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Abstract
Many theories of reasoning and many experiments presuppose
that human ability is stable over time, and so people usually
draw the same conclusion from the same premises. The as-
sumption has hitherto had little or no empirical investigation.
We therefore analyzed a study in which 20 participants drew
their own conclusions to the 64 sorts of syllogisms on two
occasions separated by roughly a week. We report the na-
ture of the changes in the participants’ conclusions including
their spontaneous improvement in logical accuracy, and use a
model-based program, mReasoner, to explain the results.
Keywords: cognitive stability; logical improvements; mental
models; reasoning; syllogisms

Introduction
Logically naive individuals are able to make valid inferences.
How they do so is highly controversial. Some theories pos-
tulate that they use formal rules of inference akin to those of
logic (e.g., Rips, 1994); some theories postulate that they ma-
nipulate probabilities (e.g., Chater & Oaksford, 1999); and
some theories postulate that they derive conclusions from
mental models of the premises (e.g., Johnson-Laird, 2006).
But, theories often take for granted that the inferential mech-
anism is stable, and so in the absence of variations in an in-
ference, individuals usually draw the same conclusion to the
same premises. Some studies have examined the develop-
ment of reasoning strategies over sets of similar inferences
(e.g., Bucciarelli & Johnson-Laird, 1999; Lane, Fletcher, &
Fletcher, 1983; O’Brien & Overton, 1982; Van der Henst,
Yang, & Johnson-Laird, 2002). But, our concern is how in-
dividuals cope with identical inferences when they encounter
them for a second time. Theories of reasoning need to ac-
count for systematic changes in conclusions that cannot be at-
tributed to external factors, such as changes in the premises,
the instructions, or the framing of the inference; or else to
internal factors, such as noise. We analyzed the stability of
reasoning for Aristotelian syllogisms, such as:

(EA1) None of the artists is a beekeeper.
All the beekeepers are chemists.
What, if anything, follows?

Most people infer: none of the artists is a chemist. But the
inference is invalid. In contrast, a weaker conclusion is valid:

some of the chemists are not artists, which does not imply its
converse.

In general, syllogisms have two premises and a conclusion,
which each contain a single quantifier, e.g., “All the artists”.
Each of these assertions is in one of four moods, which we
present here with their traditional abbreviations:

A: All the A are B.
I: Some of the A are B.
E: None of the A is a B.
O: Some of the A are not B.

There are four different figures, which are arrangements of
the terms, A, B, and C, in the premises (numbered as in
Khemlani and Johnson-Laird, 2012):

Figure 1 Figure 2 Figure 3 Figure 4

A-B B-A A-B B-A
B-C C-B C-B B-C

The example syllogism provided earlier contains premises
that can be abbreviated as: Eab (none of the artists is a bee-
keeper) and Abc (all of the beekeepers are chemists). It is in
the first figure, and so the syllogism is abbreviated as: EA1.
A valid conclusion to EA1 can be abbreviated as: Oca (some
of the chemists are not artists).

At least 12 psychological theories of syllogistic reasoning
exist. A meta-analysis was feasible for seven of them – the
authors of the remaining theories explained that their theo-
ries were unsuited to such an analysis (Khemlani & Johnson-
Laird, 2012). The results showed that what best fit the data
were the verbal-models theory (Polk & Newell, 1995) and the
theory of illicit conversions of premises (Chapman & Chap-
man, 1959; Revlis, 1975). The remaining theories attained
only a mediocre level of accuracy (e.g., Chater & Oaksford,
1999; Rips, 1994). But, the subsequent development of a
computer program, mReasoner, based on the theory of men-
tal models, outperformed all the theories, and had an overall
accuracy of just under 90% in the meta-analysis (Khemlani
& Johnson-Laird, 2013).

One of the first studies to examine all 64 possible pairs of
syllogistic premises tested 20 participants. They drew their



own conclusions to each syllogism, twice within the course
of about a week. And they did not know that they would
return to the laboratory to be retested until the experimenter
invited them to do so. In the first session, none of the partic-
ipants drew a valid conclusion to the example above – they
all inferred either Eac, or Eca – but on their second test, three
participants correctly inferred Oca.

Our aim in what follows is three-fold. First, we outline the
theory of mental models that underlies the mReasoner pro-
gram. Second, we analyze the results of the experiment on the
stability of syllogistic reasoning. And, third, we show how
the model theory and its mReasoner implementation eluci-
date changes in the conclusions that the participants inferred.

Models and the mReasoner program
The theory of mental models – the “model” theory for short
– was first developed in order to explain syllogistic reason-
ing (Johnson-Laird, 1983). The modern version of the the-
ory postulates that individuals use their linguistic knowledge
to construct models of premises, and this account is imple-
mented in the mReasoner program (Khemlani & Johnson-
Laird, 2013).

mReasoner implements two inferential pipelines: an in-
tuitive pipeline (called “System 1” after Stanovich (1999)),
which builds an initial model from the premises, and a de-
liberative pipeline (called “System 2”), which can construct
additional models and can revise its initial models.

To illustrate how the two systems operate, consider
premises of the sort:

(EA1) None of the A is a B.
All the B are C.

The model theory’s System 1, which yields intuitive in-
ferences, constructs the following sort of model of these
premises, where each row represents an individual, and ‘¬’
represents negation:

A ¬ B
A ¬ B

B C
B C

The first two individuals in this model accordingly have the
properties of A and not-B. The model yields the conclusion:

(Eac) None of the A is a C

or its converse:

(Eca) None of the C is an A.

But, as we noted earlier, neither of these conclusions is valid.
The theory’s System 2, which handles deliberations,

searches for counterexamples to putative conclusions using
various ways to modify models. It finds the following alter-
native to the model above by adding properties to it:

A ¬ B C
A ¬ B C

B C
B C

Both premises remain true in this model, but the only conclu-
sion that holds for both models is:

Some of the C are not A.

This conclusion is valid. The inference should be difficult in
comparison to syllogisms that yield initial conclusions that
are not susceptible to counterexamples, e.g.:

(IA1) Some of the A are B.
All the B are C.
What follows?

The initial model of these premises yields the conclusion:

Some of the A are C.

And there is no counterexample to this conclusion. Perhaps
not surprisingly, even seven year-old children can draw valid
conclusions from such syllogistic premises.

In general, syllogistic premises can always be represented
in a single model. If this model yields a valid conclusion, then
the inference is easy. Of the 64 pairs of syllogistic premises,
27 yield valid conclusions, but only 10 of them yield valid
conclusions from their initial models. The remainder call for
a search for counterexamples, and hence are more difficult to
reason about – they take longer, and people make systematic
errors when they draw conclusions from them.

The implementation of the theory in the mReasoner1 pro-
gram introduces four parameters governing its performance:

1. The λ parameter controls the size of an initial mental
model, i.e., the maximum number of entities it represents.
It bases this number on a sample drawn from a Poisson
distribution of parameter λ.

2. An ε parameter (from 0 to 1) is the probability of choos-
ing instances for the model from all the possibilities as op-
posed to those that are typical, e.g., for All the A are B a
typical instance is an A that is a B, whereas the complete
possibilities include a B that is ¬A.

3. A σ parameter (from 0 to 1) is the probability of searching
for a counterexample (i.e., engaging System 2).

4. If the program searches for a counterexample, then the pa-
rameter ω is the probability that the system weakens the
conclusion, as opposed to responding that no valid conclu-
sion follows. Only weakening can lead to a valid conclu-
sion for certain syllogisms (as in the initial example above).

We show presently how the program fits the results of an ex-
periment, to whose description we now turn.

The experimental data
We outline the original Experiment 2 in Johnson-Laird and
Steedman (1978). The participants were 20 undergradu-
ates from Columbia University who were tested individu-
ally in the experiment (carried out under the auspices of the
late Professor Janellen Huttenlocher). They received all 64

1Source code at http://mentalmodels.princeton.edu/models/



pairs of syllogistic premises in different random orders, and
had to create their own spontaneous conclusions to each of
them. Every participant performed this task twice about a
week apart, but they had no inkling of the second test un-
til they were called for it. The contents of the premises
were one name of an occupation and two names of voca-
tions, e.g.: storekeeper, bowler, gourmet. They were timed
and they were told to be both accurate and as quick as possi-
ble. They were also told that their answers should be based
only on what could be deduced with absolute certainty from
the premises, and that they should restrict their answers to
one of the four moods interrelating the two terms occurring in
separate premises, or else they should state that no such valid
conclusion (NVC) followed from the premises. The principal
result was the corroboration of the difficulty of syllogisms de-
pending on the number of models that an inference requires
and on the relation between the order of the terms in a valid
conclusion and the figure of the premises. We now turn to an
analysis of the changes from the first test to the second.

The stability of human reasoning
By far the most important result was that the participants im-
proved in their reasoning from one test to the next. They
spontaneously increased from 58% to 68% logically correct
responses from the first to the second test (19 out of the 20
participants improved, Binomial test, p< .0001), and the per-
centages were very similar both for valid syllogisms and for
NVC syllogisms. Because the participants had not known
that they would be tested twice, the improvement must reflect
the experience that they gained over the task of syllogistic rea-
soning. Figure 1 presents the number of changes that each of
the 20 participants made from one test to the other. The mean
was 27.5 changes, which was significant in comparison to no
changes (Wilcoxon test, p < .0001). As the figure shows, the
participants varied from 15 changes (in 64 syllogisms) to 39
changes with a SD = 7.25. The participants differed reliably
one from another in how many changes they made (a resam-
pling test of the observed SD had p < .005). So, not only is
human reasoning unstable, but it also tends to improve, and
its instability varies reliably from one person to another.

Table 1 presents the frequencies of transitions in the moods
of the participants’ conclusions. These transitions show that
changes to conclusions were highly sensitive to the polarity of
conclusions, i.e., whether they were affirmative or negative:
95.9% of changes were to the same polarity and only 4.1% of
changes were to a different polarity (Wilcoxon test, z = 7.11,
p < .001). The changes in polarity were cases in which I
conclusions changed to O or E conclusions.

The 64 syllogisms differed in the number of changes to
conclusions that occurred from the first test to the second test,
and the difficulty of an inference according to the mReasoner
program predicted the tendency for changes to occur. Syllo-
gisms that support a valid conclusion from their initial model
yielded only 52% changes from the first test to the second,
whereas those that support a valid conclusion only from a

Table 1: The frequencies of the transitions of the mood of the
conclusions in the first test to the mood of the conclusions
in the second test, where A denotes “All the are ”, I de-
notes “Some of the are ”, E denotes “None of the is a
”, O denotes “Some of the are not ,” NVC denotes “No

valid conclusion”, and the last column denotes miscellaneous
errors.

Week 2

A I E O NVC Misc.

A 36 10 0 0 2 0

W
ee

k
1 I 6 123 8 13 51 1

E 0 0 100 43 37 2
O 0 0 21 151 89 2

NVC 3 25 25 90 407 10
Misc. 1 3 5 6 10 0

search for counterexamples yielded 79% changes from the
first test to the second (Wilcoxon test, z = 3.88, p < .00001).

Method and procedure
To simulate the participants performance on Week 1 and
Week 2, mReasoner generated simulated datasets for every
possible combination of quantized settings of its four param-
eters. For each unique parameter setting, the system gener-
ated a dataset in which it carried out 64 syllogisms 100 times.
The parameter settings were quantized to span their ranges as
follows:

• λ (size): 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0

• ε (canonicality): .0, .2, .4, .6, .8, 1.0

• σ (counterexample search): .0, .2, .4, .6, .8, 1.0

• ω (weakening conclusions): .0, .2, .4, .6, .8, 1.0

Hence, the system generated 7× 6× 6× 6 = 1512 separate
simulated datasets. A grid search located the best fitting pa-
rameter settings for Week 1 and the best fitting parameter set-
tings for Week 2. mReasoner was set to these parameter set-
tings, and then used to generate two synthetic datasets of 1000
simulated participants, one per week. Those datasets were
analyzed against the data from their corresponding weeks to
assess a fit of the computer model’s performance against the
data.

The computational model captured participants’ perfor-
mance on the two weeks well. For both weeks, the responses
generated by mReasoner were highly correlated with the indi-
vidual participants’ performance (r = .84 for Week 1; r = .85
for Week 2).

The model was further applied to simulate the 20 individ-
ual participants’ performance on each week. Table 3 presents
the optimal settings of the parameters to model each partici-
pants conclusions in Week 1 and in Week 2.



Table 2: The settings of the four parameters in mReasoner to fit three subgroups of individual reasoners
Settings of the four parameters to model the three sorts of individual reasoner

Subgroup of Ss λ: Size of model ε: Less typical entities σ: search for counterexample ω: weakening conclusion

Intuitive 2.0 0.0 0.4 0.6
Intuitive + deliberative 3.0 0.6 0.8 0.6
Deliberative 2.0 0.0 1.0 0.8

The fit of the model theory
Most theories of reasoning have been developed to account
for data from a group of participants, and so not all theories
can be adapted to predict the inferences that an individual
makes. A previous study of the participants in our test ex-
periment could be explained using mReasoner (Khemlani &
Johnson-Laird, 2016). A preliminary cluster analysis of the
participants yielded three main subsets of them: individuals
who relied on intuition, on a mixture of intuition and delib-
eration, or on deliberation. Table 2 presents the parameter
settings for mReasoner that best modeled these three groups.
The settings make sense in characterizing the three groups
performance, and provided a good fit with their conclusions
(with values of r equal to .74, .82, and .9, respectively).

Table 3 presents the optimal settings of the parameters to
model each participants conclusions in the first test and con-
clusions in the second test. mReasoner fits 60% of the par-
ticipants’ inferences in the first test and 65% of their infer-
ences in the second test. The best-fitting parameter values for
the two tests were reliably correlated (Kendall’s coefficient of
concordance, W = .87, p < .03). So, if mReasoner predicts
an individual reasoners performance in one test, then it does
so for the other test.

The tendency for changes to be in the same polarity follows
at once from mReasoners procedures for weakening putative
conclusions. Likewise, according to mReasoner, the principal
reasons for an improvement in accuracy is that reasoners have
become more likely to search for a counterexample and more
likely, when they find one, to weaken their conclusion. These
predictions are corroborated in the increase in the value of
σ, the probability of a search for counterexamples, from .66
in modeling the first test to .75 in modeling the second test
(Wilcoxon test, z = 2.76, p < .003, one tail), and, given such
a search, an increase in ω, the probability of weakening the
conclusion, from .52 in modeling the first test to .7 in mod-
eling the second test (Wilcoxon test, z = 2.45, p < .01, one
tail). Neither of the other two parameters changed their val-
ues reliably from one test to the next.

General discussion
A common but tacit assumption is that the human reasoning
system is deterministic but noisy. The conclusions that an in-
dividual reasoner draws therefore tend to be stable apart from
some slight “jitter”. As a consequence, theories of reason-
ing often neither allow for alternative inferences nor provide
an inbuilt mechanism for improving the accuracy of infer-
ences. In contrast, the model theory derives from a theoret-

ical tradition embracing non-determinism from its outset. In
one of the first algorithmic accounts of high-level cognition
– an explanation of how individuals select evidence to test
hypotheses – the algorithm allowed for intuitive selections,
deliberative selections, and those that combined elements of
both (see Johnson-Laird and Wason (1970); and Ragni, Kola,
and Johnson-Laird (in press) for a meta-analysis of this the-
ory’s fit to the results of over 200 experiments). Likewise,
the model theorys account of syllogistic reasoning postulates
that individuals use intuition, a mixture of intuition and de-
liberation, or pure deliberation. These two systems are im-
plemented in the mReasoner program.

Intuition calls only for the premises to be represented in a
model, which can sometimes yield a valid conclusion. Those
premises with this property yield easy deductions. Most syl-
logisms, however, lack this property. They call for a search
for counterexamples. Individual who combine intuition with
deliberation may use a counterexample to infer that nothing
follows from the premises. In certain cases, however, syllo-
gisms depend not only on the discovery of a counterexample,
but also on weakening an initial conclusion to one that accom-
modates the alternative model. This exercise in deliberation
can, in principle, yield a valid conclusion to any syllogism.
The mReasoner program embodies these processes, but un-
known factors determine an individuals level of performance.

Several questions remain open. No data are available about
the order in which the participants dealt with the syllogisms
in the two sessions in the Johnson-Laird and Steedman (1978)
study. Likewise, we cannot be certain that none of the partic-
ipants studied syllogistic reasoning between the two sessions.
But, the fact that all but one of them improved in performance
suggests that such interventions are unlikely to explain the
improvement. It results from a shift from intuition to a greater
reliance on deliberation, or from “credulous” to “skeptical”
reasoning (Stenning & Cox, 2006). Current theories of rea-
soning tend to predict only general patterns of inference, and
have nothing to say the performance of individuals. In con-
trast, the mReasoner program fitted the results of 20 individ-
ual reasoners, who drew their own conclusions to the 64 pairs
of syllogistic premises in two separate sessions. They spon-
taneously changed their minds about many inferences, and in
general improved in their ability: they were more likely to
search for a counterexample the second time around.

Over the course of drawing conclusions to 64 syllogisms,
individuals are likely to realize that a conclusion drawn from
an initial, and intuitive, model, can be fallible. For example,
given the premises that none of the gourmets is a beekeeper,



Table 3: The parameter settings of mReasoners best-fitting simulations for each participants performance in the first test and
the second test.

SubjectID S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20

Fit (week1) 0.52 0.53 0.45 0.50 0.81 0.70 0.57 0.78 0.70 0.56 0.73 0.63 0.64 0.58 0.58 0.43 0.55 0.43 0.83 0.49
Fit (week2) 0.63 0.70 0.56 0.50 0.80 0.80 0.51 0.75 0.78 0.69 0.75 0.53 0.64 0.70 0.64 0.54 0.57 0.57 0.76 0.57

λ1 2.00 2.00 3.00 2.00 2.00 2.00 3.50 2.00 2.00 3.00 3.00 2.00 3.50 4.00 2.00 3.00 2.00 2.00 2.00 2.00
λ2 2.50 2.00 2.00 2.50 2.00 3.00 2.00 2.00 4.00 2.00 2.00 2.00 3.50 3.00 2.00 3.50 2.00 4.00 4.00 3.50

ε1 0.40 0.00 0.60 0.40 0.00 0.00 0.00 1.00 0.00 0.60 0.40 0.20 1.00 0.40 0.40 0.80 0.20 0.00 0.20 0.00
ε2 0.00 0.60 0.40 0.00 0.00 1.00 0.00 1.00 0.60 0.20 0.20 0.00 1.00 0.40 0.60 0.60 0.80 0.00 0.60 0.40

σ1 0.60 0.60 0.40 0.40 1.00 0.80 0.60 0.80 0.80 0.80 0.80 0.60 0.60 0.60 0.60 0.40 0.60 0.40 1.00 0.80
σ2 0.60 0.80 0.60 0.60 1.00 1.00 0.80 0.80 0.80 0.80 0.80 0.60 0.60 0.80 0.80 0.40 0.60 0.60 1.00 1.00

ω1 0.60 0.60 0.60 1.00 0.80 0.40 0.20 0.40 0.60 0.60 0.80 0.60 0.60 0.20 0.60 1.00 0.20 0.00 0.40 0.20
ω2 1.00 0.60 1.00 1.00 0.80 0.60 0.60 0.80 0.80 0.80 1.00 1.00 0.60 0.20 0.60 0.20 1.00 0.20 0.60 0.60

and all the beekeepers are French, they may at first infer that
none of the gourmets is French. But, on reflection, the con-
clusion may strike them as implausible, and so they examine
more carefully whether it follows. Indeed, they may then dis-
cover that the premises are compatible with some, or even all,
of the gourmets being French. What continues to hold, how-
ever, is that some of the French are not gourmets. The manip-
ulation of models with the aim of refuting conclusions could,
in principle, lead to insights into the need to search for coun-
terexamples, and the need to examine whether a weaker con-
clusion follows from such a counterexample (Ragni, Khem-
lani, & Johnson-Laird, 2014). In sum, human reasoning is not
stable. It does not necessarily draw the same conclusion to
the same premises, but instead can spontaneously make more
accurate inferences. Of course, the degree to which people
improve varies reliably from one person to another, just as
the ability to reason does.
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