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Abstract 

People without any advanced training can make deductions 
about abstract causal relations. For instance, suppose you learn 
that habituation causes seriation, and that seriation prevents 
methylation. The vast majority of reasoners infer that 
habituation prevents methylation. Cognitive scientists disagree 
on the mechanisms that underlie causal reasoning, but many 
argue that people can mentally simulate causal interactions. 
We describe a novel algorithm that makes domain-general 
causal inferences. The algorithm constructs small-scale iconic 
simulations of causal relations, and so it implements the 
“model” theory of causal reasoning (Goldvarg & Johnson-
Laird, 2001; Johnson-Laird & Khemlani, 2017). It 
distinguishes between three different causal relations: causes, 
enabling conditions, and preventions. And, it can draw 
inferences about both orthodox relations (habituation prevents 
methylation) and omissive causes (the failure to habituate 
prevents methylation). To test the algorithm, we subjected 
participants to a large battery of causal reasoning problems and 
compared their performance to what the algorithm predicted. 
We found a close match between human causal reasoning and 
the patterns predicted by the algorithm. 
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Introduction 
People routinely make inferences about complex causal 

matters. For instance, consider the following description 
about a particular farm: 

 

1. Flourishing weeds will cause a lack of nutrients. 
A lack of nutrients will prevent the vegetables from 
growing. 
The lack of vegetables will enable an early harvest. 

 

What is the relation between the growth of weeds and an early 
harvest? Reasoners needn’t have a background in botany to 
infer a possible causal relation between the two events, such 
as in (2): 
 

2. Flourishing weeds will cause an early harvest. 
 

People’s inferences are systematic, and at least some errors 
are obvious, i.e., anyone who infers (3) from the information 
in the description above is grossly mistaken: 
 

3. Flourishing weeds will prevent an early harvest. 
 

How do people infer causal relations between events? 
Sometimes, perceptual cues may drive people to infer a 
causal connection between one event and another: if you 
observe that when a man flips a switch, a particular light goes 
off, it seems reasonable to infer a causal relation between the 
switch and the light. Indeed, the temporal contiguity of two 
events can be sufficient to imply causality (e.g., Lagnado & 

Sloman, 2006; Rottman & Keil, 2012). But the preceding 
farming example demonstrates that people can infer causal 
relations from descriptions, not just observations, and that 
they can do so in the absence of any explicit temporal 
information. 

How do people make causal inferences? A popular 
approach in artificial intelligence simulates human causal 
reasoning using causal Bayes nets and a calculus developed 
by Pearl (2009). It allows precise calculations of conditional 
probabilities, e.g., the probability of an early harvest given 
flourishing weeds, P(early harvest | flourishing weeds), 
provided that relevant causal relations are translated into the 
notation of a graphical network. While the approach can 
distinguish between causes and mere associations, Pearl’s 
calculus cannot explain how reasoners infer novel causal 
relations where none had existed before, i.e., it cannot explain 
how people infer (2) from (1). 

Cognitive scientists disagree on the mechanisms and 
representations that underlie causal reasoning (Ahn & 
Bailenson, 1996; Cheng, 1997; Sloman, 2005; White, 2014; 
Wolff & Barbey, 2015). Mental simulation is central to many 
psychological accounts of the process: theorists agree that 
people construct small-scale simulations to predict outcomes 
(Kahneman & Tversky, 1982), to understand mechanistic 
relations (Hegarty, 2004), to comprehend physical scenes 
(Battaglia, Hamrick, & Tenenbaum, 2013), to resolve 
inconsistent and contradictory information (Khemlani & 
Johnson-Laird, 2011), to deduce the consequences of 
sequences of events (Khemlani, Mackiewicz, Bucciarelli, & 
Johnson-Laird, 2013), and to make counterfactual inferences 
(Byrne, 2005; Galinsky & Moskowitz, 2000). 

Recent approaches to modeling causal reasoning in AI and 
cognitive science face two overarching challenges: first, 
people distinguish between causal relations such as cause, 
enable, and prevent. They understand, for instance, that (4a) 
and (4b) mean different things: 
 

4a. A lack of vegetables will cause an early harvest. 
b. A lack of vegetables will enable an early harvest. 

 

Graphical networks have difficulty capturing the difference 
between the two relations. Various psychological theories 
have invoked the transmission of causal forces (Wolff, 2007), 
causal model structures (Sloman et al., 2009), and mental 
simulations of possibilities (Goldvarg & Johnson-Laird, 
2001) to explain what different causal relations mean (for a 
review, see Khemlani, Barbey, & Johnson-Laird, 2014). But 
there exists no robust computational model that predicts what 
causal relations people generate from descriptions such as (1) 
above. 



Second, most theories of causal reasoning cannot explain 
reasoning about omissive causal relations, such as in (5): 
 

5. A lack of nutrients will cause the vegetables to die. 
 

The assertion is distinct from (2) above because it describes 
how the absence of an element can bring about some 
outcome. Philosophers, psychologists, and computer 
scientists have so much difficulty coping with omissive 
causation that some philosophers deny it as a meaningful 
concept (e.g., Beebee, 2004; Dowe, 2001; Hall, 2004). In 
recent years, psychologists advanced theories to account for 
omissive causation: some theorists treat omissive causes as 
an arrangement of causal forces (Wolff, Barbey, & 
Hausknecht, 2010) or as a set of counterfactual contrasts 
(Stephan, Willemsen, & Gerstenberg, 2017). But, 
counterfactuals cannot explain how people reason about 
future causal relations, such as in (1) above, because the 
counterfactuals are retrospective by definition. And, forces 
do not explain why reasoners appear to distinguish omissive 
causes from omissive enabling conditions and omissive 
preventions (see, e.g., Khemlani, Wasylyshyn, Briggs, & 
Bello, 2018). 

Hence, students of causal reasoning remain bereft of a 
feasible, adequate process model of how humans infer causal 
relations. Our goal in the present article is to specify such an 
algorithm and to describe its computational implementation. 
The algorithm is based on the notion that people build iconic 
simulations of possibilities when they reason, and that they 
mentally scan those possibilities to infer novel conclusions. 
Since the goal of the algorithm is to account for human 
intuitions, we describe an experiment used to benchmark the 
algorithm, and we show how its implementation matches the 
performance of human reasoners. We also describe a set of 
simulations used to validate the parameters in the 
implementation. We conclude by evaluating the results in the 
context of contemporary accounts of causal reasoning.  

Mental models and causal reasoning 
The algorithm for causal inference we present in this paper 

is based on the tenets of mental model theory – the “model” 
theory for short. The model theory argues that reasoning 
depends on the mental simulation of sets of possibilities. The 
theory is based on three fundamental principles: 

 

• Mental models represent possibilities. When people 
reason about relations, causal or otherwise, they construct 
one or more possibilities – situations describing finite 
alternatives – consistent with those relations (Johnson-
Laird, 2006; Khemlani, Byrne, & Johnson-Laird, 2018). 

• Mental models are iconic. The structure of a mental 
model mirrors the structure of what it represents as far as 
possible (Peirce, 1931-1958, Vol. 4). An iconic 
simulation of a causal relation, e.g., A causes B, concerns 
sets of events, A and B, in a temporal order. Models can 
also include abstract symbols, e.g., the symbol for 
negation (Khemlani, Orenes, & Johnson-Laird, 2012) and 
they can represent sequences of events as they unfold in 
time (Khemlani et al., 2013). 

• Intuitions depend on one model; deliberations depend 
on multiple models. Human reasoning is based on two 
interacting sets of processes: people form rapid, intuitive 
inferences by constructing and scanning a single “mental” 
model, but those intuitive inferences lead individuals to 
make errors (Khemlani & Johnson-Laird, 2017). Mistakes 
can be corrected by deliberation, which requires reasoners 
to consider multiple models by searching for 
counterexamples to intuitive conclusions (Khemlani & 
Johnson-Laird, 2013; Khemlani et al., 2015). 

 

The model theory explains why people distinguish between 
causes, enables, and prevents: each relation refers to a 
distinct set of possibilities (Goldvarg & Johnson-Laird, 
2001), known as fully explicit models. Table 2 shows the fully 
explicit models for the three relations. For instance, a causal 
assertion such as (2) above refers to a conjunction of three 
separate models of possibilities, depicted in this schematic 
diagram: 

 

    weeds  early-harvest  
   ¬ weeds  early-harvest 
   ¬ weeds ¬ early-harvest 
 

Each row in the diagram represents a distinct temporally 
ordered possibility, e.g., the first row represents the 
possibility in which weeds flourish and then an early harvest 
occurs. Any possibility missing from the diagram is 
inconsistent with (2): hence, the situation in which weeds 
occur and an early harvest does not is incompatible with (2), 
and so too is any possibility in which an early harvest occurs 
before the weeds flourish. In contrast, an enabling condition, 
such as in (6): 
 

6. Flourishing weeds will enable aphids to thrive. 
 

refers to a different conjunction of possibilities: 
 

    weeds  aphids  
    weeds ¬ aphids 
   ¬ weeds ¬ aphids 
 

Unlike causes, enabling conditions permit the situation in 
which the antecedent occurs but the consequent doesn’t, e.g., 
(6) allows for the possibility in which weeds occur but aphids 
don’t thrive. Typically, enabling conditions rule out the 
possibility in which aphids thrive in the absence of weeds. As 
Goldvarg and Johnson-Laird (2001) showed, reasoners list 
these possibilities for assertions such as (2) and (6).  
Reasoning about causal relations, however, requires 
significantly more processing than interpreting causal 
statements, and so when people have to reason, they often do 
not consider the full list of possibilities – instead, they draw 
conclusions from just a single possibility, referred to as the 
mental model. The mental models for causes and enabling 
conditions are bolded in the diagrams above. They’re 
identical, and as a result, individuals often fail to distinguish 
enabling from causing when they reason (see Experiment 5 
in Goldvarg & Johnson-Laird, 2001). Preventions are akin to 
causes with a negated consequent (see Table 1). 



A recent development of the model theory shows that it can 
explain omissions: the theory treats them as negated 
antecedents (Khemlani et al., 2018). Hence, the fully explicit 
models for (5) above are:  

 

    ¬ nutrients  dying-vegetables  
    nutrients  dying-vegetables 
    nutrients ¬ dying-vegetables 

 

Analogous changes explain omissive enabling conditions and 
omissive preventions (Table 1). The theory accordingly uses 
a unified representation for both omissions and orthodox 
causes. 

The model theory explains how people represent causal 
relations, and various empirical assessments validate the 
theory’s central predictions (Johnson-Laird & Khemlani, 
2017). We turn next to describe a novel algorithm and its 
computational implementation, and we show how to compute 
inferences from models of possibilities.  

Computing with mental models 
The algorithm used to infer causal relations relies on three 

separate subroutines, each of which depends on the 
representational conventions described in the previous 
section. First, the algorithm needs to build integrated models 
of multiple causal relations, e.g., it needs to combine the three 
sentences in (1) above into a set of models. Second, since 
reasoners are unlikely to construct models deterministically, 
the algorithm needs to specify a stochastic system that can 
mimic the distribution of possible interpretations that humans 
tend to make. Third, the algorithm needs to explain how 
people scan models to generate novel relations. We review 
each subroutine in turn. 

Building integrated models 
To construct an integrated model from a set of premises, 

the algorithm adopts a mechanism developed for previous 
model-theoretic computational implementations (see, e.g., 
Johnson-Laird & Byrne, 1991): the algorithm takes the 
Cartesian product of two models with the proviso that a 
model of an event cannot be combined with its negation. An 
example will illustrate the process. Consider the premises in 
(7), both of which concern omissions: 

 

7. A lack of sunlight will prevent the vegetables from 
growing. 
The lack of vegetables will enable an early harvest. 

 

The mental model of the first premise is: 
 

 ¬ sunlight ¬ vegetables  
   

and the model of the second is: 
 

   ¬ vegetables  early-harvest 
 

So, a Cartesian product of the two models identifies that the 
middle event is shared in both models, and it combines the 
two to create an integrated model: 
 

 ¬ sunlight ¬ vegetables  early-harvest 
 

Suppose instead that people build fully explicit models of the 
premises, not mental models. The fully explicit model of the 
first premise is: 

 

 ¬ sunlight ¬ vegetables  
   sunlight ¬ vegetables  
   sunlight   vegetables  

   

and the fully explicit model of the second premise is: 
 

   ¬ vegetables  early-harvest 
    ¬ vegetables ¬ early-harvest 
      vegetables ¬ early-harvest 
 

A procedure implementing the Cartesian product starts by 
combining the first model of the first premise with the three 
models of the second premise to yield: 
 

 ¬ sunlight ¬ vegetables  early-harvest 
 ¬ sunlight ¬ vegetables ¬ early-harvest 
 

The last model of the second premise is a situation in which 
vegetables grow, and so it cannot be combined with the first 
model of the first premise. The same procedure applies to the 
second and third models of the first premise, and so the full 
Cartesian product of the two sets of fully explicit models is: 

 

8. ¬ sunlight ¬ vegetables  early-harvest 
 ¬ sunlight ¬ vegetables ¬ early-harvest 
  sunlight ¬ vegetables  early-harvest 
  sunlight ¬ vegetables ¬ early-harvest 
  sunlight  vegetables ¬ early-harvest 

 

Reasoners are likely to vary in their tendency to interpret 
causal assertions using mental models or fully explicit 
models, and so the algorithm implementing the theory uses a 
stochastic parameter to govern the process: the ε-parameter 
determines the probability that the algorithm will construct 
only the mental model or whether it will construct fully 
explicit models (see, e.g., Johnson-Laird, Khemlani, & 
Goodwin, 2015; Khemlani & Johnson-Laird, 2013, 2016; 
Khemlani et al., 2015; for applications of this methodology 
to quantificational reasoning). The parameter accordingly 
varies from 0.0 to 1.0 such that when ε = 0.0, the algorithm 
always produces mental models, and when ε = 1.0, the 
algorithm produces fully explicit models. Hence, the ε 
parameter varies the contents of the models. 

Varying the size of models 
Another parameter, the λ-parameter, controls the number 

of possibilities that the algorithm yields as it constructs an 
integrated model. It therefore controls size of the models. 
This parameter corresponds to the λ-parameter of a Poisson 
distribution. Consider how the parameter might apply to 
interpreting the premises in (7). On any given run of the the 
algorithm, the size of a set of models is governed by nPremise 1 
+ nPremise 2, both of which are established by two samples 
drawn from a Poisson distribution of parameter λ. Once the 
two ns are determined, possibilities are sampled from the 
fully explicit models and their Cartesian product is taken to 
yield an integrated mental model. Hence, if nPremise 1 = 2, the 
algorithm would sample 2 separate possibilities from the 



 Conjunctions of possibilities yielding different causal relations 
 A causes B A enables B A prevents B Not A causes B Not A enables B Not A prevents B 

Fully explicit models 
   A   B 
  ¬A   B 
  ¬A  ¬B 

   A   B 
   A  ¬B 
  ¬A  ¬B 

   A  ¬B 
  ¬A  ¬B 
  ¬A   B 

   ¬A   B 
    A   B 
    A  ¬B 

   ¬A   B 
   ¬A  ¬B 
    A  ¬B 

    ¬A  ¬B 
     A  ¬B 
     A   B 

Mental model    A   B    A   B    A  ¬B    ¬A   B    ¬A   B     ¬A  ¬B 
 

Table 1. The possibilities consistent with various causal relations in the model theory. Reasoners distinguish between the meanings of relations based on the 
distinct sets of possibilities – the fully explicit models – to which they refer. But, when they make inferences, people often consider just one of the possibilities 
consistent with the meaning of a relation – the mental model. Background knowledge can block the construction of certain models, e.g., alcohol causes 
inebriation is true, and since only alcohol causes inebriation, people should not consider the situation in which inebriation occurs in the absence of alcohol, 
i.e., the ¬A B model in the first column. A more thorough discussion of strong and weak interpretations is provided in Johnson-Laird and Khemlani (2017). 
 
3 consistent with not-A prevents B, which corresponds to the 
first premise of (7). The same procedure would be used for 
the second premise. Their Cartesian product would be taken, 
and since the product concerns sets of fewer possibilities, the 
resulting integrated model would be a subset of the models in 
(8) above, e.g., 
 

9. ¬ sunlight ¬ vegetables  early-harvest 
 ¬ sunlight ¬ vegetables ¬ early-harvest 
  sunlight  vegetables ¬ early-harvest 
 

The algorithm provides two distinct methods of sampling 
from the possibilities to which the relations refer: the first 
method samples n separate possibilities uniformly; the 
second samples the possibilities in the order specified by 
Table 1. Previous empirical results suggest that reasoners list 
certain possibilities more frequently than others in a manner 
predicted by the model theory (Bello, Wasylyshyn, Briggs, & 
Khemlani, 2017). A simulation analysis presented below 
tests whether random sampling or preferential sampling 
produces a better to human data. 

Generating causal inferences 
To generate causal inferences from, e.g., an integrated 

model such as (9) above, the algorithm reduces the integrated 
model to a model of its end terms, discarding redundant 
models where relevant. The reduction process for (9) yields 
the model in (10) below: 
 

10. ¬ sunlight    early-harvest 
 ¬ sunlight   ¬ early-harvest 
  sunlight   ¬ early-harvest 
 

The algorithm attempts to match this reduced set of 
possibilities with all combinations of possibilities in Table 1. 
If one or more matches can be found in Table 1, the algorithm 
can form a response by choosing randomly from the 
corresponding matching relations. In the case of (10), 
matching relations include: sunlight prevents an early 
harvest and a lack of sunlight enables an early harvest. 

A more sophisticated response heuristic integrated into the 
algorithm assesses the first premise of the problem to check 
whether the antecedent it describes concerns omissive or 
orthodox causation. For (7), the antecedent – “a lack of 
sunlight” – concerns omission, the only candidate response 
is: a lack of sunlight enables an early harvest. 

To assess whether the algorithm we describe matches 
human causal reasoning responses, we collected data from 
participants and compared their responses to those generated 
by the algorithm.  

Experiment and simulations 
We conducted an experiment to test the algorithm specified 

in the previous section. The experiment replicated a design 
developed by Wolff and Barbey (2015, Experiment 3), in 
which the authors provided participants with 32 causal 
reasoning problems of the following form: 

 

X prevents Y. 
Y prevents Z. 
What, if anything, follows? 
 

In their original study, participants carried out a multiple-
choice task in which they selected which responses followed 
of necessity from 10 possible options. Multiple-choice tasks 
are limited in their ecological validity – the task encourages 
participants to select multiple responses, and the order in 
which they select those responses is subject to carry-over 
effects. To address the limitation, we replicated their design 
but used a fill-in-the-blank task to test participants’ natural 
responses to causal reasoning problems. Participants in our 
study registered their responses by using a series of dropdown 
menus to formulate a conclusion that relates X and Z: 
 

[X/¬X] [causes/enables/prevents] [Z/¬Z] 
 

Participants provided one response to each problem.  

Method 
Participants. 50 participants were recruited through Amazon 
Mechanical Turk (28 male, mean age = 34.6). 15 participants 
reported some formal logic or advanced training in 
mathematics, and all but 1 of the participants were native 
English speakers. 
 
Design, procedure, and materials. Each participant was 
presented with 32 two-premise causal inference problems 
taken from Wolff and Barbey (2015). The causes and effects 
in each premise were populated from a set of fictional 
conditions (e.g., “valmork temperaments”, “kandersa 
moods”). Orthodox and omissive antecedents were created 



using the phrases “having” and “not having,” respectively, 
and so some participants received the following problem: 
 

Having valmork temperaments prevents kandersa disease. 
Having kandersa disease prevents rempust fever. 

 

The order in which the participants carried out the 32 
problems was randomized, as was the assignment of the 
contents of the premises. Data, materials, experimental code, 
and computational modeling code are available at 
https://osf.io/5yqfx. 

Results and simulations 
Figure 1 (top panel) shows the data from the experiment. As 
the figure shows, different problems yielded markedly 
different patterns of response, e.g., participants generated the 
response “Not X causes Z” for only one of the 32 problems. 
For brevity, we omit further analyses of the experimental data 
in favor of using the dataset to benchmark a series of 
simulation analyses. 

Four separate versions of the algorithm were implemented. 
The four versions reflected the two strategies for model 
constructed described above (random sampling or preference 
sampling) and the two sorts of response policy (random 
selection or heuristic selection). A separate parameter search 
was conducted for each of the four versions of the algorithm. 

Sampling 
method 

Response 
selection 

Best fitting 
ε value 

Best fitting 
λ value 

Goodness 
of fit (r) 

Random Random 0.8 1.0 .65 
Random Heuristic 0.8 1.3 .71 

Preferential Random 0.9 0.9 .71 
Preferential Heuristic 1.0 0.8 .75 

 

Table 2. The model-fitting results of simulation analyses conducted for each 
of the four versions of a model-based causal reasoning algorithm. The 
version of the algorithm that used preferential sampling and heuristic 
response generation yielded the best fit to the data.  
 
 
For each parameter search, the parameters ε and λ varied in 
0.1 increments such that the ε ranged from 0.0 to 1.0 and the 
λ parameter ranged from 0.0 to 3.0, which produced 300 
separate parameter configurations. For each parameter 
configuration, the algorithm was run 100 times on each of the 
32 separate causal reasoning problems. 

Table 2 compares the overall results of each of the four 
versions of the algorithm. The table shows that the version of 
the algorithm that used preferential sampling to construct 
integrated models as well as a heuristic response strategy 
performed better than the other three versions of the 
algorithm. Figure 1 (bottom panel) shows the data generated 
by the best fitting simulation amongst the four versions of the 
algorithm.  

 
Figure 1. The proportions of participants’ responses to 32 different causal reasoning problems (top panel) and from the best fitting simulation from the 
algorithm that computes causal inferences (bottom panel). The color in each cell indicates the proportion of corresponding conclusions such that the darker 
the cell, the higher the proportion. Hence, nearly 100% of participants responded “X enables Z” when responding to the problem: “X enables Y / Y enables 
Z”. The version of the algorithm that yielded the best fit implemented a preferential sampling and a heuristic response selection policy.  

 

¬X causes ¬Y / ¬Y causes Z

¬X causes ¬Y / Y causes Z

¬X causes ¬Y / Y enables Z

¬X causes ¬Y / Y prevents Z

¬X causes Y / ¬Y causes Z

¬X causes Y / Y causes Z

¬X causes Y / Y enables Z

¬X causes Y / Y prevents Z

X causes ¬Y / ¬Y causes Z

X causes ¬Y / Y causes Z

X causes ¬Y / Y enables Z

X causes ¬Y / Y prevents Z

X causes Y / Y causes ¬Z

X causes Y / Y causes Z

X causes Y / Y enables Z

X causes Y / Y prevents Z

X enables ¬Y / ¬Y causes Z

X enables ¬Y / Y causes Z

X enables ¬Y / Y enables Z

X enables ¬Y / Y prevents Z

X enables Y / ¬Y causes Z

X enables Y / Y causes Z

X enables Y / Y enables Z

X enables Y / Y prevents Z

X prevents ¬Y / ¬Y causes Z

X prevents ¬Y / Y causes Z

X prevents ¬Y / Y enables Z

X prevents ¬Y / Y prevents Z

X prevents Y / ¬Y causes Z

X prevents Y / Y causes Z

X prevents Y / Y enables Z

X prevents Y / Y prevents Z

X causes Z
X enables Z
X prevents Z
X causes ¬Z
X enables ¬Z
X prevents ¬Z
¬X causes Z
¬X enables Z
¬X prevents Z
¬X causes ¬Z
¬X enables ¬Z
¬X prevents ¬Z
No valid conclusion

D
ata

X causes Z
X enables Z
X prevents Z
X causes ¬Z
X enables ¬Z
X prevents ¬Z
¬X causes Z
¬X enables Z
¬X prevents Z
¬X causes ¬Z
¬X enables ¬Z
¬X prevents ¬Z
No valid conclusion

S
im
ulation



To assess the necessity of the algorithm’s two parameters, 
we carried out parameter lesioning tests for the version of the 
algorithm that used preferential sampling and heuristic 
response selection. Specifically, we ran the algorithm in two 
lesioned conditions: one in which ε was set to 0, while λ was 
permitted to vary, and another in which λ was set to 4.0 while 
ε was permitted to vary. If either condition performed as well 
as the optimal fit, then it suggests that one of the parameters 
was redundant. But, neither lesioned condition produced a 
better fit to the data: the best fitting simulation when λ was 
permitted to vary yielded a lower goodness-of-fit (r = .64) 
and likewise for the best fitting simulation when ε was 
permitted to vary (r = .44). We conclude that the algorithm 
that incorporated preferential sampling and heuristic 
response generation produced the closest match to 
participants’ inferences (r = .75).  

General discussion 
We introduced a novel algorithm for computing causal 

inferences from sets of causal premises. The algorithm 
mimics human inference because it is based on a cognitive 
theory of reasoning, the model theory (Khemlani et al., 2014). 
It generates causal conclusions by following three 
procedures: first, the system stochastically constructs mental 
models from the meanings of causal relations. Second, it 
combines models from multiple premises using a procedure 
akin to taking the Cartesian product of a set of possibilities. 
Third, the algorithm reduces the model and checks it against 
models of the causal relations specified by the model theory. 
If an adequate match is found, the system generates the 
corresponding causal relation as a conclusion. 

No prior computational cognitive theory explains how 
people infer causal relations from sets of causal premises. 
But, the algorithm can be improved further. As Figure 1 
shows, many discrepancies exist between the algorithm's 
predictions and human participants’ tendency to make certain 
causal inferences. For instance, the algorithm predicts that 
humans should frequently infer that X prevents Z from the 
following premises: X causes Y and Y causes ¬Z. But people 
seldom ever make such a response. Perhaps they operate on 
a different sort of inferential heuristic, or perhaps they 
deliberate on their initial inferences and consider multiple 
models consistent with the premises (see, e.g., Khemlani & 
Johnson-Laird, 2016). The present algorithm can serve as a 
foundation for causal reasoning systems that take such 
deliberations into account. 
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