Memory & Cognition
https://doi.org/10.3758/513421-018-0838-0

@ CrossMark

Simulation in children’s conscious recursive reasoning

M. Bucciarelli’ - R. Mackiewicz? - S. S. Khemlani® - P. N. Johnson-Laird **

© Psychonomic Society, Inc. 2018

Abstract

When do children acquire the ability to understand recursion—that is, repeated loops of actions, as in cookery recipes or
computer programs? Hitherto, studies have focused either on unconscious recursions in language and vision or on the difficulty
of conscious recursions—even for adults—when learning to program. In contrast, we examined 10- to 11-year-old fifth-graders’
ability to deduce the consequences of loops of actions in informal algorithms and to create such algorithms for themselves. In our
experiments, the children tackled problems requiring the rearrangement of cars on a toy railway with a single track and a siding—
an environment that in principle allows for the execution of any algorithm—that is, it has the power of a universal Turing
machine. The children were not allowed to move the cars, so each problem’s solution called for them to envision the movements
of cars on the track. We describe a theory of recursive thinking, which is based on kinematic simulations and which we have
implemented in a computer program embodying mental models of the cars and track. Experiment 1 tested children’s ability to
deduce rearrangements of the cars in a train from descriptions of algorithms containing a single loop of actions. Experiment 2
assessed children’s spontaneous creation of similar sorts of algorithms. The results showed that fifth-grade children with no

training in computer programming have systematic abilities to deduce from and to create informal recursive algorithms.

Keywords Recursion - Informal algorithms - Deduction - Abduction - Kinematic simulations

In computer science, any process that contains a loop of ac-
tions is recursive (Enderton, 2010). Recursion is also com-
monplace in daily life—from cookery recipes to laying place
settings on a table. It lies at the core of computation: a loop of
actions is repeated either for a given number of times or while
a given condition continues to hold—though loops that do not
terminate are the bane of programmers. But, what are the
origins of recursion? Most people who have thought about
this question have assumed that it depends on innate mental
machinery (e.g., Hauser, Chomsky, & Fitch, 2002). This

< M. Bucciarelli
monica.bucciarelli@unito.it

Dipartimento di Psicologia and Centro di Logica, Linguaggio e
Cognizione, Universita di Torino, 10123 Torino, Italy

Department of Psychology, University of Social Sciences and
Humanities, Warsaw, Poland

Navy Center for Applied Research in Artificial Intelligence, Naval
Research Lab, Washington, DC, USA

Stuart Professor of Psychology, Emeritus, Princeton University,
Princeton, NJ, USA

> Department of Psychology, New York University, New York, NY,
USA

Published online: 11 July 2018

assumption is hard to test, but it does raise a more tractable
question: When does recursion first appear as children
develop?

Recursive rules are part of grammar, and 7-year-old chil-
dren can already generate recursive sentences (Berwick,
Pietroski, Yankama, & Chomsky, 2011; Miller, Kessel, &
Flavell, 1970; Roeper, 2009). Likewise, 10-year-olds can dis-
criminate between diagrams that are the products of recursive
processes (fractals) and those that are not (Martins, Laaha,
Freiberger, Choi, & Fitch, 2014). The application of recursion
in these skills is unconscious, but it is exercised in a deliberate
and conscious way in writing computer programs. However,
not much research has examined whether children can cope
with recursion outside calculation or programming. One issue
is that the purview of recursive reasoning is often narrow and
is thought of as a specialized operation in computer science, in
which functions call themselves, or as a sort of reasoning that
is self-referential (e.g., Cherubini & Johnson-Laird, 2004).
From this perspective, children and adults seldom make recur-
sive inferences. Indeed, this narrow conception of recursion is
more relevant to the niceties of logic, computability, and pro-
gramming, where a function that calls itself is elegant.

Previous studies have examined how children trained in
computer programming understand recursion (see Chan

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.3758/s13421-018-0838-0&domain=pdf
mailto:monica.bucciarelli@unito.it

Mem Cogn

Mow, 2008; Mayer, 2013; Sleeman, 1986, for reviews). For
example, children’s recursive abilities have been examined in
programming languages such as LOGO (Papert, 1980) and
LEGO (Resnick, 1994), and 10-year-olds have been shown
to have difficulty learning the concept of recursion (e.g.,
Dicheva & Close, 1996), whereas 11-year-olds have difficulty
thinking about how recursive programs work (e.g., Kurland &
Pea, 1985). However, programming depends on much more
than a grasp of recursion: It calls for knowledge of formal
programming language.

Any recursive function is equivalent to a loop of operations,
and such loops are of two sorts. One sort is specified before-
hand to be carried out for a given number of repetitions (a for
loop), and the other, which can compute functions beyond the
scope of for loops, is specified to repeat while a particular
condition holds (a while loop; see, e.g., Enderton, 2010; for
an introduction, see Johnson-Laird, 1983, chap. 1). This
broader notion of recursion as a loop of operations clarifies
why it is commonplace in everyday life—for example, “take
two pills a day for five days,” “scrub while the stain still
shows,” or “beat until the cream holds a peak.” Recursive
reasoning therefore concerns the ability to reason about the
repetition of actions. So, in attempting to answer our question
about when a conscious grasp of recursion first develops in
human life, our main assumption is that this is not a matter of
understanding calculation or computer programming. It does
not call for specialized training in formal languages and sym-
bols, but instead depends on grasping the broader conception of
a repeated loop of actions. We therefore simply need partici-
pants who can make kinematic simulations of actions, and fifth-
grade children can do so (e.g., Caeyenberghts, Wilson, van
Roon, Swinnen, & Smits-Engelsman, 2009; Skoura, Vinter, &
Papaxanthis, 2009). We need participants who can plan rear-
rangements, as in the Tower of Hanoi problem, and fifth-grade
children can do this as well (e.g., Aamodt-Leeper, Creswell,
McGurk, & Skuse, 2001; Keen, 2011). Finally, we need partic-
ipants who can solve problems using means—ends analysis, and
once again, fifth-grade children can do so (e.g., Kuhn, 2013).
We do not claim that younger children cannot cope with recur-
sion in a conscious way, but we do claim that fifth-graders
appear to be the best population from which to draw a sample
to carry out such recursions at a level better than chance.

The focus of our investigation was on informal algo-
rithms—namely, those described in everyday language.
These concerned rearrangements of the order of cars in trains
on a toy railway, which we describe in detail below. Readers
needed to bear in mind, however, that the railway allows for
three different sorts of task to be given to participants:

1. Problem solving: The participants have to solve a rear-
rangement problem by moving the cars from their given
order into a required new order, using a siding on the track
where necessary.

@ Springer

2. Deduction: They have to deduce a new order of cars from
a description of an algorithm that makes a rearrangement
of a given order.

3. Abduction: They have to formulate their own informal
algorithm for making a rearrangement. This process of
creating an algorithm is a sort of inductive reasoning,
but one that is known as “abduction,” because it is more
akin to an explanation of how to make a rearrangement
than to a generalization from the rearrangement.

In an earlier study, we showed that Naive adults—that is,
those who knew nothing about programming or its cognate
disciplines—can carry out all three sorts of tasks (Khemlani,
Mackiewicz, Bucciarelli, & Johnson-Laird, 2013). The evi-
dence corroborated their use of kinematic mental simulations.
Likewise, in a previous study of fifth-grade children, we ex-
amined two of the three tasks. We showed that children can
solve problems of rearranging five cars, and that they can
abduce informal algorithms for rearranging trains of six cars
(Bucciarelli, Mackiewicz, Khemlani, & Johnson-Laird,
2016). We also showed that gestures helped them abduce al-
gorithms when they were not allowed to move the cars.

The present investigation was designed to answer two new
questions that earlier studies had never addressed: Could fifth-
grade children make deductions from algorithms, and could
they abduce recursive algorithms for trains of an indefinite
length? In Experiment 1, we therefore examined children’s
ability to deduce the consequences of algorithms presented
to them in written form; some of these algorithms were for
rearranging trains of five cars, and some of them were recur-
sive, containing a loop of operations appropriate for trains of
any length. Experiment 2 examined children’s ability to
abduce their own informal algorithms for making rearrange-
ments; some of their algorithms had to rearrange trains of six
cars, but some of them had to rearrange trains of an indefinite
length—that is, correct algorithms had to be recursive and to
contain a loop of moves.

In the rest of this introduction, we describe the railway
environment and a theory of recursive thinking based on ki-
nematic mental models. Next, we report the two experiments,
one on deduction, and one on abduction. We conclude with a
general discussion of the implications of their results for alter-
native theories of recursive reasoning and for the pedagogy of
programming.

A domain of recursive problems

Recursion concerns a loop of operations, either a for loop
or a while loop. As far as anyone knows, a system that is
equipped with a small number of basic functions can com-
pute anything that can be computed if it can use these
functions in recursive loops. The basic functions can be

Mem Cogn

arithmetical, such as the successor function, which, given
a natural number such as 4, returns its successor, 5. But,
recursion applies to any sort of operation, so we needed to
find a domain suitable for both adults and children who
know nothing about programming. The environment that
we developed consists of a railway track with cars that
can move along the track (see Khemlani et al., 2013).
Figure 1 is a diagram of this environment.

As Fig. 1 shows, the track has three parts: the left side, the
siding, and the right side. A problem consists of a train on the
left side that has to be rearranged into a new order on the right
side, such as the rearrangement of ABCDE into EDCBA. This
goal has to be achieved by moving cars, one or more at a time,
so that they arrive at the required rearrangement on the right
track. Three rules govern the movement of cars:

1. Cars can move only along the tracks: One car cannot jump
over another. So, when one car moves, it also moves any
car in front of it.

2. Only three sorts of move are allowed: Cars can move from
the left track to the right track (R), from the left track to the
siding (S), and from the siding back to the left track (L).
They cannot move from the right track back to the left
track, or from the siding straight to the right track.

3. The trains must be rearranged in as few moves as possible,
so when it is necessary to move more than one car, the
cars should move together.

The siding allows cars to be stored for a while so that other
cars can move unimpeded from the left to the right track. The
siding is therefore akin to a stack-like memory. But so, too, is
the left track, because cars can shuttle between the two in
intricate dances, before they move to the right track.

Children and adults have no difficulty understanding the
environment and its rules, and in solving problems that call
for rearranging cars in a train (Bucciarelli et al., 2016;
Khemlani, Goodwin, & Johnson-Laird, 2015; Khemlani
et al., 2013). One potential worry is that the environment
is idiosyncratic and not representative of recursive do-
mains. However, given the ability to add cars to the track
or remove them, and to have the cars denote zeroes and
ones, the system is equivalent to a universal Turing ma-
chine, because both the left track and the siding are stacks,
from a computational standpoint (Hopcroft & Ullman,

A B C D E

LEFT TRACK

1979). In theory, through these simple additions and the
possibility of extending the length of each of the three parts
of the track as required to accommodate any number of
cars, the railway can carry out any computation.

The rearrangement we described earlier is a permutation of
the original train, with the order of its cars reversed.
Permutations have an interesting property seldom mentioned
in texts on the topic (cf. Bona, 2012): A particular permuta-
tion, of which there are a countable infinity, can apply to any
number of entities. For example, a reversal can apply to trains
of any length. Hence, an algorithm for reversals needs to work
for any number of cars and is bound to call for at least one
recursive loop of operations. That is why we used the railway
environment in our studies.

A theory of the abduction of algorithms

An infinite number of algorithms can compute the same func-
tion, such as a reversal (Enderton, 2010). The process of for-
mulating an algorithm is therefore akin to the abduction of an
explanation: It goes beyond the given information, which
needs only to state the inputs and outputs of a function. To
abduce an algorithm that solves any instance of a rearrange-
ment, such as a reversal of cars, three steps are necessary.

The first step is to solve one or more instances of the prob-
lem. Although there are only three sorts of move, their possible
sequences soon overwhelm any attempt at a solution by trial
and error. Rearrangements can be solved, however, in a sort of
means—ends analysis by working on the rightmost car or cars
yet to be solved in the goal rearrangement—that is, a partial
means—ends procedure. As an illustration, consider a reversal of
four cars, from ABCD on the left track to DCBA on the right
track. The first goal is to get A over to the right track. It cannot
move there, however, without moving the cars in front of it
there, too. So, these cars need to be moved out of the way—
that is, onto the siding. We represent this move as follows, in
which (S 3) denotes a move of three cars to the siding:

ABCD[-]-becomes A[BCD]— (S3)

The square brackets indicate the cars on the siding, of which
there are none in the starting situation; any cars to the left of
the brackets are on the left track, and any cars to the right of
them are on the right track. Now that only car A is on the left

RIGHT TRACK

SIDING

Fig. 1 Diagram of the railway environment for studying recursive thinking: a train of five cars (ABCDE) is on the left track (see the text for the rules

governing the movements of cars in the train)

@ Springer

Mem Cogn

track, it can be moved to the right track:

~[BCDJA (R1)

that is, a move of one car to the right track. Because car A has
now been solved, the goal can be updated to DCB. It is easy to
solve its rightmost car. We move B from the siding,

B[CD]A (L 1)over to the right track:
—-[CDIBA(R 1)

The goal is now DC, and the solution for C calls for the same two
moves performed for B in order to get it to the right track:
C[D]BA

—[D]CBA

(L1)
(R1)

The same two moves are then repeated again to get D into the
correct position:

D[-]|CBA (L1)
—[~]DCBA (R1)

And the problem is solved.

This partial means—ends analysis can solve any rear-
rangement, but to guarantee a minimal solution—one with
the fewest possible moves—takes some exploration in cer-
tain cases. The process could be carried out in actual
moves on the railway track, but children do have some
ability to simulate moves if they are prohibited from touch-
ing the actual cars (Bucciarelli et al., 2016). Instead of
performing physical moves, children construct mental
models of what cars are where on the railway track. We
invite readers to imagine how they would rearrange ABCD
so that D is at the back of the train: DBCA. It is not diffi-
cult. As you may notice, mental models are iconic, in that
their structure corresponds to what they represent
(Johnson-Laird, 2006, chap. 2). So, they represent the spa-
tial arrangement of the track in a spatial model and simu-
late the movements of the cars on the track in a kinematic
sequence of models. But mental simulations are also cost-
ly: Each move either sets up a new mental model or up-
dates an existing one, so its representation depends on the
processing capacity of working memory.

The second step is to use a record of the moves in solutions
to a problem to abduce an algorithm for carrying them out. If
the algorithm is only to rearrange, say, five or six cars, it could
be a mere list of the required sequence of moves, though there
is an option for certain problems, such as a reversal, to use a
recursive loop. If the algorithm is to rearrange trains with any
number of cars, then a loop may be essential. Consider the
sequences of moves for a reversal of four cars:

(S 3)[R 1)L DR 1)LI RI)LI RI)

and a reversal of five cars:

@ Springer

(S 4)R 1)L 1)R 1)L1 RI)LI RI)LI R1)

To abduce the algorithm, one needs to detect a loop in these
sequences, as well as any moves that occur before or after it. In
one minimal solution of the reversal, there is an initial move of
(S n—1), where 7 is the number of cars in the train, then a loop
of two moves: (R 1)(L 1), and finally a move of (R 1). The
general specification of a for loop calls for the solution of two
simultaneous linear equations, which seems beyond the com-
petence of fifth-grade children. A simpler solution (albeit one
that has more computational power) is to simulate the solution
and determine the situation that causes a while loop to contin-
ue. For a reversal, this continues as long as there is at least one
car on the siding. Other sorts of problem have different loops
with different while conditions, but they can be determined
from simulations of their solutions.

The third step is to test the algorithm—a step that program-
mers neglect at their peril—to assess whether it does what it is
supposed to do. This step calls for deduction. It simulates the
effect of the algorithm on a train of a new length, in order to
deduce the consequences of the algorithm and check that the
algorithm halts with the required rearrangement on the right track.

A computer program, mAbducer, that the fourth author
wrote carries out all three of these steps for any rearrangement
that calls for a finite number of moves or a single recursive loop.
It is an automatic programmer for rearrangement problems (see
Khemlani et al., 2013), and its source code is available at http://
mentalmodels.princeton.edu/models/. This automatic
programmer generates algorithms, using a for loop and a
while loop, that solve the problems, and it also describes them
in both a programming language, Lisp, and informal English. It
provided minimal correct algorithms as a basis for the problems
in our experiments. The kinematic model that it uses to simulate
moves on the track is schematic, and we have already illustrated
it in the moves for the reversal above.

In summary, the theory and its computer implementation rest
on three assumptions that derive from the theory of mental
models—henceforth, the model theory, for short. First, simula-
tions depend on iconic models. They are iconic in that their
structure corresponds to the structure of the world (Johnson-
Laird, 1983). Second, they are kinematic, in that they unfold
in time in the same sequence as the required moves for a prob-
lem—that is, they use time to represent time (Hegarty, 2004,
Schaeken, Johnson-Laird, & d’Ydewalle, 1996). Third, they
are schematic, and therefore more parsimonious than visual
images, though they may underlie such images. Hence, they
yield faster inferences than do images (Knauff, Fangmeier,
Ruff, & Johnson-Laird, 2003). A model can therefore represent
what is common to many possibilities that differ in their details.

The theory makes three principal predictions. Fifth-grade chil-
dren should be able to deduce the consequences of algorithms
containing loops, and to abduce such algorithms, with better-
than-chance accuracy (Prediction 1). They should make more

http://mentalmodels.princeton.edu/models
http://mentalmodels.princeton.edu/models

Mem Cogn

accurate deductions and abductions for algorithms without loops
than for those with loops, because the latter impose an additional
load on working memory (Prediction 2). Because simulations
depend on the processing capacity of working memory, children
should differ in ability (Prediction 3).

Experiment 1: Children’s deductions
from algorithms

The participants had to deduce the consequences of each of
three algorithms for rearranging the order of five cars on a toy
railway track. Figure 2 depicts the track at the start of a prob-
lem. The algorithms concerned five cars, because this number
allowed each algorithm to be presented in two versions: with-
out a loop and with a while loop. We used while rather than for
loops so that the children did not have to count the number of
iterations of a loop. The three algorithms were for:

1. areversal of the order of the cars in a train, so the train
AEIOU would become UOIEA;

2. a parity sort, in which all the cars in even-numbered po-
sitions would be moved in front of all the cars in odd-
numbered positions, so that the train AEIOU would be-
come EOAIU;

3. acenter palindrome, in which a train would be rearranged
by pairing its two outer cars, then the next pair of outer-
most cars, and so on, until only the center car would be
left, which would be put at the end of the train—so the
train AEIOU would become AUEOI (see the materials for
the algorithms).

Method

Participants The participants were 30 fifth-grade children (16
females and 14 males; mean age 10 years 3 months) attending
a primary school in Turin, Italy. The Ethical Committee of the
University of Turin approved the experiment, and the children
took part in the study after their parents had given their in-
formed consent.

Design The participants deduced the consequences of three
sorts of algorithms (reversal, parity sort, and center palin-
drome) described in one version in a finite list of actions—

Fig. 2 Railway environment of Experiment 1 at the start of a problem.
The banner at the end of the right track says Arrivo—that is, “Arrival”

that is, without a loop and in another version with a while loop.
The six problems were presented in a different random order
to each participant, with the constraint that the two versions of
a problem never followed one after the other.

Materials The descriptions of the algorithms were based on
mAbducer’s outputs, but they were expanded so that each
move described both the starting point and the end point of
each move—for example, “Move one car from the left track to
the right track.” As in mAbducer, the algorithms made no
reference to the letters that labeled the cars, but concerned
only moves of various numbers of cars. The resulting algo-
rithms were translated into Italian, because the children were
Italian. Here are the English versions:

1. The reversal algorithm, which reverses the order of the cars: AEIOU[-]-

Move one less than the number of cars to the siding. A[EIOUJ-
While there are more than zero cars on the siding,
move one car to the right track, [EIOUJA
move one car to the left track. E[IOU]A
Three further iterations of the while loop yield: U[-]OIEA
Move one car to the right track. -[-JUOIEA

We also used a version of the algorithm in which there was
no loop of moves. This version also listed moves to reverse a
train of five cars.

2. The parity-sort algorithm puts all the cars in AEIOU[-]-
even-numbered positions in front of all the cars in
odd-numbered positions:
While there are more than two cars on the left track,
move one car to the right track, AEIO[-]U
move one car to the siding. AEI[O]U
A further repetition of this loop yields: A[EO]IU
Move one car to the right track. [EOJAIU
Move two cars to the left track. EO[-]AIU
Move two cars to the right track. -[-JEOAIU

The two final moves were reformulated from mAbducer so
that they referred to the specific number of cars required for a
train of five cars. We also used a version of the algorithm without
a loop. It listed all the required moves for a train of five cars.

3. The center palindrome algorithm transforms a train by =~ AEIOU[-]-
pairing the two outer cars, then the next pair of outermost
cars, and so on, until only the center car is left and it is put
at the end of the train:
Move two cars from the lefi track to the siding. AEI[OU]-
Move one car to the right track. AE[OU]I
While there are more than zero cars on the left track,
move one car to the left track, AEO[U]I
move two cars to the right track. A[UJEOI
A further repetition of the loop yields the solution: -[-]JAUEOI

@ Springer

Mem Cogn

To avoid the calculation required in the initial moves, which
are irrelevant to the grasp of a loop, we reformulated them as
above so that the loop would apply only to trains of five cars.

Procedure The participants were tested one at a time in a quiet
room and in the sole presence of the experimenter. They
learned the rules for moving cars, and they were told they
had to read the description of a series of moves and to work
out the effect of these moves on the final order of the cars in
the train on the right side of the track. They read the descrip-
tion of the algorithm, which remained in view throughout the
complete trial. We video-recorded the experimental sessions,
and later transcribed them.

Results and discussion

The data from five of the 30 children were excluded from the
analysis because either the children moved cars when solving
a problem or a technical error occurred. The statistical analy-
ses were performed on the remaining 25 participants. The
analyses assessed whether the group of children as a whole
was able to solve the problems at a level better than chance,
whether they were more accurate with the problems without
loops than with the problems with loops, and whether they
differed in ability.

A train of five cars has 5! (= 120) possible rearrangements.
Hence, the probability of solving a problem by chance would
be 1 in 120, and any problem for which two or more children
deduced the solution would be solved more often than chance
(p < .02). Table 1 presents the numbers of children who made
correct deductions for each of the six sorts of algorithm. As
these numbers show, the children performed better than
chance for each of the six problems in deducing the conse-
quences of informal algorithms. The chance probability of a
child solving one or more of the six problems was equal to 1 —
(119/120)° = .049. Hence, the group of children as a whole
performed better than chance (Prediction 1), because 22 chil-
dren out of the 25 solved at least one problem (binomial test, p
<.0001). So, children from the population we sampled should
cope with at least one of the problems.

The children were more accurate in deducing the conse-
quences of algorithms without loops (53% correct) than of
algorithms with loops (35% correct; Wilcoxon test, z = 2.12,

Table 1 Numbers of children (N = 25) in Experiment 1 who made
correct deductions of the rearrangements of cars according to three sorts
of algorithms, either without loops or with loops

Sort of Algorithm Without Loop With Loop
Reversal 20 13

Parity sort 11 5

Center palindrome 9 8

@ Springer

p < .02, Cliff’s 6 = .30; Prediction 2). An analysis of the
individual problems showed that only the reversal yiclded a
reliable difference in difficulty: It was easier in the algorithm
without a loop than in the algorithm with a loop (Wilcoxon
test: z = 2.33, p < .02, Cliff’s § = .28). The six problems
differed in difficulty [Cochran’s Q test: x*(5) = 28.31, p <
.001]. It may be that reversals are easy because they repeat a
loop of two moves of single cars three times, so the children
can grasp the loop better than they can the loops in the other
algorithms, which repeat only twice. But any definitive expla-
nation would call for a much larger sample of different rear-
rangements, of which, in principle, a countable infinity exist.

The children themselves differed in their ability to make
accurate deductions from algorithms [Friedman nonparamet-
ric analysis of variance: x*(5) = 28.31, p < .0001: Prediction
3]. Three children made no correct deductions, and two chil-
dren made only correct deductions. There was no reliable
difference in accuracy between the sexes: Boys were 50%
correct, and girls were 38% correct (Mann—Whitney test: z =
99, p = .32, Cliff’s § = .23).

Experiment 1 corroborated the three predictions of the
model theory. The children as a group deduced the conse-
quences of each sort of algorithm much better than chance,
they were more accurate for algorithms without loops than for
algorithms with loops, and they differed in ability. We there-
fore devised Experiment 2 to find out whether children from
the same population could themselves abduce algorithms con-
taining loops of operations.

Experiment 2: Children’s abduction
of algorithms

Our previous study of children had shown that they could
abduce algorithms for rearranging trains of six cars
(Bucciarelli et al., 2016). An open question was whether they
could abduce recursive algorithms to rearrange trains of an
indefinite length. Experiment 1 in the present study implied
that they could make deductions from such algorithms. Hence,
Experiment 2 compared their ability to abduce algorithms for
rearranging trains of six cars and trains of an indefinite number
of cars, which necessarily required a loop of moves. Each
child tackled five pairs of problems: In each pair, the first
problem had six cars, and the second problem had an indefi-
nite number of cars. Figure 3 shows the initial state of such a
problem, with a tunnel hiding an indefinite number of cars on
the left track. The children were told it hid an unknown num-
ber of cars at either the front or the back of the train (depend-
ing on the location of the tunnel), but leaving six cars visible.
The model theory predicts that fifth-graders should be able to
abduce algorithms better than chance for both sorts of problem
(Prediction 1), that they should be more accurate for trains of

Mem Cogn

Fig. 3 Initial state of a problem in Experiment 2 that depicts an indefinite
number of cars (see the tunnel on the left side of the track and the picture
of the goal rearrangement behind the right track)

six cars than for trains of an indefinite length (Prediction 2),
and that they should differ in ability (Prediction 3).

Method

Participants The participants were 35 fifth-grade children
(16 females and 19 males; mean age 11 years) attending
three primary schools in Turin, Italy. The Ethics
Committee of the University of Turin approved the study,
and the children took part after their parents had given
informed consent.

Design The experiment examined the children’s ability to for-
mulate five different sorts of algorithm, both for six cars and
for an indefinite number of cars, with six cars visible and an
unknown number of cars hidden in a tunnel. Each pair of
problems had a six-car problem first and then the correspond-
ing problem with an indefinite number of cars. We used this
procedure to prevent the children from being dismayed by
encountering a difficult problem without any preparation for
it. Table 2 summarizes the initial and final states of each prob-
lem. The Appendix shows the five algorithms with loops that
the children needed to abduce for problems with an indefinite
number of cars. The order of the five pairs of problems was
random for each child.

Table 2 Initial and final states of the ten problems in Experiment 2

Materials and procedure The five sorts of problem, each in the
two versions, are illustrated in Table 2. We used white cars
labeled with letters (A, B, C, D, E, F), a cardboard tunnel, and
photographs of the required rearrangements of the cars. The
participants were tested one by one in a quiet room with only
the experimenter present. They carried out an initial training in
which they learned the rules for moving the cars and how to
describe the moves using only the number of cars in a move,
without referring to the cars by letter. They were told that the
cars on the left track had to be rearranged into the order shown
in the photograph behind the right track. They were also told
that some trains had an unknown number of cars, so they
would have to describe a method of rearranging a train of
any length—that is, the tunnel hid many cars, and “we do
not know how many.”

The key instructions began with these sentences for six
cars: “Try to tell me in words, without moving the cars, how
would you form this train [in the picture]. Remember not to
use the names of the cars, but tell me how many cars move
from one track or another.” Once the child had created an
algorithm, the experimenter introduced the tunnel and
reminded the child that it hid an unknown number of cars,
which were part of the train that the child could see. The
experimenter then constructed these trains of indefinite length
in front of the child, who understood that the tunnel hid an
unknown number of cars. The instructions for these recursive
problems were: “Now, because we do not know how many
cars there are in this train, we need rules that summarize the
moves to form the train in the picture. The rules must be as
short as possible: you must use the smallest number of
words.” We video-recorded the experimental sessions and lat-
er transcribed the children’s algorithms.

Results and discussion

Coding of algorithms and of loops Two independent judges
coded the video-recordings to make explicit each algorithm

Names of the Problems

Initial States of the Two Versions

Final States of the Two Versions

1. Swap adjacent pairs FEDCBA
mFEDCBA
2. Reversals FEDCBA
sFEDCBA
3. Parity sort FEDCBA
sFEDCBA
4. Back-to palindrome AABBCC
AABBCCn
5. Two-loop palindrome CCBBAA
mCCBBAA

EFCDAB
mEFCDAB
ABCDEF
ABCDEFm
FDBECA
nFDBmECA
ABCCBA
ABCmCBA
ABCCBA
ABCmCBA

The m symbol denotes the tunnel, which hides an indefinite number of cars in the initial state of a problem and denotes an indefinite number of cars in the

final state of a problem

@ Springer

Mem Cogn

from the children’s verbal descriptions and gestures. The judg-
es also noted the occurrence of any loops, distinguishing three
sorts:

* While loops specify the termination condition in ad-
vance—for example, “and so on until the cars are
finished.”

* For loops specify the number of iterations in advance,
though they might do so using a quantifier such as “all,”
to refer to the unknown number of cars in a train—for
example: “. . . we do like that for all the cars we can’t
see,” “one by one take the cars and lead them back [to
the left track] and then to the goal.”

* Proto-loops specify neither the termination condition nor
the number of iterations, but indicate that the same move
will be repeated—for example, “and so on,” “and we go
always like that,” and “we move the car from the side to
the left then to the goal, and also the last one.”

Table 3
their transcriptions into mAbducer’s notation

The two independent judges agreed in their coding of
the algorithms on 92% of trials (Cohen’s x = .84, p <
.0001). They also agreed on 97% of trials about the oc-
currence of no loops, proto-loops, for loops, and while
loops in the algorithms (Cohen’s x = .94, p < .0001).
They resolved the discrepancies in both codings prior to
the statistical analyses. Because the children often used
quantifiers, such as “all the cars,” the while and for loops
differed less in their informal versions than they do in
formal programs, because the children described for loops
without explicit numbers of required repetitions.

Table 3 presents typical protocols from two children
abducing algorithms for swapping adjacent pairs of cars in
trains of an indefinite length. The table also presents the tran-
scription of the protocols into the notation used by the
mAbducer program. The cars hidden in the tunnel are denoted
by the m symbol. The two protocols illustrate a while loop and
then a for loop.

Translation from Italian of two children’s algorithms in Experiment 2 for swapping adjacent pairs of cars in a train of indefinite length, and

Move Descriptions and Gestures

Transcription of the
Move

Participant 8’s transcript for an algorithm with a while loop that swaps adjacent pairs to rearrange BFEDCBA into mEFCDAB

1 “One to the siding . . .”
(draws in the air a trajectory from the lefi track to the siding)
2 ‘. .. the other to the goal.”

(draws in the air a trajectory from the left track to the right track)

3 “One on the siding goes back then to the goal . ..”

(draws in the air a trajectory from the siding to the left track and then to the right track)

4 ... and so on until all the cars are finished.”

(moves one hand in front of the other in a continuous movement in a wheel-like movement)
The description is of a while loop, because it indicates moves applied to many cars and states the termination

condition.

m FEDCB[A]
m FEDC[A]B

m FEDCA[-]B
m FEDC[-]AB

m FED[C]AB
m FE[C]DAB
m FEC[-]DAB
m FE[-]CDAB
m F[E]CDAB
u [E]JFCDAB
m E[-[FCDAB
u [-JEFCDAB

Participant 10’s transcript for an algorithm with a for loop that swaps adjacent pairs

1 “One should always put a car to the siding . . .”
(P10 made no gestures)
“...and one to the goal . ..”

3 *“. .. then the one on the siding goes back . . . to the goal.”

“One to the siding . . .”
5 ... and the other to the goal.”
“One back and then to the goal . . .”

7 ... and swap them, and do that for all the (cars of the) train.”

The assertion is a _for loop, because it indicates moves applied to many cars, specifying all of them in advance.

m FEDCBI[A]

» FEDC[A]B
m FEDCA[-]B
» FEDC[-]AB
= FED[C]AB
= FE[C]DAB
m FEC[-]DAB
m FE[-][CDAB
= F[E]CDAB
u [EJFCDAB
m E[-JFCDAB
u [-JEFCDAB

The brackets denote the contents of the siding; any cars to the left of the brackets are on the left track, and any cars to the right of the brackets are on the

right track. The m symbol stands for the cars hidden in the tunnel

@ Springer

Mem Cogn

Statistical analysis The statistical analyses were designed to
assess whether the group of children as a whole were able to
formulate algorithms at a level better than chance, whether
they were more accurate in their algorithms for trains of six
cars than for trains of indefinite length, and whether they dif-
fered in ability.

A train of six cars has 6! (= 720) possible rearrangements, so
any problem that at least two of the 35 children solved was one
for which solutions occurred much more often than chance (p <
.002). Table 4 states the numbers of correct algorithms for the
five pairs of problems. These numbers show that children per-
formed much better than chance with all the six-car problems,
and better than chance with all but one of the indefinite prob-
lems. The chance probability of a child solving one or more of
the ten problems was equal to 1 — (719/720)'° = .014. Hence,
the group of children as a whole performed better than chance,
because 34 children out of the 35 solved at least one problem
(binomial test, p < .0001). Children in a sample of fifth-graders
were therefore able to formulate at least one algorithm
(Prediction 1). They were also able to formulate a recursive
algorithm better than chance: 22 out of the 35 children did so
for at least one problem (binomial test, p < .0001).

The children were more accurate in abducing algorithms
for trains of six cars (66% correct) than for trains of indefinite
length (15% correct; Wilcoxon test: z=15.16, p <.0001, Cliff’s
6 = .88; Prediction 2). The same result occurred for each of the
five pairs of problems (in Wilcoxon tests, z ranged from 2.8 to
4.7, p ranged from < .005 to <.0001, and Cliff’s § ranged from
.23 t0 .63). The children used loops in 10% of their algorithms
for trains of six cars, and in 67% of their algorithms for trains
of indefinite length, whether the algorithms were right or
wrong (Wilcoxon test: z = 4.02, p < .0001, Cliff’s § = .51).
The ten problems differed in difficulty [Cochran’s Q test:
2(9) = 133.36, p < .001]. The algorithm for swapping adja-
cent pairs was easy, for both six cars and indefinite numbers of
cars, perhaps because it is a single loop of one-car moves that
is repeated three times for a six-car problem. Likewise, the
loop for reversals, as we mentioned before, is also simple. In
contrast, the palindrome is the most difficult, if only because

Table 4 Numbers of children (N = 35) in Experiment 2 who made
correct abductions of five sorts of algorithm for trains of six cars and
for trains of indefinite length

Sorts of Algorithm Length of Trains

Trains of Six Cars Trains of Indefinite Length

Swap adjacent pairs 27 19
Reversal 25 4
Parity sort 22 2
Back-to palindrome 22 0
Two-loop palindrome 19 1

its algorithm uses two separate loops. The Appendix has de-
scriptions of all five recursive algorithms. It also shows that
their Kolmogorov complexity—the number of symbols re-
quired to describe them in the formal language of the
mAbducer notation—predicts their rank order of difficulties
for the children (see Khemlani et al., 2013, for the similar
success of this metric for adult participants).

The children differed in ability to abduce the algorithms
[Friedman nonparametric analysis of variance: x*(9) = 133.36,
p < .0001; Prediction 3]. One child abduced no correct algo-
rithms, whereas the most accurate children abduced five correct
algorithms. The difference in accuracy between the sexes was not
reliable: Boys were 37% correct, girls were 44% correct (Mann—
Whitney test: z = 1.03, p = .30, Cliff’s § = .20).

The most striking result was that 22 out of the 35 children
formulated at least one correct recursive algorithm, which
contained a loop of operations. This result shows that a sample
of fifth-grade children performed reliably better than chance at
the task. To the best of our knowledge, no previous study has
obtained such a result. The results also corroborated our earlier
finding that children could abduce algorithms for trains of six
cars (Bucciarelli et al., 2016). In sum, the results corroborated the
three predictions of the model theory. The children as a group
deduced the consequences of each sort of algorithm rather better
than chance, they were more accurate for algorithms without
loops than for algorithms with loops, and they differed in ability.

General discussion

Fifth-grade children, 10 to 11 years old, have some ability to
cope with recursive loops in informal algorithms. The children
as a whole in Experiment 1 were able to make deductions
from algorithms at a level better than chance (Prediction 1).
More than half of the children could deduce the consequences
of a recursive algorithm for reversing the order of the cars in a
train on a track:

Move one less than the number of cars to the siding.
While there is at least one car on the siding,
move one car from the left track to the right track,
move one car from the siding to the left track.
Move one car to the right track.

Even though they were not allowed to move the actual cars on
the track, they could imagine the effects of this recursive algo-
rithm. It was easier for them to deduce the consequences of algo-
rithms that were lists of actions rather than those that were recur-
sive, containing a loop of moves (Prediction 2), as in the preced-
ing example. The three algorithms differed in difficulty, and the
one above was the easiest, perhaps because it has a loop of two
moves of single cars that is repeated more often than are the loops
in the other two algorithms. The repetition of simple moves could

@ Springer

Mem Cogn

help children deduce the moves’ consequences, but other factors
may be in play, such as the load on working memory. The space
of possible rearrangements is boundless, and without results from
a larger sample of algorithms, it is impossible to draw definite
conclusions. Congruent with the role of working memory, how-
ever, the children in Experiment 1 differed in their ability to de-
duce the consequences of algorithms (Prediction 3).

Fifth-grade children can also abduce their own informal
algorithms containing loops of moves. The sample as a whole
in Experiment 2 were able to do so at a level better than chance
(Prediction 1). This result contrasts with earlier findings that in
computer programming, fifth-graders have difficulty coping
with recursion (e.g., Dicheva & Close, 1996; Kurland & Pea,
1985). Yet, like deduction, the abductive task was ecasier for
them when a list of actions sufficed for trains of six cars than
when it called for a loop of actions on trains of indefinite
length (Prediction 2). The five algorithms differed in difficul-
ty; the Appendix presents them and shows that their
Kolmogorov complexity predicts their difficulty (as it had
for the adult participants in Khemlani et al., 2013). Again,
the difference in the children’s abilities suggests that the load
on working memory affects performance.

What does it take for you to abduce a recursive algorithm?
Our studies corroborated the model theory described earlier in
the article. It postulates that you need three interrelated abili-
ties. First, you have to be able to solve the problems that the
algorithm is going to solve. In the railway environment, you
can do so using the partial means-ends analysis. You can work
backward from each car at the head of the goal. If you cannot
carry out the actual moves on the track—and the participants
in the Bucciarelli et al. (2016) study were not allowed to—
then you have to imagine them. So, you carry out a kinematic
simulation of the solution. But, solutions of rearrangements
are not enough for an abduction.

Second, you have to remember the sequence of moves in your
simulation, and to abduce its structure, discovering any loop of
moves, and any moves before or after the loop. For example, in
reversing four cars you made the following sequences of moves:

S3IHRDHE DR IYL HR 1)L)R 1)

You may then be able to abduce a general procedure. Given that
n is the number of cars in the train, you start with a move of n — 1
cars to the siding. Next, you make the move (R 1). Then, there is
a loop of (L 1)(R 1), which continues while there is at least one
car on the siding. So, one minimal algorithm is:

(S(mn-1)
R1)
((L D)(R 1)) while there is at least one car on the siding.

There is an alternative minimal algorithm, which we described
earlier (see also the Appendix).

@ Springer

The third and final step is to test your algorithm. You de-
duce its consequences for a train of a new length. You carry
out a mental simulation of it on a longer train. You apply each
of its moves on the train, and you check that the end result
matches the required reversal. If it does, then the algorithm is
complete, assuming that you can describe it (cf. Table 3).

Does any alternative theory of the abduction of algorithms
give a different account of representation and process?
Cognitive scientists have pursued many accounts of mental
representations. Some have claimed that they are not required
for intelligent behavior (e.g., Brooks, 1991). Others have ar-
gued against a causal role for visual images, and posited in-
stead “mentalese”—that is, a language of thought made up of
strings of symbols (e.g., Pylyshyn, 2003). In fact, it was im-
possible to formulate algorithms in our study without using
mental representations. One that may be optimal for formulat-
ing an algorithm is a kinematic model. It is iconic, in that it
uses time to represent time and that its spatial relations repre-
sent spatial relations in the world (see also Hegarty, 2004).
Such mental models can underlie visual images, or they may
be as abstract as the notation in the present article—a notation
that the mAbducer program uses. Indeed, a brain-imaging
study has shown that people can reason from models without
transforming them into visual images, which in fact impede
reasoning (Knauff et al., 2003). Not all reasoning has to de-
pend on iconic models: People who are taught logic can also
learn to use formal rules of inference. Likewise, the model
theory relies on a representation of meaning that is not iconic,
and it is from this representation that it constructs models
(Khemlani & Johnson-Laird, 2013). Theorists could argue
that all representations rest on such a mentalese, which in turn
rests on nerve impulses—just as mAbducer’s representations
rest on machine language, which in turn rests on an electronic
binary code. In both cases, however, the abduction of algo-
rithms demands a higher level of representation, one that
humans can envisage and manipulate consciously.

The abduction of loops takes the results of simulations as its
input. Probabilities play no essential role, children’s protocols
make no reference to them, and so Bayesian inferences seem
irrelevant (pace Oaksford & Chater, 2007). But, the process
could in principle be carried out in first-order logic (see Rips,
1994). It would depend on an axiomatization of rearrangements
in the railway domain. The set of axioms, however, would have
to capture both what changes and what does not change with
each move, that is, they would need to solve the so-called
“frame” problem (see Shanahan, 2016). Moreover, logical ex-
pressions are not iconic. For example, the spatial relations in this
premise are not represented in an iconic way:

J!x3ly((car x) A (train y) A (at-front-of X y) A (on left-track y)

(There is a car, X, and a train, y, such that x is at the front of
y and y is on the left track.)

Mem Cogn

Hence, logical systems for spatial reasoning tend to
make the wrong predictions of difficulty (see, e.g., Jahn,
Knauff, & Johnson-Laird, 2007; Schaeken, Girotto, &
Johnson-Laird, 1998). In contrast, iconic diagrams im-
prove both the accuracy and speed of reasoning in com-
parison with noniconic verbal premises (Bauer &
Johnson-Laird, 1993). It therefore seems that mental
simulations should be based on iconic models rather
than on logical expressions. The crux of abduction is
to discover repeated sequences of operations. The
mAbducer program finds them using a recursive process
that starts with loops of half the length of the sequence
of moves in a solution, and works its way downward
through shorter lengths. Human reasoners must also
search for loops, but they are fallible, and some patterns
are too difficult for them to detect (Khemlani et al.,
2013).

Mathematicians, programmers, and cognitive scientists rea-
son about recursion. And many psychological studies have in-
vestigated novice programmers trying to formulate algorithms
in a programming language (e.g., Kurland & Pea, 1985). Other
studies have used arithmetic. For example, teenagers are better
at calculating an arithmetical function when it is expressed in an
iterative loop of operations than in a function that calls itself
(Anzai & Uesato, 1982). However, those who start with itera-
tive calculations do better than those who start with the self-
referential calculations. Likewise, the experience of informal
algorithms in the railway setting could help budding program-
mers to master recursive functions. It might even provide a
transparent environment in which to teach programming. No
valid test exists for predicting the programming ability of indi-
viduals who know nothing about it. Children differed in their
skill in abducing algorithms for rearrangements, and so the task
could predict their ability to program.

Recursion underlies languages (e.g., Hauser et al., 2002),
counting and arithmetic (e.g., Enderton, 2010), theory of mind
(e.g., Corballis, 2011), and the recognition of visual patterns
(e.g., Martins, Mursic, Oh, & Fitch, 2015). One controversy
concerns whether all these cases of recursion are rooted in
language (Hauser et al., 2002) or else in several cognitive
domains (Jackendoff & Pinker, 2005). In a study of an
agrammatical patient, Zimmerer and Varley (2010) showed
that recursion was absent in the patient’s grammar, but present
in other domains, such as arithmetic. As far as we know, no-
one has established a double dissociation between language
and recursion. But, in many recursive domains, such as the
formulation of grammatical sentences or inferences from the
theory of mind, the underlying recursive principles are uncon-
scious. In the present studies, however, children were con-
scious of explicit loops of actions from which they had to
make deductions, and they attempted to create such loops in
abducing informal programs. Both tasks can be carried out
using the symbols of an artificial language, such as the

notation for mAbducer or LOGO, and without any overt use
of natural language. They could therefore provide a test bed to
examine the recursive abilities of individuals bereft of lan-
guage and even of members of other species.

In conclusion, our study of fifth-graders’ grasp of re-
cursion revealed that they can deduce the consequences of
some algorithms, and that they can abduce the loops of
moves required for some algorithms. They are more ac-
curate with algorithms that are lists than with algorithms
that include loops. Simulations appear to be crucial: They
unfold in time in a sequence of kinematic models, which
have to be held in working memory, and processing ca-
pacity is therefore critical. This may account for the dif-
ferences in ability from one child to another. Recursion is
an unconscious foundation for many human skills, from
perception to speech. It is a conscious component of logic
and programming. The informal mastery of our partici-
pants in tasks for which they had no explicit preparation
suggests that its roots are part of human competence. This
ability may be founded on the simulation of sequences of
events, and in turn on the ability to make such simulations
the objects of conscious thought.

Author note The data for this article are archived in a database
to be found at https://osf.io/jg2fy. The research was funded in
part by the Polish National Science Centre [Grant 2014/14/M/
HS6/00916] (to R.M.). We are grateful to Matthew Traxler
and the anonymous reviewers for their helpful advice and
criticisms of earlier drafts.

Appendix: The algorithms to be abduced
in Experiment 2

Five algorithms had to be abduced for trains of both six cars
and an indefinite number of cars. An infinite number of algo-
rithms can compute a given rearrangement, and even more
than one minimal algorithm exist for some rearrangements.
For example, there are two minimal algorithms for a reversal
(see below). We summarize the five simplest algorithms with
while loops that cope with an indefinite number of cars. The
notation used here can be illustrated as follows:

(R 1): denotes a move of one car from the left track to the
right track,

(S Yam): denotes a move of half the number of cars, 7, in
the train from the left track to the siding,

(L 2): denotes a move of two cars from the siding to the
left track.

((L)R 1)), while there is at least one car on the siding:
denotes a while loop.

@ Springer

https://osf.io/jg2fy

Mem Cogn

The five recursive algorithms that the children had to
abduce were as follows.

1. An algorithm to swap adjacent pairs, e.g., FEDCBA be-
comes EFCDAB:

((S)R 1)L 1)R 1)) while there is at least one car is on
left-track

2. An algorithm for reversals, e.g., FEDCBA becomes
ABCDEEF:

(S(m—1))
R
((L 1)(R 1)) while there is at least one car on the siding

An alternative minimal algorithm is:

(Sn-1)
((R 1)(L 1)) while there is at least one car on the siding
R 1)

3. An algorithm for parity sorts, e.g., FEDCBA becomes
FDBECA:

R 1)

((S 1)(R 1)) while there is more than one car on the left
track

(LY%n—-1)

(R Yanm)

4. An algorithm to get back to a palindrome, e.g., AABBCC
becomes ABCCBA:

(S(n-2)
((R 1)(L 2)) while there is at least one car on the siding
R (Yan + 2))

5. An algorithm for a two-loop palindrome, e.g., CCBBAA
becomes ABCCBA:

((S 1)(R 1)) while there is more than one car on the left-
track
((L1)(R 1)) while there is at least one car on the siding

Why do these five algorithms differ in the ease with which
the participants can abduce them? Several factors seem perti-
nent. Swapping adjacent pairs should be easy, because it is a
single loop in which only the two cars at the current head of
the train on the left track are moved: The first car is moved out
of the way (to the siding) so the second car can move to the
right, and then the first car moves off the siding and over to the
right. This sequence is repeated three times for six cars. The

@ Springer

two-loop palindrome should be very difficult, because it is the
only algorithm that calls for two separate loops of moves. In a
study with adults and a different set of algorithms (Khemlani
et al., 2013), Kolmogorov complexity predicted the difficulty
of'abducing recursive algorithms. This complexity depends on
the number of characters needed to describe an algorithm in
standard language (Li & Vitanyi, 1997). The numbers of sym-
bols, including words and parentheses, in the descriptions
above of the five algorithms are, respectively, 20, 32, 36, 37,
and 40, and the statements of the while conditions require ten
words for each of the algorithms. These numbers for K-
complexity correlate with the numbers of participants who
failed to abduce the algorithms: 16, 31, 33, 35, 34 (cf. Table
4; Kendall’s 7= .84, 7 =2.06, p < .02).

All the loops in these problems are static, but other prob-
lems, which we avoided in the present study, are dynamic, in
that the number of cars for at least one move in the loop
depends on both the length of the train and the number of
repetitions of the loop that have occurred. For example, the
“riffle in” shuffle (a.k.a. the Faro shuffle) interpolates the cars
in even-numbered positions between those in odd-numbered
positions. For example: ABCDEF becomes ADB ECF, and,
as mAbducer discovered, it calls for a dynamic algorithm in
which the number of cars included in moves in the loop de-
creases on each repetition. Such an algorithm may be beyond
the competence of even naive adults to abduce.

References

Aamodt-Leeper, G., Creswell, C., McGurk, R., & Skuse, D. H. (2001).
Individual differences in cognitive planning on the Tower of Hanoi
task: Neuropsychological maturity or measurement error? Journal
of Child Psychology and Psychiatry, 42, 551-556.

Anzai, Y., & Uesato, Y. (1982). Learning recursive procedures by
middleschool children. In Proceedings of the Fourth Annual
Conference of the Cognitive Science Society (pp. 100—102).
Hillsdale: Erlbaum.

Bauer, M. 1., & Johnson-Laird, P. N. (1993). How diagrams can improve
reasoning. Psychological Science, 4, 372-378. https://doi.org/10.
1111/5.1467-9280.1993.tb00584.x

Berwick, R. C., Pietroski, P., Yankama, B., & Chomsky, N. (2011).
Poverty of the stimulus revisited. Cognitive Science, 35, 1207-1242.

Bona, M. (2012). Combinatorics of permutations (2nd). Boca Raton:
Taylor & Francis.

Brooks, R. (1991). Intelligence without representation. Artificial
Intelligence, 47, 139—160.

Bucciarelli, M., Mackiewicz, R., Khemlani, S. S., & Johnson-Laird, P. N.
(2016). Children’s creation of algorithms: Simulations and gestures.
Journal of Cognitive Psychology, 28, 297-318.

Caeyenberghts, K., Wilson, P. H., van Roon, D., Swinnen, S. P., & Smits-
Engelsman, B. C. M. (2009). Increasing convergence between imag-
ined and executed movement across development: Evidence for the
emergence of movement representations. Developmental Science,
12,474-483.

Chan Mow, L. (2008). Issues and difficulties in teaching novice computer
programming. In M. Iskander (Ed.), Innovative techniques in

https://doi.org/10.1111/j.1467-9280.1993.tb00584.x
https://doi.org/10.1111/j.1467-9280.1993.tb00584.x

Mem Cogn

instruction technology, e-learning, e-assessment (pp. 199-204).
New York: Springer.

Cherubini, P., & Johnson-Laird, P. N. (2004). Does everyone love every-
one? The psychology of iterative reasoning Thinking & Reasoning,
10, 31-53.

Corballis, M. C. (2011). The recursive mind: The origins of human lan-
guage, thought, and civilization. Princeton: Princeton University
Press.

Dicheva, D., & Close, J. (1996). Mental models of recursion. Journal of

Educational Computing Research, 14, 1-23.

Enderton, H. B. (2010). Computability theory: An introduction to recur-
sion theory. San Diego: Academic Press.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of
language: What is it, who has it, and how did it evolve? Science,
298, 1569-1579. https://doi.org/10.1126/science.298.5598.1569

Hegarty, M. (2004). Mechanical reasoning by mental simulation. 7rends
in Cognitive Sciences, 8, 280-285.

Hopcroft, J. E., & Ullman, J. S. (1979). Introduction to automata theory,
languages, and computation (1st). Boston: Addison-Wesley.

Jackendoft, R., & Pinker, S. (2005). The nature of the language faculty
and its implications for evolution of language (Reply to Fitch,
Hauser, and Chomsky). Cognition, 97, 211-225.

Jahn, G., Knauff, M., & Johnson-Laird, P. N. (2007). Preferred mental
models in reasoning about spatial relations. Memory & Cognition,
35, 2075-2086.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science
of language, inference, and consciousness. Cambridge: Harvard
University Press.

Johnson-Laird, P. N. (2006). How we reason. Oxford: Oxford University
Press.

Keen, R. (2011). The development of problem solving in young children:
A critical cognitive skill. Annual Review of Psychology, 62, 1-21.

Khemlani, S., Goodwin, G. P., & Johnson-Laird, P. N. (2015). Causal
relations from kinematic simulations. In D. C. Noelle, R. Dale, A. S.
Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio
(Eds.), Proceedings of the 37th Annual Conference of the Cognitive
Science Society (pp. 1075-1080). Austin: Cognitive Science
Society.

Khemlani, S. S., & Johnson-Laird, P. N. (2013). The processes of infer-
ence. Argument & Computation, 4, 4-20.

Khemlani, S. S., Mackiewicz, R., Bucciarelli, M., & Johnson-Laird, P. N.
(2013). Kinematic mental simulations in abduction and deduction
Proceedings of the National Academy of Sciences, /10, 16766—
16771.

Knauff, M., Fangmeier, T., Ruff, C. C., & Johnson-Laird, P. N. (2003).
Reasoning, models, and images: Behavioral measures and cortical
activity. Journal of Cognitive Neuroscience, 15, 559-573.

Kuhn, D. (2013). Reasoning. In P. D. Zelazo (Ed.), The Oxford handbook
of developmental psychology (pp. 744—764). Oxford: Oxford
University Press.

Kurland, D. M., & Pea, R. D. (1985). Children’s mental models of recur-
sive Logo programs. Journal of Educational Computing Research,
1,235-243.

Li, M., & Vitanyi, P. (1997). An introduction to Kolmogorov complexity
and its applications (2nd). New York: Springer.

Martins, M., Mursic, Z., Oh, J., & Fitch, W. T. (2015). Representing
visual recursion does not require verbal or motor resources.
Cognitive Psychology, 77, 20-41.

Martins, M. D., Laaha, S., Freiberger, E. M., Choi, S., & Fitch, W. T.
(2014). How children perceive fractals: Hierarchical self-similarity
and cognitive development. Cognition, 133, 10-24.

Mayer, R. E. (2013). Teaching and learning computer programming:
Multiple research perspectives. London: Routledge.

Miller, P. H., Kessel, F. S., & Flavell, J. H. (1970). Thinking about people
thinking about people thinking about . . . : A study of social cogni-
tive development. Child Development, 41, 613—623.

Oaksford, M., & Chater, N. (2007). Bayesian rationality: The probabilis-
tic approach to human reasoning. New York: Oxford University
Press.

Papert, S. (1980). Mindstorms. New York: Basic Books.

Pylyshyn, Z. (2003). Return of the mental image: Are there really pictures
in the brain? Trends in Cognitive Sciences, 7, 113—118. https:/doi.
org/10.1016/S1364-6613(03)00003-2

Resnick, M. (1994). Turtles, termites, and traffic jams: Explorations in
massively parallel microworlds. Cambridge: MIT Press.

Rips, L. J. (1994). The psychology of proof. Cambridge: MIT Press.

Roeper, T. (2009). The minimalist microscope: How and where interface
principles guide acquisition. In J. Chandlee, M. Franchini, S. Lord,
& G. M. Rheiner (Eds.), Proceedings of the 33rd Annual Boston
University Conference on Language Development (pp. 24-48).
Medford: Cascadilla Press.

Schaeken, W. S., Girotto, V., & Johnson-Laird, P. N. (1998). The effect of
an irrelevant premise on temporal and spatial reasoning.
Kognitionswisschenschaft, 7, 27-32.

Schaeken, W. S., Johnson-Laird, P. N., & d’Ydewalle, G. (1996). Mental
models and temporal reasoning. Cognition, 60, 205-234.

Shanahan, M. (2016). The frame problem. In E. N. Zalta (Ed.), The
Stanford encyclopedia of philosophy. https://plato.stanford.edu/
entries/frame-problem/

Skoura, X., Vinter, A., & Papaxanthis, C. (2009). Mentally simulated
motor actions in children. Developmental Neuropsychology, 34,
356-367.

Sleeman, D. (1986). The challenges of teaching computer programming.
Communications of the ACM, 29, 840-841.

Zimmerer, V., & Varley, R. A. (2010). Recursion in severe agrammatism.
In H. van der Hulst (Ed.), Recursion and human language (pp. 393—
405). Berlin: De Gruyter.

@ Springer

https://doi.org/10.1126/science.298.5598.1569
https://doi.org/10.1016/S1364-6613(03)00003-2
https://doi.org/10.1016/S1364-6613(03)00003-2
https://plato.stanford.edu/entries/frame-problem/
https://plato.stanford.edu/entries/frame-problem/

	Simulation in children’s conscious recursive reasoning
	Abstract
	A domain of recursive problems
	A theory of the abduction of algorithms
	Experiment 1: Children’s deductions from algorithms
	Method
	Results and discussion

	Experiment 2: Children’s abduction of algorithms
	Method
	Results and discussion

	General discussion
	Appendix: The algorithms to be abduced in Experiment 2
	References

