes of denial yield identical possibilities for biconditionals and relevance 
conditionals.

Basic conditionals
e.g., If the car started, then the battery has power.

Biconditionals
e.g., If and only if the car started, 

then the battery has power.

Relevance conditionals
e.g., If it’s raining, then here’s an 

umbrella.

Affirmed Denied with
large scope:
Not if A then C

Denied with
small scope:
If A then not C

Affirmed Denied Affirmed Denied

     A      C
not-A      C
not-A not-C

A not-C        A not-C
not-A       C
not-A not-C

       A        C
not-A not-C        A not-C

not-A        C

     A C
not-A C        A not-C

not-A not-C
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Every psychological theory of deduction explains the difference between the easy condi-
tional inference (aka “modus ponens”) and the difficult one (aka “modus tollens”). But, several 
results corroborate the model theory and challenge other accounts. One result is that the dif-
ficult inference becomes easier with biconditionals, for example:

If, and only if, the car started, then the battery has power.

The model theory predicts the effect ( Johnson-Laird, Byrne, & Schaeken, 1992), because bicon-
ditionals have only two fully explicit models (see Table 19.1):

      car started battery has power           (A         C)
not (car started) not (battery has power) (not-A not-C)

Another predicted result is that the difficult inference becomes easier when the categorical 
premise is presented first:

The battery doesn’t have power.
If the car started, then the battery has power.

The categorical premise blocks the construction of the explicit mental model of the conditional 
premise, and so reasoners are more likely to consider the fully explicit model:

not (car started) not (battery has power)

And it shows that the car didn’t start (Girotto, Mazzocco, & Tasso, 1997). Theories based on for-
mal rules predict neither of these effects (cf. Rips, 1994). In a review, Oberauer (2006) showed 
that the model theory also gives a better account of conditional reasoning than a probabilistic 
theory (Oaksford, Chater, & Larkin, 2000).

The verification of conditionals

Let us turn to the circumstances in which conditionals are true, and to a result that seems 
contrary to the model theory. It comes from the first study to investigate the verification of 
conditionals. The participants had to judge the impact of single pieces of evidence on the truth 
or falsity of such conditionals as:

If there is an A on the left, then there is a 2 on the right.

On each trial, the participants weighed the evidence of a single card, such as: A 2. They tended 
to make these judgments (Johnson-Laird & Tagart, 1969):

A 2: shows that the conditional is true.
A 3: shows that the conditional is false.
B 2: is irrelevant to the conditional’s truth value.
B 3: is irrelevant to the conditional’s truth value.

Evidence that a conditional’s if-clause is false seems irrelevant to whether the conditional is true or 
false. In contrast, when individuals list what is possible given a conditional, they list these cases as 
possible (e.g., Barrouillet et al., 2000). And so there is a discrepancy, because a case that is possible 
according to a conditional ought to show that the conditional is true. Some theorists argue that 
the judgments of irrelevance confirm that conditionals are void – they have no truth value – when 
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their if-clauses are false. This hypothesis, which goes back to de Finetti (1937/1964), is one of 
the chief assumptions of the “new paradigm”, which is a family of theories that seek to replace 
logic with probability (see, e.g., Elqayam, this volume; Oaksford & Chater, this volume; Over & 
Cruz, this volume; and, for a review, Johnson-Laird, Khemlani, & Goodwin, 2015). The hypoth-
esis implies that if a conditional is true, then its if-clause must be true too, because otherwise the 
conditional would have no truth value. But, consider the implications. This conditional is true:

If God exists, atheism is wrong.

And so its if-clause is true too: therefore, God exists. The inference is valid and a very short proof 
of God’s existence. But if the proof isn’t convincing, it must be because a true conditional can have 
a false if-clause. Hence, Johnson-Laird and Tagart’s verification task is misleading (Schroyens, 2010).

Indeed, in a different task, participants do evaluate conditionals as true when their if-clauses 
are false. Participants assessed whether sets of assertions containing conditionals could all be true 
at the same time (Goodwin & Johnson-Laird, 2015). The context of the following assertions 
made clear that they concerned a particular animal:

	 If the animal has brown fur then it is a bear.� (If A then C)
	 The animal does not have brown fur.� (Not-A)
	 The animal is a bear.� (C)
	 Could all of these assertions be true at the same time?

The experiment examined all four possible sorts of categorical evidence, and even when, as in 
this example, the conditional’s if-clause was false, the participants judged that the assertions could 
all be true (at around 80%).

Readers might judge that two assertions, A and B, could both be true at the same time, and 
yet A is irrelevant to the truth of B. For example, “Viv is tall” can be true at the same time as 
“Viv is amusing”, but each assertion is irrelevant to the truth of the other. The preceding results, 
however, are different, because the assertions are a conditional and its two clauses. Individuals 
judged that a conditional (“If Viv is tall, then she is amusing”) can be true at the same time as 
an assertion that its if-clause is false (“Viv is not tall”). It follows that the conditional can be 
true when its if-clause is false. Otherwise, the participants would judge that the two assertions 
couldn’t both be true at the same time. This result therefore undermines the idea that a condi-
tional has no truth value when its if-clause is false.

Suppose you observe:

It’s raining and it’s hot.

Your observation establishes the falsity of the conditional: if it’s raining, then it’s not hot, and of its 
equivalent: if it’s hot, then it’s not raining. But, by itself, it does not establish the truth of the affirma-
tive conditional:

If it’s raining, then it’s hot.

Your observation fails to distinguish between this conditional and one that is not equivalent to it:

If it’s hot, then it’s raining.
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A conditional refers to a set of cases, and they each have to be possible for the conditional to be 
true. If your observation shows that one of them is a matter of fact:

raining hot

then the other cases:

not raining not hot
not raining          hot

become counterfactual possibilities (Byrne, 2005; Byrne, this volume). If they are true counterfac-
tuals, then the conditional is true. Thus, if a single categorical observation is to verify a conditional 
(as in the Johnson-Laird & Tagart study), then the context needs to establish the appropriate pos-
sibilities prior to the observation. In a recent study, Goodwin and Johnson-Laird (2015) framed 
the verification task so that the first assertion made the disjunctive possibilities explicit, e.g.:

John is deciding whether to fire one of his two employees, Charlie or Annie, and possibly 
both of them.

In the end, John fired Annie.
A colleague of John’s had predicted: John will fire Charlie, if not Annie.

Was the colleague’s prediction true, false, or irrelevant, in light of what happened?

Participants should build these mental models of the people whom John fired according to the 
conditional and its disjunctive context:

Charlie not Annie
       Annie

Charlie        Annie

The results were that most participants judged the conditional prediction to be true even in 
those cases, such as the one above, in which its if-clause was false. Of course, these findings may 
not generalize beyond this study. Yet, like the proof of God’s existence, they are a mystery if 
conditionals cannot be true when their if-clauses are false.

The modulation and denial of conditionals

Knowledge can modulate the interpretation of conditionals and other connectives ( Johnson-
Laird & Byrne, 2002). It can introduce temporal relations between events, e.g., if he passed the 
exam, then he studied hard, in which the studying preceded the exam. It can also block the con-
struction of a fully explicit model of a conditional. This blocking yields two main alternatives to 
a basic conditional, If A, then C. One is a biconditional interpretation when knowledge blocks 
the possibility of not-A and C (see Table 19.1), e.g.:

If it’s raining, then it’s pouring

because it can’t pour without raining. The other is a relevance interpretation that blocks the 
possibility of not-A and not-C (see Table 19.1), e.g.:

If it’s raining, then I have an umbrella.
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The if-clause states a condition that is no more than relevant to the truth of the then-clause. 
Modulation cannot block the mental model, A and C, at least when another possibility holds. 
But, ironic conditionals can block it and refer to only a single possibility, for example:

If you’re right, then I’ll eat my hat.

That is to say, you’re not right and I won’t eat my hat ( Johnson-Laird & Byrne, 2002).
Some conditionals contain a modal verb so that they refer to a possible consequence, e.g.:

If it is raining, then there may be a flood.

They usually mean that A enables B to occur, and so not-A and B is impossible. Modulation can 
affect their interpretation too, and therefore the inferences that participants draw from them 
(Quelhas, Johnson-Laird, & Juhos, 2010). It also affects the interpretation of the temporal rela-
tions between events, including the participants’ uses of tense in drawing conclusions ( Juhos, 
Quelhas, & Johnson-Laird, 2012). Another effect of modulation is to establish the truth values 
of some conditionals a priori. For instance, knowledge of the meaning of “atheism” entails the 
falsity of If God exists, then atheism is right.

The denial of a conditional, if A then C, transforms the case of A & not-C into a possibility 
and the case of A & C into an impossibility. One complication, however, is that the if-clause of 
a conditional is subsidiary to its main then-clause (Khemlani, Orenes, & Johnson-Laird, 2012, 
2014). Hence, as experiments show (Khemlani, Orenes, & Johnson-Laird, 2014), the denial of 
a conditional:

It’s not the case that if it’s raining, then it’s hot

is sometimes taken to be equivalent to:

It’s raining and it’s not hot

and sometimes taken to be equivalent to:

If it’s raining, then it’s not hot.

In the first denial, negation has the whole of the conditional within its scope, and in the second 
denial, negation has only the then-clause within its scope. The two scopes yield identical pos-
sibilities for biconditionals and relevance conditionals. Table 19.1 shows these denials.

Conditionals’ conjunctions of possibilities

An analogy exists between the fully explicit models of possibilities for basic conditionals and 
a connective in logic known as material implication. The proposition that A materially implies 
C is true or false depending only on the truth or falsity of its two clauses. It is true in just the 
three cases that are possible for basic conditionals (see the left-most column of Table 19.1), and 
it is false in the one case that is impossible (A & not-C). So, the only way in which a material 
implication can be false is in case A is true and C is false. On this account, the false conditional:

If God exists then atheism is right
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has an if-clause that is true, i.e., God exists. It’s an absurd consequence. Likewise, material impli-
cation yields paradoxical inferences, such as:

Donald Trump will not be the next U.S. president.
Therefore, if Donald Trump is the next U.S. president, then ISIS takes over Tokyo.

The premise establishes the falsity of the conditional’s if-clause, and that suffices for the con-
ditional to be true granted that it’s a material implication. So what does the model theory 
imply?

It accepts the analogy: basic conditionals refer to the three possibilities that are true for a 
material implication. But, analogy is not identity. Truth values are alternatives, and so an asser-
tion and its negation cannot both be true: it will rain and it won’t rain is a self-contradiction, 
because one clause is true and the other is false. But possibilities are conjunctive, and so an 
assertion and its negation can both be possible: possibly it will rain and possibly it won’t rain. A basic 
conditional is true a priori in case all and only its three fully explicit models refer to possibili-
ties (see Table 19.1). The falsity of a conditional, such as if God exists, then atheism is right does 
not imply that its if-clause is true, but that the case in which both clauses are true is impossible, 
and that the case in which its if-clause is true and its then-clause is false is possible. Likewise, the 
falsity of its if-clause does not establish that a conditional is true, because this fact alone does 
not establish that the other relevant cases are possible. The paradoxical inference about Donald 
Trump is invalid, because the premise does not establish that all the cases to which the condi-
tional refers are possible.

The hypothesis that compound assertions refer to conjunctions of possibilities is borne out in 
a study in which participants deduced conclusions about what is possible (Hinterecker, Knauff, &  
Johnson-Laird, 2015). We invite readers to consider whether the following sort of inference is 
valid:

A or B or both.
Therefore, it is possible that A.

It may help to consider a particular example from the experiment, such as:

Scientists will discover a cure for Parkinson’s disease in 10 years or the number of 
patients who suffer from Parkinson’s disease will triple by 2050, or both.
Therefore, it is possible that scientists will discover a cure for Parkinson’s disease in 
10 years.

The participants thought that the inference is valid, and they also inferred conjunctive conclu-
sions of the sort:

It is possible that A and B.

Yet, none of these conclusions is valid in any logic. The first inference is invalid, because A 
could be a self-contradiction. The premise could still be true in this case, but self-contradictions 
are impossible, and so the conclusion would be false. The second inference is invalid because B 
could imply not-A. The premise could still be true in this case, but the conclusion would again 
assert that a contradiction is possible: A and not-A. The proofs of the two inferences in logic 
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therefore call for an additional premise to rule out the potential contradictions. A plausible 
additional premise for the first inference is:

Not necessarily (not A).

And a plausible additional premise for the second inference is:

Not necessarily (B materially implies not-A).

Alas, each of these premises turns out to be equivalent to the respective conclusion to be proved, 
and so the actual premise for the inference (A or B or both) becomes superfluous. It is not obvi-
ous what the additional premises should be. But the inferences are straightforward in the model 
theory. The premise refers to a conjunctive set of mental models of possibilities:

    A
          B
    A    B

The conclusions follow validly and at once from these models. And if A were self-
contradictory, or B were to imply not-A, modulation would block the construction of the 
relevant models. The general moral extends to conditionals: they too refer to conjunctive 
sets of possibilities.

Many conditionals in daily life have main clauses that are imperatives, and imperatives do not 
have truth values, e.g.:

If you owe money, then pay at least some of it back.

Actions that imply compliance with the then-clause count as satisfying the request, e.g., the 
debtor pays all the money back. Because the model theory treats conditionals as referring to 
possibilities, it captures such inferences. When the if-clauses of conditional requests or bets are 
false, the listener is under no obligation to do anything. When the if-clauses of conditional 
instructions in computer programs are false, control likewise passes to the next instruction. But, 
when the if-clauses of conditional assertions in daily life are false, the conditionals can neverthe-
less be true.

Abduction, nonmonotonicity, and programming

Abduction and nonmonotonicity

Researchers have devised various nonmonotonic logics, which allow conclusions to be weak-
ened or withdrawn in the face of conflicting evidence (see Stenning & Varga, this volume, 
and Oaksford & Chater, this volume). These logics, however, overlook a major psychological 
problem. In our earlier example, why have your friends not returned from shopping? You need 
to abduce a resolution of the inconsistency between beliefs and the facts: you need a causal 
explanation of what has gone wrong. In the model theory, causal relations are deterministic, 
not probabilistic (e.g., Goldvarg  & Johnson-Laird, 2001), because probabilities cannot tell 
you what is wrong with the claim: mud causes rain (Pearl, 2009). Indeed, probabilities can-
not distinguish between cause and correlation, or between causing and enabling (Frosch & 
Johnson-Laird, 2011).
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The model theory of how reasoning resolves inconsistencies is implemented in a computer 
program ( Johnson-Laird, Girotto, & Legrenzi, 2004). To illustrate its operations, consider the 
following problem:

If someone pulled the trigger, then the gun fired.
Someone pulled the trigger.
But the gun did not fire.
Why not?

Causal links are possibilities ordered in time (Khemlani, Barbey, & Johnson-Laird, 2014). The 
first two premises in the problem elicit a mental model of such a causal link:

pulled trigger gun fired

The fact that the gun did not fire contradicts the preceding mental model:

not (gun fired).

The conjunction of two models with contradictory elements usually yields the null model, 
which represents contradictions, and from which nothing follows. But the model theory embod-
ies a simple nonmonotonic principle. When a contradiction arises from two separate premises, 
one premise can take precedence over the other, and a fact takes precedence over a contradic-
tory element in other models. In our example, the fact contradicts the then-clause in the model 
but takes precedence over it, and so the model of what needs to be explained is:

pulled trigger not (gun fired).

Abduction aims to simulate a causal chain that explains why pulling the trigger did not fire 
the gun. It elicits models from knowledge of what prevents guns from firing. Human reason-
ers are likely to think about which explanation is most plausible: the gun was broken, the gun 
jammed, the safety catch was on, the gun had no bullets, and so on. The program chooses at 
random from them, for example:

gun broken.

This model, in turn, triggers a search for what was its cause, for example:

gun dropped.

The result is a causal simulation in which dropping the gun caused it to break, and so, when 
someone pulled the trigger, the gun did not fire. The conditional premise is no longer true, and 
the program adds a rider to express a counterfactual qualification:

If the gun hadn’t broken, then it would have fired.

As the theory predicts, individuals spontaneously abduce explanations of inconsisten-
cies. They judge such explanations as more probable than simpler revisions to the premises 
that restore  consistency without explaining the contradiction ( Johnson-Laird et al., 2004; 
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Khemlani & Johnson-Laird, 2011). Because explanations resolve inconsistencies, they have a 
surprising side effect. They make it harder to detect inconsistencies. A series of studies presented 
participants with pairs of assertions, such as:

If a person is bitten by a viper, then the person dies.
Someone was bitten by a viper, but did not die.

The participants then carried out two tasks: they created an explanation and they judged whether 
or not both assertions could be true at the same time (Khemlani & Johnson-Laird, 2012). The 
order of the two tasks had a robust effect on performance. Prior explanations made inconsisten-
cies harder to detect by 20% or more. The effect probably occurs because explanations resolve 
inconsistencies. Hence, a different prior task, assessing how surprising the events were, had no 
such effect. In sum, inconsistencies elicit explanatory abductions, and the potential precedence 
of one model over another obviates the need for a special nonmonotonic logic.

Abduction and programming

A program is an explanation of how to carry out a computation. So, abductions underlie the 
development of programs. Psychologists have studied novice programmers writing code in a 
programming language, but the model theory has inspired studies of how individuals who know 
nothing of programming create informal programs (Khemlani, Mackiewicz, Bucciarelli,  & 
Johnson-Laird, 2013). The test-bed for these studies is a toy railway depicted on a computer 
screen, and Figure 19.1 shows its initial state for a simple problem. Only three sorts of move can 
occur: one or more cars move from the left track to the right track, from the left track to the 
siding, or from the siding back to the left track. (Moves from the right track are not allowed.) 
The siding functions like a working memory: items (cars) can be stored on the siding, while oth-
ers move from input (left) to output (right). The left track also functions as a working memory, 
because cars can shuttle between it and the siding. In principle the computational power of the 
railway is therefore equivalent to a universal Turing machine – a device that can carry out any 
sort of program (Hopcroft & Ullman, 1979).

We studied rearrangements of the order of cars – of which there are many, such as rear-
ranging the six cars abcdef on the left track into the reverse order fedcba on the right track. The 
abduction of programs for rearrangements according to the model theory calls for three steps, 
which are each implemented in a computer program, mAbducer, that develops its own programs 
to make rearrangements; that is, it is an automatic programmer.

The first step is to solve some instances of the relevant rearrangement for trains with differ-
ent numbers of cars. Although just three sorts of move are permissible, trial and error works for 
only simple rearrangements of a few cars. Some sorts of problems, such as the Tower of Hanoi, 

Figure 19.1 � The railway environment used in studies of informal programming. Cars can enter the siding 
(a) only from the left side of the track (b), and exit from it only to the left track. They can also 
move from the left side of the track to the right side (c)
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can be solved using a means–ends analysis in which you choose moves to reduce the difference 
between the current state and the goal. But for rearrangements, you need to decompose the goal 
into separate parts. mAbducer uses a schematic and kinematic model:

abcdef [–] –

This diagram represents a model containing six cars on the left track, no cars on the siding, 
which is represented by the square brackets, and no cars on the right track. mAbducer finds par-
simonious way to make any rearrangement. It matches cars on different parts of the track with 
the current goal, and finds the best move. Suppose, for example, that the goal is to rearrange the 
cars above into the reverse order fdceba on the right track. The obvious first move is to move all 
the cars apart from a to the siding:

a[bcdef] –

A loop of moves can now be repeated. Move one car to the right, and one car from the siding 
to the left:

b[cdef]a

The goal is updated to fdceb, because a is now in its rightful position. The loop continues until 
the siding is empty. The final move is of car f over to the right. Human reasoners lack a parsi-
monious procedure for solving rearrangements. Every participant in a study failed to find the 
solution with the fewest moves for at least one sort of rearrangement (Khemlani et al., 2013). 
A common blunder was perseveration: when participants had moved a single car, they moved it 
again, overlooking a move of two cars – the car they’d just moved and the one behind it.

The second step in abducing a program is to determine the structure of the solutions to 
the same rearrangement of different numbers of cars. A  program to rearrange trains of any 
length is bound to contain a loop of operations. Hence, mAbducer simulates solutions in order 
to recover a required loop of moves (such as the one above) and any moves before or after the 
loop. mAbducer uses the results of its simulations to construct two alternative programs: one uses 
a for-loop, which is repeated for a fixed number of times, and the other uses a while-loop, which 
is repeated while a given condition holds. While-loops are more powerful than for-loops, because 
they can carry out computations that for-loops cannot. mAbducer has to solve a pair of simul-
taneous equations to determine the number of repetitions for a for-loop (see Khemlani et al., 
2013). It has only to inspect its simulations to determine the conditions in which a while-loop 
halts: for example, for a reversal the while-loop halts as soon as the siding is empty. Hence, naïve 
individuals should be more likely to discover while-loops, even though they are more powerful 
computational devices.

The program translates the structures of solutions into the programming language Common 
Lisp. It also translates the while-loop version of a program from Lisp into informal English. Here 
is its description of the program for a reversal:

Move one less than the [number of] cars to the siding.
While there are more than zero cars on the siding,
	 move one car to the right track,
	 move one car to the left track.
Move one car to the right track.
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In an experiment, naïve participants formulated programs for rearrangements in their own 
words. As the theory predicts, they preferred to use while-loops rather than for-loops. Here is a 
typical example of what one participant said in abducing a while-loop for a reversal:

Move all cars to the right of A to the side [i.e., the siding]. Then move A to the right. 
Shift B to left, then right. Shift C to left, then right . . . repeat until pattern is reached.

The participants’ difficulty in making a rearrangement depended on the minimal number 
of moves that it calls for. However, their difficulty in abducing a program to carry out the 
rearrangement didn’t depend on its minimal number of moves, but on the complexity of the 
program. Complexity reflects various factors, such as the number of instructions in the loop, 
but a simple metric is the number of symbols in a program written in a standard language. 
Table 19.2 shows this Kolmogorov complexity, where we multiplied the number of characters 
and spaces in mAbducer’s Common Lisp programs by the number of bits in a character; that 
is, 7 for ASCII characters. Table 19.2 also shows the percentages of the participants’ correct 
programs. The decline in accurate programs with the increase in their complexity was robust. 
Reversals are the hardest rearrangement to solve – they take the longest time, because they call 
for the most moves. But, their programs are of the least complexity, and they are the easiest to 
program – naïve individuals are more likely to formulate an accurate program and to do so in 
a shorter time than for the other rearrangements.

The third and final step in programming is to test a program by deducing its consequences 
for new inputs. Individuals should carry out this task by simulating the effect of each instruc-
tion in the program on a given train. Suppose the initial train on the left track is abcdef. What is 
the order of the cars on the right track as a result of carrying out the following program, which 
works for trains of any length?

While there are more than two cars on the left track,
	 move one car to the right track,
	 and move one car to the siding.

Table 19.2 � Four rearrangements of cars in a train, their minimal number of moves, the Kolmogorov com-
plexity of programs for solving the rearrangements, and the results of experiments on program-
ming the rearrangements and on making deductions from them (Khemlani et al., 2013)

The name of a
rearrangement and
an example of it

Minimal number of 
moves

Kolmogorov
complexity of programs

Participants’ 
percentages of correct 
programs

Participants’
percentages of correct 
deductions from 
programs

Reversal:
abcdef ⇒ fedcba

12 1,288 90 41

Palindrome:
abccba ⇒ aabbcc

6 1,295 70 35

Parity sort:
abcdef ⇒ acebdf

7 1,519 63 32

Reverse parity sort:
acebdf ⇒ abcdef

9 1,771 - 23
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Move one car to the right track.
Move one less than half the number of all the cars to the left track.
Move half the number of all the cars to the right track.

Readers are invited to try to imagine the effect without recourse to pencil and paper. Here is 
the required sequence of moves:

Starting state: abcdef[] -,
Carry out the two moves in the loop:     abcd[e]f
And again:        ab[ce]df
First move after the loop:           a[ce]bdf
Second move after the loop:       ace[]bdf
Third move after the loop:            -[]acebdf

This rearrangement is the parity sort shown in Table 19.2. The difficulty of the required mental 
simulation should again depend on the Kolmogorov complexity of the program. Table 19.2 
presents the percentages of correct deductions in an experiment, and they corroborated the 
predicted trend that complexity predicts (Khemlani et al., 2013).

The abduction of programs for making rearrangements in the railway domain calls for the 
simulation of moves in kinematic models. Ten-year-old children are able to abduce informal 
programs for rearrangements of six cars. When they were not allowed to move the cars, their 
gestures were a clear outward sign of inward simulations. These gestures appeared to help them 
to keep track of where the cars were on the tracks. When they couldn’t gesture, their programs 
were less accurate (Bucciarelli, Mackiewicz, Khemlani, & Johnson-Laird, 2015).

In sum, abduction simulates causal chains to resolve inconsistencies. Its kinematic simulations 
underlie programming. And they are pre-eminent in the creation of scientific and technological 
hypotheses (see Chapters 25–27, Johnson-Laird, 2006).

Induction and probabilities

Proportions and probabilities

Casual inductions about probabilities are ancient – Aristotle refers to the probable as a thing that 
happens for the most part – but until the formulation of the probability calculus in the 17th cen-
tury, no complete normative theory of numerical probabilities existed. In daily life, reasoners use 
two main sorts of probabilistic reasoning (Tversky & Kahneman, 1983). They make deductions 
of probabilities from knowledge of the possible ways in which events can occur – for instance, 
they deduce that the probability that two tossed coins both land “heads” is a quarter, given that 
the probability of one coin landing “heads” is a half. And they make inductions about the prob-
abilities of unique events from non-numerical evidence, for example the probability that Donald 
Trump is elected as president of the United States.

Deductions about probabilities rest on simple principles (Johnson-Laird et al., 1999). Rea-
soners assume that models of possibilities are equiprobable unless they have evidence to the 
contrary. They infer that the probability of an event is equal to the proportion of such models 
in which the event occurs. For example, consider the following problem:

There is a box in which there is a black marble, or a red marble, or both.
Given the preceding assertion, what is the probability of the following situation?
In the box there is a black marble and a red marble.
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Experts may respond that the problem is ill posed because it says nothing about relative probabili-
ties. Naïve individuals, however, construct mental models of the three possible contents of the box:

black
red

black red

They assume that they are equiprobable, and so they infer a probability of about 33%  
( Johnson-Laird et al., 1999). Mental models predict systematic errors, because they don’t repre-
sent what is false. Here’s an example:

There is a box in which there is at least a red marble, or else there is a green marble 
and a blue marble, but not all three marbles.
Given the preceding assertion, what is the probability of the following situation?
In the box, there is a red marble and a blue marble.

The mental models of the premise are as follows:

    red
                       green                     blue

So, most reasoners infer that the probability of red and blue in the box is zero. But, the response is 
an illusion. The fully explicit models of the premise show that when one disjunct is true the other 
is false, and there are three ways in which green and blue can be false when red is true:

        red green not-blue
        red not-green         blue
        red not-green not-blue
 not-red green         blue

As the second of these models shows, red and blue marbles can occur together, and so a propor-
tional estimate of their probability is, not zero, but 25%.

The great difficulty for naïve individuals – and the great motivator for the invention of the 
probability calculus – is conditional probability. Many puzzles hinge on this fact. A simple one is:

The Smiths have two children. One of them is a girl. What’s the probability that the other 
is a girl?

The intuitive response is a half. It treats the question as concerning absolute probabilities. But, 
because the problem establishes a fact, in reality it asks for a conditional probability: given that 
one child is a girl, what’s the probability that the other child is too? The inference calls for rea-
soners to envisage a model of all four possible pairs of children:

First-born Second-born

girl girl

girl boy

boy girl
boy boy

It contains three cases in which one child is a girl. There is a subset within them in which the 
other child is a girl, and it has only one member. So, the correct estimate is a third (see Nick-
erson, 1996, for the subtleties in such problems). Conditional probabilities appear to lie at the 
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edge of human competence, because they call for inferences about subsets of models. They can 
be inferred only using fully explicit models in system 2.

The probabilities of unique events

To study the induction of the probabilities of unique events, we asked participants to estimate 
the probabilities of various possibilities, such as that U.S. companies will focus their advertis-
ing on the Web next year, and that the New York Times will become more profitable. For some 
probabilists, such questions verge on the nonsensical, because there are no definitive frequencies 
from which their answers can be inferred (e.g., Cosmides & Tooby, 1996). For “Bayesians” such 
as ourselves (see also Oaksford & Chater, this volume), probabilities correspond to degrees of 
belief, and so the questions make sense. Naïve individuals are happy to respond too, and their 
estimates concur to some degree about the relative probabilities of different events; for instance, 
they estimated the probability of a focus on Web advertising as 69% but the probability that the 
Times would become more profitable as only 41% (Khemlani, Lotstein, & Johnson-Laird, 2012). 
The profound mystery in such estimates is: where do the numbers come from?

The model theory postulates that individuals adduce evidence from their general knowledge, 
such as:

Most U.S. newspapers will continue to be unprofitable.

It yields a corresponding model, with a small number of tokens representing U.S. newspapers – a 
number that can vary from occasion to occasion in a probabilistic way (see Khemlani, Lotstein, 
Trafton, & Johnson-Laird, 2015):

newspaper      unprofitable
newspaper      unprofitable
newspaper      unprofitable
newspaper

People know that the New York Times is a U.S. newspaper, and so they translate the proportion in 
this model into a primitive analog representation of the probability that the paper will continue 
to be unprofitable:

| – – – – – – |

This diagram denotes an analog model of a magnitude. Its left-hand end represents impossibil-
ity, its right-hand end represents certainty, and its length represents a non-numerical probability. 
Further evidence can push its length one way or another. When individuals estimate different 
probabilities for two events, A and B, they are uncertain about the probability of their conjunc-
tion and tend to compromise by computing a primitive average of their probabilities (Khemlani 
et al., 2012, 2015). Such estimates are easy to make using the analog model, but they violate the 
probability calculus. It calls for the multiplication of one probability, A, by the conditional prob-
ability of the other, B, given A. But the estimates are typical. And they occur for the probabilities 
of other sorts of compounds, including disjunctions and conditional probabilities. These esti-
mates and those of their components, A and B, are therefore often subadditive – that is, they 
yield an exhaustive set of alternative possibilities with probabilities summing to more than 100% 
(Khemlani et al., 2015).

AuQ1

AuQ2
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In a study in which individuals assessed whether disjunctions implied the possibility of vari-
ous sorts of conjunctions (Hinterecker et al., 2015), the participants were sensitive to prob-
abilities, e.g., they judged conclusions that they accepted to be more probable than conclusions 
that they rejected. But they went wrong in estimating the probabilities of the four exhaustive 
possibilities:

A & B
A & not-B
not-A and B
not-A and not-B.

According to the model theory, naïve estimates of the probability of each conjunction should 
tend to be a primitive average of the probabilities of the two conjuncts, and so the theory pre-
dicts subadditivity. Multiply this effect for four conjunctions, and its extent should be consider-
able. In fact, it was shocking: the four probabilities summed on average to 191%. Such estimates 
are irrational: they render individuals vulnerable to a “Dutch book”, that is, a set of bets in which 
they are bound to lose money. The degree of subadditivity is therefore not good news for the 
new paradigm, which, as we mentioned earlier, seeks to replace logic with probability. And it 
casts doubt on the idea that the rationality of naïve reasoners is more appropriately measured 
against the probability calculus than against logic.

Another result contrary to the new paradigm is that reasoners distinguish between the infer-
ential consequences of conditionals, such as:

If the FDA approves a drug, then it is safe for human consumption.

and those that refer to probabilities, such as:

If the FDA approves a drug, then probably it is safe for human consumption.

Notwithstanding claims that probabilities are intrinsic to conditional reasoning (Oaksford et al., 
2000), a series of nine experiments, which examined various sorts of deduction, demonstrated 
robust differences in the way participants interpreted the two sorts of conditional (Goodwin, 
2014). Conditionals that do not make explicit reference to probabilities tend not to be inter-
preted as probabilistic.

Readers should not conclude that reasoning is a deterministic process. Its machinery is not 
clockwork: the same premises yield different conclusions on different occasions. Part of the 
mReasoner program models a probabilistic process for inferences such as:

All Greeks are athletes.
Some athletes are Greeks.
Can both of these assertions be true at the same time? (Yes.)

A typical mental model of the first assertion also represents all athletes as Greek. This model 
satisfies the second assertion, and so the inference is easy. But the task is harder with this pair of 
assertions:

All Greeks are athletes.
Some athletes are not Greek.
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The typical mental model of the first assertion doesn’t satisfy the second assertion, and the cor-
rect affirmative response depends on finding an alternative and atypical model:

Greek athlete
Greek athlete
Greek athlete

athlete
athlete

Yet, as in almost all studies of reasoning, these inferences are seldom uniform. A probabilistic 
mechanism accounts for this variation. mReasoner implements it using parameters governing 
three probabilities (Khemlani, Lotstein et al., 2015). The first parameter constrains the number 
of individuals represented in a model – the number is always small, but it varies. The second 
parameter governs the sorts of individual represented in a model – the likelihood that they 
are typical for an assertion as opposed to drawn from the set of all possible individuals satisfy-
ing the assertion. The third parameter governs the chances that system 2 is engaged to make a 
deliberate search for an alternative to system 1’s intuitive mental model. The program responds 
in a different way to the same inference on different occasions. It behaves like a biased roulette 
wheel. We ran it many thousands of times to find optimal values for the parameters. Their values 
accounted for the variations in both the intuitive and deliberative systems of human reasoning. 
The reasoning engine is probably probabilistic.

Conclusions

What is common to the model theory of deduction, abduction, and induction? The answer 
is that all three rely on models of possibilities. Reasoners can construct models from descrip-
tions and from perception, and they can retrieve them from knowledge. They deduce conclu-
sions from models. They connect one set of models to another to abduce causal explanations. 
They determine that one model should take precedence over another that contradicts it, and 
thereby retract conclusions that facts refute. They use kinematic models in order to deter-
mine the conditions in which a loop of operations should halt, and to deduce the conse-
quences of informal programs. They induce probabilities for unique events by transforming a 
proportion in a model into an analog representation of a magnitude. On the whole, experi-
ments corroborate the theory. Compound assertions refer to conjunctive sets of possibilities, 
and so conditionals can be true when their if-clauses are false. Deductions are easier when 
fewer models of possibilities are at stake, and so it is easier to reason from biconditionals than 
conditionals. When facts contravene conclusions, individuals are spontaneous in explaining 
the inconsistency rather than in amending the inconsistent descriptions. They create pro-
grams that tend to use while-loops rather than for-loops. The difficulty of the task and of 
deducing the consequences of programs depends on the complexity of the programs. They 
compromise when probabilities conflict, and so their estimates of compound events can be 
subadditive to a massive extent. The model theory is far from perfect. Its integrative computer 
model, mReasoner, is as yet incomplete, though it does illustrate how to integrate probabili-
ties and deduction, and how to distinguish intuitive reasoning (system 1) from deliberative 
reasoning (system 2). Experimental results may yet overturn the theory. At present, however, 
it elucidates a wider variety of inferences than alternative accounts, and it has led to robust 
findings that challenge these alternatives.

AuQ3
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