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Abstract 

This chapter begins with an outline of logic, and of the attempts to use it as a theory of 

human deduction.  The fatal impediments to this approach led to the model theory in 

which models based on the meanings of premises yield deductive conclusions.  And the 

chapter describes in detail the implementation of this theory’s account of deductions based 

on sentential connectives such as “if”, and how this simulation led to the discovery of 

systematic but compelling fallacies.  The chapter outlines how algorithms based on 

models simulate deductions of the spatial relations among objects.  And it points out the 

problems that need to be solved to extend accounts of elementary inferences from 

quantified assertions, such as “All artists are imaginative”, to deal with multiply-

quantified relations, such as “Everyone loves anyone who loves someone”.  One 

alternative to the model theory is the idea that human deduction relies on probabilities. 

This approach concerns only which inferences people make, not the underlying mental 

processes by which they’re made.  The model theory fills the gap, because it applies to the 

deductions of probabilities, both those based on frequencies or proportions, and those 

based on evidence pertinent to unique events, such as the probability that Trump is re-

elected President of the USA.  The chapter ends with an account of why theories of human 

deduction need to be simulated in computer programs. 

 

Key words: Deduction – Mental Logic – Mental models – Probabilities - Quantifiers – 

Selection task - Spatial inferences  
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1. Introduction 

Pose the following problem to a smart eight-year-old: 

 All machines can break down. 

 Alexa is a machine. 

 What follows? 

and the child is likely to reply: 

 Alexa can break down. 

So, as experiments confirm, human beings unschooled in logic are able to make 

deductions.  Yet, this easy deduction defeats Alexa, Siri, and other virtual assistants.  To 

build machines that reason, students of reasoning need to know the answers to three 

questions: 1. which deductions do human reasoners make?  2. how do they make them?  

And 3. how can computers simulate them?  The goal of this chapter is to describe the main 

efforts to simulate human deduction.  It aims to provide its own intellectual life-support 

system so readers can understand it without having to consult anything else.  It proceeds 

from the main approach to human reasoning that has led to computational simulations – 

the theory of mental models, a remote descendant from logic that is no longer compatible 

with its classical branch, the predicate calculus.  Here and throughout this chapter, the 

term “orthodox logic” refers to this calculus, whose basic principles are presented below.  

The “model theory” refers to the most recent version of the theory of mental models (e.g., 

Khemlani, Byrne, & Johnson-Laird, 2018). And the term “assertion” does double duty: it 

refers both to a declarative sentence and to the proposition – which can be true or false – 

that the sentence expresses depending on its context. 
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Theories of thinking have a crucial though often neglected goal: they need to 

explain their own creation.  So, theories of reasoning must explain themselves.  They 

cannot depend solely on the sort of machine learning embodied in current programs in 

artificial intelligence (AI). Because language leads to reasoning, and because people can 

verbalize their thoughts, theories of their reasoning must explain how people understand 

discourse. Their simulations call for explicit grammar, lexicon, and parser; a module that 

simulates the mental representations humans compute when they comprehend language 

and thought; and a reasoning engine to make deductions and other inferences.  Three main 

sorts of theory of the deductive component of the engine exist: those that depend on 

mental models of the world (e.g., Khemlani et al., 2018), those that depend on a “mental 

logic” of rules from a logical calculus (e.g., Rips, 1994), and those that depend on the 

probability calculus (e.g., Oaksford & Chater, 2020).  The latter theories aim to account 

only for which inferences individuals make, not how they make them. 

The chapter accordingly deals with these topics:  

• The basic concepts of logic and deduction.  

• Mental logic and its critical differences from human deductions. 

• The first algorithmic account of human reasoning.  

• The algorithms that underlie model-based reasoning.  

• Simulations of spatial reasoning. 

• Simulations of reasoning about properties. 

• Simulations of probabilistic reasoning. 

Why should cognitive scientists simulate human reasoning?  The chapter concludes with 

an answer to this question. 
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2. Basic concepts in logic and deduction 

 Deduction has two goals: to yield valid inferences and to assess consistency.  An 

inference from premises to a conclusion is valid provided that the conclusion is true in 

every case in which the premises are true (Jeffrey, 1981, p. 1).  A set of assertions is 

consistent provided they can all be true at the same time. Validity and consistency are 

independent of any logic, and interdependent on one another.  An inference is valid if the 

negation of its conclusion is not consistent with its premises; and a set of assertions is 

consistent if there is no valid deduction of the negation of one of the assertions from the 

others.  Logics depends on the concept of validity: the rules and axioms of a logic 

determine which inferences are valid. Orthodox logic, for instance, allows for valid 

inferences from inconsistent premises; indeed, any conclusion whatsoever follows from 

them.  In daily life, reasoners do not draw deductions from inconsistencies.  Hence, a rider 

is necessary for everyday validity: people draw deductions from consistent information.  

Naive individuals – the term refers to those with no training in logic or cognate disciplines 

– can make deductions that are valid in orthodox logic.  No procedure can decide whether 

or not an inference is valid in this logic, that is, if the inference is valid, then it can be 

proved, but if it is invalid, no algorithm can be guaranteed to prove its invalidity.  

Orthodox logic contains the sentential calculus, i.e., a more rudimentary system that deals 

only with connections between sentences or clauses.  The sentential calculus handles 

deductions that depend on negation, and simplified versions of such sentential connectives 

as if, or, and and.  It is computationally intractable (and so the more complex predicate 

calculus is too) in that as the number of different assertions in inferences increases, the 
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amount of time and memory needed to establish validity increase even faster – to the point 

that deductions soon exceed the capacity of any finite device, such as the human brain 

(Cook, 1971). 

A logic has three parts.  Its first part is a grammar that specifies all and only those 

assertions to which the logic applies.  Its second part is its proof theory, which consists of 

formal rules of inference, perhaps supplemented with axioms, that allow proofs that derive 

conclusions from premises.  A typical formal rule of inference is: 

 If A then B. 

 A. 

 Therefore, B. 

where the capital letters A and B denote assertions, which can be compounds containing 

further connectives, or else atoms that do not.  A typical axiom (or postulate) is: 

 For any x, and any y, if x is on the left of y then y is on the right of x. 

where the variables refer in a consistent way to entities in a spatial domain.  An example 

of a formal proof is as follows, where the first two assertions are premises: 

1. If Pat is on the right of Viv then they are opposite Ross. 

2. Viv is on the left of Pat. 

3.  Therefore, Pat is on the right of Viv. (from line 2 and the axiom above) 

4.   Therefore, they are opposite Ross. (from lines 1 and 3, and the formal rule above). 

  The third part of a logic is its semantics, which defines the meanings of logical 

terms and allows assessments of the validity of inferences.  Orthodox logic defines the 

meanings of connectives, such as its analogs of if and or, as true or false depending on the 

truth values of the clauses that they connect.  The material conditional of logic, if A then 
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B, concerns four cases, depending on whether each of A and B is true or false.  And 

orthodox logic defines the material conditional as false only in case A is true and B is 

false.  In any other case, it is true.  (The four cases can be spelt out explicitly in a “truth 

table”.)  So, unlike everyday conditionals, If A then B in logic is true whenever A is false.  

And it is true in case B is true.  

To apply orthodox logic to a set of sentences, the first task is to recover their 

logical forms in order to match them to formal rules of inference, such as the rule above.  

This task is trivial when sentences are unambiguous, as in the case of a grammar that 

yields only their logical forms.  But, for natural language, the task is extraordinarily 

difficult – to the point that no algorithm exists to carry it out.  Natural language can yield 

ambiguous sentences, and content and context have a massive effect on the assertion that a 

sentence makes.  Logical forms in natural language depend on meanings, e.g., the phrase, 

“Take the cookie and you’ll get smacked,” conveys a conditional assertion, If A then B, 

not a conjunction, A and B.  But, when a reasoner has represented the meanings of 

assertions, those representations can be the basis of reasoning, and logical forms become 

superfluous. 

 A natural language has a mental lexicon of the meanings of words, and a grammar 

with rules that also account for how the meaning of an assertion is composed from the 

meanings of its grammatical parts, which in turn are composed from the meanings of their 

parts, and so on . . . down to the meanings of words or morphemes.  A parser uses 

semantic principles attached to the syntactical rules to carry out this process of 

composition. Its results can be ambiguous.  The simulations of deduction that we describe 
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below contain elementary versions of each of these components: a lexicon, a grammar, 

and a parser. 

 

3. Mental logic and deduction 

Early psychologists of reasoning took for granted that reasoners rely on orthodox logic 

(e.g., Beth & Piaget, 1966), and they sought to understand how the mind formulates that 

logic. Naive reasoners have no awareness of axioms. So, theorists converged on the 

hypothesis of unconscious rules of inference akin to those in the proof theory for the 

sentential calculus (e.g., Braine, 1978; Johnson-Laird, 1975; Osherson, 1974-6). Rips 

(1994) described a mental logic close to orthodox logic, and he implemented the theory in 

a computer program called PSYCOP (for the psychology of proof).  Its inputs were logical 

forms – so it evaded the problem of recovering them from natural language – and it relied 

on two sorts of rules of inference.  One sort, such as the rule above: If A then B; A; 

therefore, B, allows a person to reason forwards from premises to reach a conclusion.  In 

contrast, a formal rule, such as: 

 A. 

 Therefore, A or B, or both. 

where B can be any assertion whatsoever, can be applied to its own conclusion.  In which 

case, it yields, for instance: 

 Therefore, (A or B, or both) or C, or both.  

It can apply to this conclusion too, and so on in an infinite chain of deductions.  PSYCOP 

curbs the rule.  It is relegated to the second set of rules that can be used only to reason 

backwards from a given conclusion towards the premises.  Even though the theory did not 
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allow individuals to infer their own conclusions (cf. our opening example of an inference), 

it was the high point of accounts of human deduction based on mental logic.   

One premonition of problems to come concerned the following rule, which holds  

in logic for the material conditional: 

 It is not the case that if A then B. 

 Therefore, A and not B. 

PSYCOP excluded this rule, because it included only those that “the individual recognizes 

as intuitively sound” (Ibid. p.104).  In fact, most people do not accept this rule, and take 

the denial of the conditional to be: If A then not B. 

 What has become clear since PSYCOP is that the idea that everyday deductions 

depend on orthodox logic has several fatal impediments.  The first is that the logic allows 

infinitely many valid conclusions to follow from any set of premises (e.g., the chain of 

inferences introducing or above).   

 The second impediment is that given any premises, even self-contradictory ones, 

orthodox logic never implies that a valid conclusion should be retracted.  Consider, for 

instance, the following premises: 

 The Prime Minister lied to the Queen. 

 If the Prime Minister lied to the Queen then he resigned. 

Both logic and common sense suggest the conclusion: 

 The Prime Minister resigned. 

But suppose that did not happen.  Orthodox logic and common sense now part company.  

Logic says nothing.  The fact contradicts the conclusion, but in logic a self-contradiction 

implies any conclusions whatsoever.  Hence, orthodox logic is monotonic, because with 
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more premises, more conclusions follow.  It never requires a conclusion to be retracted, 

not even one that facts contradict.  Common sense says, on the contrary: give up the 

conclusion, think again about the premises, and try to find an explanation that reconciles 

the inconsistency.  Everyday reasoning is therefore nonmonotonic (or “defeasible”): more 

premises can lead to the retraction of earlier conclusions and to the revision of premises. 

Some theorists propose that nonmonotonic logics – systems designed to handle the 

withdrawal of conclusions – underlie human reasoning (Stenning & Van Lambalgen, 

2012), and defeasibility is built into the model theory (Johnson-Laird, Girotto, & 

Legrenzi, 2004). 

 The third problem concerns the consistency of a set of assertions, that is, whether  

they can all be true at the same time.  People tend to reject inconsistent assertions if they 

notice the inconsistency: at least one of them must be false.  Logic has rules for proving 

conclusions, but it is not obvious at once how to use them to assess the consistency of a set 

of assertions.  In fact, a general method is: if the negation of one assertion in the set 

follows from the other assertions, then the set is inconsistent.  Otherwise, after an 

exhaustive but fruitless search for a proof, the set is consistent.  The procedure seems 

implausible in everyday life.  And experiments show that contrary to its prediction, 

consistency is not harder to deduce than inconsistency – it can even be easier (e.g., 

Johnson-Laird et al., 2000).  How people decide whether or not assertions are consistent 

has a simple procedure: just determine whether or not the assertions have a model.  

Meanwhile, the implausibility of orthodox logic for reasoning in daily life may explain 

why it has not led to a simulation of deductions from everyday assertions as opposed to 

their logical forms. 
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4. The first algorithmic theory of human reasoning 

 The first algorithm designed to simulate an element of human reasoning was a step 

towards a plausible general theory. The algorithm was formulated to explain a striking 

phenomenon of how people test hypotheses. Wason (1968) devised a task that examines 

the potential evidence that naive individuals select to test the truth or falsity of a general 

hypothesis, such as: 

 If people have cholera then they are infected with a bacterium 

or its equivalent: 

 All people who have cholera are infected with a bacterium. 

There are two sensible ways to test the hypothesis.  One way is to examine a sample of 

people who have cholera and check whether they are all infected with a bacterium. 

Another way, albeit less practical, is to test a sample of people who are not infected with a 

bacterium and check whether any of them have cholera.  Each method rests on the 

principle that a person with cholera who is not infected with a bacterium is a 

counterexample that establishes the falsity of the hypothesis.  Popper (1959) argued that 

potential falsifiability distinguishes a science, such as astronomy, from a non-science, 

such as astrology. Wason therefore designed his “selection task” to test whether naive 

individuals grasp the importance of counterexamples. 

 In the original version of the task (Wason, 1968), the experimenter lays four cards 

out in front of a participant:  

  E    K    2    3 

The participant knows that each card has a letter on one side and a number on the other  
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side.  The task is to select all and only those cards to turn over to determine the truth or  

falsity of the general hypothesis: 

 If there is a vowel on one side of a card then there is an even number on the other  

 side. 

Most people select the E card alone, many select both the E and 2 cards, and a few select 

the three cards E, 2 and 3.  What’s striking is how few people select the two cards: E and 

3.  Yet, they are the only two cards needed to evaluate the hypothesis.  The K card is 

irrelevant, as people realize, because whatever is on its other side cannot refute the 

hypothesis.  But, so too is the 2 card, for the same reason. Yet, the 3 card is crucial: if 

there is an A on its other side, it is a counterexample to the hypothesis, and thereby 

falsifies it.  

 The failure to select a potential counterexample shocked psychologists and 

philosophers (see Ragni, Cola, and Johnson-Laird, 2018, for the history).  Defenders of 

human rationality argued that the task was a trick, that it was overcomplicated, and that it 

was impossible for human reasoners to be irrational.  Yet, this claim is like arguing that it 

is impossible to break the rules of bridge, because, if you do, you are no longer playing 

bridge (Ramsey, 1990, p. 7). 

 Johnson-Laird and Wason (1970a) published a theory and an algorithm for how 

people carry out the selection task. The algorithm was in a flowchart, not a program, 

because computers were not accessible to psychologists in those days.  It assumed that 

individuals used the meaning of the hypothesis to guide their selection of evidence.  It 

implemented Wason’s idea of two processes in reasoning: a reliance on intuition, now 

known as “system 1”, and, somewhat rarer, a switch to deliberation, now known as 
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“system 2”.   So, the theory was an instance of what nowadays is called a “dual process” 

account (see also Sun, 2016, for an architectural account of dual process theories). The 

alternative theories of the selection task – and there are at least 16 of them – focus on what 

is computed rather than how. 

 The algorithm works as follows (see Ragni et al., 2018):  it first makes a list of 

those items of potential evidence to which the hypothesis refers.  If the general 

conditional, if p then q, is taken to imply its converse, if q then p, then both p and q are 

listed as potential evidence.  Otherwise, only p is on the list.  With no insight into the role 

of counterexamples, the algorithm selects the items on the list.  But, with partial insight, it 

adds any further item that could verify the hypothesis.  So, if q is not on the list, it is 

selected now, because it could verify the hypothesis. But, if there are no such further 

items, the algorithm adds any item that could falsify the hypothesis. So, if q is already on 

the list, the simulation adds not-q because it can falsify the hypothesis, yielding the 

selection of three items: p, q, and not-q.  With insight into falsification from the outset, the 

algorithm selects only items that are potential counterexamples to the hypothesis, i.e., p 

and not-q. 

 A recent computer simulation used probabilistic parameters governing the 

interpretation of the conditional and whether insight occurs. A meta-analysis of 228 

experiments corroborated the algorithm’s principal predictions: the selection of an item is 

dependent on other selections rather than independent of them, the selections tend to be 

the four predicted sets of items listed above, and manipulations such as the use of 

hypotheses about everyday matters enhance the selection of potential counterexamples.  

Only one other theory was consistent with these predictions, and it was ruled out by its 
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inability to predict the selection of the three cards, p, q, and not-q, other than by 

guesswork.  Yet, this selection was the most frequent in one study (Wason, 1969).  The 

simulation fit the data from the experiments well.  Its code and that of all the model-based 

programs referred to this article are available at https://www.modeltheory.org/models/. 

 Science and the selection task rely on general hypotheses.  Their interpretation in 

logic as material conditionals has several implausible consequences.  One of them is that a 

conditional, such as: 

 If anything is a quark then it forms composite particles 

is equivalent to its contrapositive: 

 If anything does not form composite particles then it is not a quark. 

The equivalence yields a well-known “paradox” of confirmation (Hempel, 1945).  For 

example, a duck-billed platypus corroborates the hypothesis about quarks, because a 

platypus does not form composite particles and is not a quark.  But, matters are still worse, 

because if quarks do not exist, then the general hypothesis about them is bound to be true.  

Its truth is vacuous, because it can be false only in case a quark exists – and does not form 

composite particles. The mental model theory of reasoning was formulated to solve such 

puzzles as the paradox of confirmation. 

 

5. The algorithms that underlie model-based reasoning 

 The model theory asserts that people do not use logical rules to reason, but instead 

envisage the possibilities compatible with the meanings of premises.  They build mental 

models that represent these possibilities.  The crucial distinguishing characteristic of a 

mental model is that it is iconic, that is, it has the same structure as what it represents. The 
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human reasoning engine operates on the principle that a conclusion follows from the 

premises provided that they have no model that is a counterexample.  What complicates 

reasoning are the meanings of assertions.  Consider the following weather report: 

 It’s rainy or cold, or both. 

From this disjunction, people make the following deductions (Hinterecker, Knauff, & 

Johnson-Laird, 2016): 

 It is possible that it’s rainy. 

 It is possible that it’s cold. 

 It is possible that it’s rainy and cold. 

The disjunction refers to a conjunction of these three exhaustive possibilities, and rules out 

as impossible the case in which it is not rainy and not cold.  Each possibility holds in 

default of knowledge to the contrary.  So, if a discovery reveals that it isn’t rainy, then this 

fact eliminates two of the possibilities above, and it follows that it’s cold, because that’s 

the only possibility. But, if in fact it isn’t cold either, then the disjunction is false: the facts 

have ruled out all the possibilities to which it refers.  In short, the model theory’s 

semantics for sentential connectives is that they refer to exhaustive conjunctions of 

possibilities that each hold by default.  However, because a conjunction, and, refers to just 

one possibility, it asserts a fact. 

 The semantics ensures that the model theory is nonmonotonic.  And it has a 

striking consequence: none of the inferences above is valid in orthodox logic. The relevant 

logic has to deal with possibilities – it is a modal logic, of which there are infinitely many 

distinct sorts (e.g., Hughes & Cresswell, 1996).  A persistent misconception of the model 

theory is that it has the same semantics as logic (e.g., Oaksford & Chater, 2020, p. 12.3).  
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To understand how they differ, consider the first conclusion above: it is possible that the 

weather is rainy. For most people, the inference is obviously valid.  But, here is a 

counterexample: suppose that it is impossible that it is rainy, but it is cold.  The 

disjunctive premise that it’s rainy or cold or both is true, but the conclusion that it is 

possible that it’s rainy is false – in fact, it is impossible. And so the inference is invalid in 

all normal modal logics. In the model theory, the inferences are valid by default, i.e., new 

information can overturn them. Sentential connectives therefore have a default semantics: 

reasoning in daily life is nonmonotonic. Table 1 below illustrates algorithms for model-

based reasoning: it shows how computational implementations make use of this semantics 

to build and reason with models. 

 The model theory postulates a default semantics for conditionals too.  An assertion 

such as: 

 If it’s rainy then it’s cold  

asserts that it is possible that it’s rainy, which in turn presupposes that it is possible that it 

isn’t rainy (Johnson-Laird & Ragni, 2019).  So, the conditional can be paraphrased as: 

 It is possible that it’s rainy and that it’s cold, and it is possible that it’s not rainy. 

This paraphrase unpacks into an exhaustive conjunction of three default possibilities: 

 It is possible that it’s rainy and that it’s cold. 

 It is possible that it’s not rainy and that it’s not cold. 

 It is possible that it’s not rainy and that it’s cold. 

Individuals make these inferences, which are listed in the order in which children make 

them as the capacity of their working memories increases (see, e.g., Barrouillet & Lecas, 

1999).  Conditionals presuppose the possibility that their if-clauses do not hold, and the 
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key point about presuppositions is that they are true for both the affirmation of an 

assertion and its negation, e.g., it has stopped raining presupposes that it was raining, and 

so too does it has not stopped raining.  The negation of the conditional above is therefore: 

 If it’s rainy then it is not cold. 

 In a program simulating sentential reasoning, the intuitive system 1 represents 

possibilities using mental models in which each model of a possibility represents only 

those clauses in the conditional that hold in that possibility.  The mental models of a 

conditional, If A then B, are: 

  A  B 
     . . . 

The first model represents the default possibility of A and B, and the second model allows 

for other possibilities such those in which not-A holds. (If A or B is itself a compound 

assertion then its semantics is taken into account in building the models.) In contrast, the 

deliberative system 2 represents the conditional by fleshing out mental models into fully 

explicit models representing all the assertion’s clauses in each model, using negation 

(symbolized as “¬”) to represent their falsity in the possibility.  So, the fully explicit 

models of the conditional are as follows, where the possibilities of not-A are 

presuppositions, and each default possibility in the conjunction is shown on a separate 

line: 

  A  B 
 ¬ A ¬ B 
 ¬ A  B 

The program takes the meanings of negation (not) and of conjunction (and) to be  
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fundamental, and it uses these meanings to define all the other connectives.  For instance, 

an exclusive disjunction, Either A or else B but not both, is defined for system 2 as the 

following conjunction of two default possibilities: 

  A ¬ B 
 ¬ A  B 

Since sentential connections can be embedded, as in, A and (C or D or both), the system 

operates recursively.  For instance, B above might denote the models for the assertion, C 

or D or both. 

The meaning of negation refers to the complement of the set of models for the 

assertion that is negated. For example, the complement of the following set of models (for 

the biconditional assertion if and only if A then B):  

  A  B 
 ¬ A ¬ B 

is:    

  A ¬ B 
 ¬ A  B 

So, a set and its complement exhaust all the possible combinations of the items and their 

negations. But, negation ignores presuppositions, because they hold for the negated 

assertions too.  Hence, the negation of a conditional, If A then B, yield the models: 

  A ¬ B 
 ¬ A ¬ B 
 ¬ A  B 

And they are the models of the conditional: If A then not B. 

 Conjunction is needed for compound premises, because it is part of the meaning of 

each connective.  It is also needed to conjoin the models for one premise with those for 

another premise (see Table 1 for an example of how spatial models can be combined).   
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Table 1. Seven basic functions that underlie model-based reasoning illustrated for spatial reasoning: the name of the function, its 
input, its output, and pseudo-code for its algorithm.  The appropriate function is called as a result of a procedure that checks which 
referents in a premise already occur in at least one model. Spatial models have three deictic axes: left-right, above-below, and front-
behind. Algorithms refer to additional functions not included in the table, e.g., RETRIEVE, ADD, and COMBINE, whose operations are 
self-explanatory. 
 
Function Input Output Algorithm 
1. START a mental model Premise: 

 
d is to the right of e 

Spatial model: 
 
e  d 

1. RETRIEVE subject (d) and object (e) of premise. 
2. RETRIEVE semantics of spatial relation. 
3. ADD tokens to a model to satisfy semantics. 
4. RETURN model. 

2. UPDATE a mental model 
by adding a referent 

Model & premise: 
 
e   d 
d is to the left of f 

Spatial model: 
 
e  d  f 

1. IF subject (d) not in model: 
2.    ADD subject to model according to semantics. 
3. ELSE IF object (f) not in model 
4.    ADD object to model according to semantics. 
5. RETURN model. 

3. UPDATE a mental model 
by adding a relation 

Model & premise: 
 
e   d 
e is larger than d 

Spatial model 
 

e  d 

1. MODIFY subject and object to satisfy semantics of  
   relation. 
2. VALIDATE(model, premise) 
 

4. VALIDATE that an 
assertion holds in a model 

Model & assertion: 
 
e   d   
d is to the right of e 

Truth value: 
 
 True 

1. IF subject (d) and object (e) satisfy relation in    
   model: 
2.   IF system 1 enabled: 
3.      RETURN True. 
4.   ELSE IF system 2 enabled: 
5.      SEARCH(model, assertion) for counterexample. 
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6. ELSE 
7.   IF system 1 enabled: 
8.     RETURN False. 
9.   ELSE IF system 2 enabled: 
10.    SEARCH(model, assertion) for example. 
 

5. CONJOIN two models 
according to a relation 
between referents in each of 
them 

2 models & premise 
 
1: e d    
2: f g 
f is above d   
 

Spatial model: 
 
    f  g 
 e  d 

1. IF subject (f) occurs in model 1 and object (d)   
   occurs in model 2 OR subject occurs in model 2 and  
   object occurs in model 1:  
2.    COMBINE models 1 and 2 according to relation 
      (or its converse) to make a new model; ADD  
      new axis to model if necessary. 
3. RETURN new model. 

6. SEARCH for a 
counterexample to a 
conclusion 

Model & 
conclusion: 
 
d  e  f 
f is to the right of e 

Spatial model & 
evaluation 
   
d  f  e 
Conclusion is 
possible 

1. FOR each R in a set of revisions to model, where R  
   satisfies premises: 
2.   IF R satisfies conclusion: 
3.     RETURN R and conclusion is possible  
4.   ELSE 
5.     RETURN model and conclusion is necessary 

 

7. SEARCH for an example 
of a conclusion 

Model & 
conclusion 
 
d  e  f 
f is to the left of e 

Spatial model & 
evaluation 
 
d   e   f 
Conclusion is 
impossible 

1. FOR each R in a set of revisions to model, where R 
   satisfies premises: 
2.   IF R satisfies assertion: 
3.     RETURN R model and conclusion is possible  
4.   ELSE 
5.     RETURN model and conclusion is impossible 
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We illustrate how conjunction operates for models of compound assertions. It begins with 

two sets of models, such as: 

  A  B 
 ¬ A ¬ B 

and: 

  B ¬ C 
 ¬ B   C 

It then forms their pairwise conjunctions – but if a model from one set contains an 

element, such as B, and a model from the other set contains its negation, ¬B, it would be 

a self-contradiction, and so it does not return a model and moves on to the next pairwise 

conjunction. The conjunction of the two sets of models above proceeds as follows: 

  A  B and  B ¬ C yields    A  B ¬ C. 
  A  B and ¬ B   C do not conjoin because B contradicts ¬B. 
 ¬ A ¬ B and  B ¬ C do not conjoin because ¬B contradicts B. 
 ¬ A ¬ B and ¬ B  C yields ¬ A ¬ B  C. 

The result is therefore the conjunction of these two models of default possibilities: 

  A  B ¬ C 
 ¬ A ¬ B  C 

The semantics of negation and conjunction suffice to capture the meaning of the basic 

sentential connectives.  Table 2 describes the semantics for the mental models of system 

1 and for the fully explicit models of system 2.  

Recent computational models contain several refinements that are needed to 

simulate human reasoning (Khemlani et al., 2018; Khemlani & Johnson-Laird, 2020). 

They include: 

• a component that uses a knowledge-base to modulate the interpretation of 

compound assertions by blocking possibilities, 
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• a defeasible (i.e., nonmonotonic) component that retracts a conclusion in the 

face of a contradictory fact, withdraws a premise to restore consistency, and 

seeks a causal explanation in the knowledge-base to resolve the original 

inconsistency, 

• a component that simulates the verification of assertions and that can construct 

counterfactual assertions, which describe events that were once possible but that 

did not occur (see, e.g., Byrne, 2005).  

 

Table 2: The semantics of compound assertions depending on sentential connectives (in 
systems 1 and 2), where A and B stand for atomic or compound assertions.  Each 
assertion yields a conjunction (“and”) of models of default possibilities, which are each 
shown in a separate row.  Each row shows a model, which is, in turn, a conjunction of 
models of clauses or their negations (“¬”), or a mental model with no explicit content 
(“...”).  
 

Assertion Semantics for 

mental models 

in system 1 

Semantics for fully 

explicit models 

in system 2 

If A then B.  A     B 
   ... 

  A     B 
 ¬A    ¬B 
 ¬A     B 

If and only if A then B.  A     B 
   ... 

  A     B 
 ¬A    ¬B 

A or B or both.  A  
       B 
 A     B 

  A    ¬B 
 ¬A     B 
  A     B 

A or else B but not both.  A 
       B 

  A    ¬B 
 ¬A     B 
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 All of the computational models implement the model theory’s general principles 

about deductive conclusions, which follow in default of knowledge to the contrary: 

• If a conclusion holds in all the models of the premises then it is necessary given 

the premises. 

• If it holds in most of the models of the premises then it is probable. 

• If it holds in some model of the premises then it is possible. 

• If it holds in none of the models of the premises then it is impossible. 

Likewise, a set of assertions is consistent if they have a model, and inconsistent if a 

model cannot be built from the premises (i.e., a situation in which the program constructs 

an empty model).  The principal components for simulating deduction are illustrated for 

spatial reasoning in Table 1 above. 

 A major and unexpected consequence of the original simulations of the model 

theory is that intuitive reasoning based on models led to the discovery of many 

compelling illusions, which only deliberation with fully explicit models can correct 

(Khemlani & Johnson-Laird, 2017).  Here is an example based on two exclusive 

disjunctions: 

  Either there’s fog or else there’s snow. 

  Either there isn’t fog or else there’s snow. 

  Can both of these assertions be true at the same time? 

The mental models of the two disjunctions are respectively: 

  fog 
    snow 

and: 

 ¬ fog 
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    snow 

A model of snow is common to both disjunctions, and so individuals should respond,  

“yes, the two assertions can both be true”.   However, the fully explicit models of the two 

disjunctions are: 

  fog ¬ snow 
 ¬ fog   snow 

and: 

 ¬ fog ¬ snow 
  fog  snow 

No possibility is common to these two sets of models: for one disjunction it snows 

without fog, and for the other disjunction it snows with fog.  Their conjunction yields an 

empty model.  Most people judge that the two disjunctions can both be true, but these 

fully explicit models show that doing so is wrong. 

 The model theory elucidates the earlier description of the “paradox” of 

confirmation.  A conditional hypothesis, If A then B, calls for two conditions to hold for it 

to be true.  First, there must be an instance in which A and B hold, because the other 

possibilities to which conditional refers also hold for its negation, if A then not B.  

Second, there must be no instances in which A and not B hold, because they refute the 

conditional.  The hypothesis about quarks therefore demands the existence of quarks that 

form composites, and the non-existence of quarks that do not form composites.  So, a 

duck-billed platypus is irrelevant to the truth or falsity of the hypothesis. 

 

6.  Deductions of spatial relations  

The inferences in the previous section concern relations between clauses, but many sorts 

of deduction depend on relations within them.  These relations can occur in scenes, 
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diagrams, and descriptions, and people can make deductions from any of these sources.  

Deductions from descriptions of temporal relations are complicated, because they depend 

on several distinct features of language – tense and aspect, connectives such as “before” 

and “during” (e.g., Kelly, Khemlani, & Johnson-Laird, 2020), and the temporal 

consequences of different sorts of verb (Schaeken, Johnson-Laird, & d’Ydewalle, 1996).  

Likewise, when individuals make deductions from descriptions of algorithms that carry 

out permutations of a sequence of entities, they rely on kinematic models in which spatial 

relations change over time (see Khemlani et al., 2013).   

 Simple but representative cases of relational deductions concern spatial layouts.  

Consider this inference (from Johnson-Laird, 1975): 

 The black ball is directly beyond the cue ball. 

 The green ball is on the right of the cue ball, and there is a red ball between them. 

 So, if I move so that the red ball is between me and the black ball, then the cue    

 ball is to the left. 

The deduction is deictic in that it depends on the speaker’s point of view.  It also depends  

on deictic interpretations of phrases such as “on the right”.  It is possible to frame axioms 

that capture their logical properties, and to use logic to make such deductions.  But, the 

evidence is overwhelming that naive individuals base their inferences instead on mental 

models of spatial layouts (Byrne & Johnson-Laird, 1989; Knauff, 2013; Ragni & Knauff, 

2013; Tversky, 1993).  Both sets of authors have developed simulations for deictic spatial 

deductions.   



Mental	models	and	the	algorithms	of	deduction	 31 

 The first model-based algorithm of spatial deductions illustrates the principal 

functions that simulations need in order to use models to make inferences.  Its parser 

constructs a representation of the meaning of each premise.  For the premise: 

 The triangle is on the right of the circle 

it constructs a semantics that specifies which axis is incremented in order to locate the 

triangle in relation to the circle, i.e., keep adding 1 to the value on the left-right axis of 

the location of the circle, and hold its values on the front-back and up-down axes 

constant.  The code representing this semantics is used in all the main functions for 

constructing and manipulating models (see Table 1). 

 What happens in the simulation depends on the current context, i.e., on which 

entities, if any, are already represented in a model.  This context can elicit any one of 

seven basic procedures, which are typical for deductions in general.  Three of them occur 

in the processes of system 1:  

1. Start a new model. The procedure inserts an item representing a referent into a new 

model. 

2.  Update a model with a new referent.  The procedure puts an item representing the 

new referent into the model according to its relation to a referent already there. 

3.  Update a model with a new relation.  The procedure puts it into the model provided 

that is consistent.  Otherwise, it returns the empty model, but system 2 calls procedure 

(7) below. 

4. Validate whether an assertion about a relation between referents is true or false in 

existing models.  System 1 returns the truth value.  If it is true, system 2 calls 

procedure (6) below, which searches for a model that is a counterexample to the 
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assertion; if it is false, system 2 calls procedure (7) below, which searches for an 

example of the assertion. 

The remaining three procedures depend on access to more than one model, and therefore 

occur only in system 2: 

5. Combine two existing models into one according to a relation holding between a 

referent in one model and a referent in another model. 

6. Search for a counterexample, i.e., a model in which an assertion is false. If the search 

fails then the assertion follows as necessary from the previous premises.  If the search 

succeeds then the assertion follows only as a possibility.   

7. Search for an example, i.e., a model in which the assertion is true.  If the search fails 

then the assertion is inconsistent with the previous assertions, and it is retracted.  In 

some simulations, this result elicits a defeasible component that amends the premises 

and searches for a causal explanation that resolves the inconsistency (see, e.g., 

Johnson-Laird et al., 2004).  If it succeeds then the assertion follows as a possibility.  

Table 1 provides examples of how these procedures operate for spatial reasoning. 

 One point bears emphasis. The simulation of system 2’s searches for 

counterexamples and examples works because the system has access to the 

representations of the semantics of a premise.  Without this access, it would be 

impossible for the system to keep track of whether or not an alternative model still 

represents the premises.  When a description is consistent with more than one layout, 

system 1 builds whichever model requires the least work. 

 This idea lies at the heart of PRISM, a more recent model-based simulation of 

two-dimensional spatial deductions (Ragni & Knauff, 2013).  It implements such 
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reasoning using principles similar to those of the earlier algorithm, e.g., its initial 

preferred mental models are constructed without disturbing the arrangement of entities 

already in the model.  But, PRISM introduces several innovations.  The most important is 

that its prediction of the difficulty of an inference reflects, not the search for an 

alternative model, but the number of operations required to construct it, which depends 

on local transformations of the initial model.  Those models that call for a longer 

sequence of these transformations are therefore likely to be overlooked.  The source code 

of both simulations can be found on the model theory’s website 

(https://modeltheory.org/models/). 

 The spatial algorithms have no need for postulates to capture logical postulates of 

relations, such as the transitivity of the deictic sense of “on the right of”, because they are 

emergent properties from the use of meanings to construct models.  Hence, a model of 

these two assertions: 

 The triangle is on the right of the circle. 

 The circle is on the right of the square. 

yields the transitive conclusion: 

 The triangle is on the right of the square. 

No model of the premises is a counterexample to it, and so it follows necessarily.  

 This emergence of logical properties has a further advantage in that it accounts for 

a different sort of spatial reasoning – deductions that depend on the intrinsic parts of 

entities (see Miller & Johnson-Laird, 1976, Sec. 6.1.3).  Consider these assertions: 

 Matthew is on Mark’s right. 

 Mark is on Luke’s right. 
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 Luke is on John’s right. 

They can refer to the deictic positions of the four individuals from the speaker’s point of 

view, but they can also refer to their positions in terms of the intrinsic right-hand sides of 

human beings.  A model of these spatial relations depends, first, on locating Mark, then 

using his bodily orientation to establish the intrinsic axes that specify his right-hand side.  

The same sort of simulation to the deictic ones above can then insert a representation of 

Matthew on the lateral plane passing through the right-hand side of Mark.  So, if the four 

individuals are seated down one side of a rectangular table (as in Leonardo’s Last 

Supper) then the transitive conclusion, Matthew is on John’s right, follows.  But, if they 

are seated around a circular table, transitivity depends on the size of the table, and on how 

close they are sitting to one another, e.g., Matthew could be sitting opposite John, or even 

on his left-hand side.  These vagaries reflect those of the different situations (Johnson-

Laird, 1983, p. 261), and no known simulations of this sort of spatial inference exist. 

 

7. Deductions with quantifiers 

 Quantifiers are phrases such as, all musicians, some painters, and no sculptors. 

The most complex inferences depend on quantifiers, and the mReasoner program 

simulates several sorts of quantified deductions (see Khemlani & Johnson-Laird, 2020, 

and the model theory’s website for the program).  The simulation treats quantified 

assertions as relations between sets – an idea that goes back to Boole (1854) and that was 

adopted early in the development of the model theory, because it is the only way that 

models can have the same structure as the situations that they represent (Johnson-Laird, 

1983, p. 137 et seq.).  So, the meaning of the assertion: 
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 Some musicians are painters 

is that individuals exist common to both sets. This semantics generalizes to quantifiers that 

cannot be defined in orthodox predicate logic, such as: “more than half the musicians”.   Table 3 

presents a representative set of quantifiers and their set-theoretic meanings, which a 

computational model implements.  Its intuitive system works with a single model at a time.  It 

can construct various models of a given assertion in order to accommodate differences in 

reasoning between individuals and within individuals from one occasion to another.  A typical 

model of the quantified assertion above is: 

 musician painter 
 musician painter 
 musician 
    painter 

Each row represents a different possible individual who exists in default of knowledge to 

the contrary.  If neither individual of the sort represented in the first two rows exists then 

the assertion is false. 

 

 

Table 3. Representative quantified assertions, and their set-theoretic meanings in formal 
notations and informal paraphrases, where A and B denote sets of entities. 
 

Quantified assertions Set-theoretic meanings Informal paraphrases 

All A are B. A ⊆ B    Set A is included in set B. 
Some A are B. A ∩ B ≠ ∅ Intersection of A and B is not empty. 
No A is a B. A ∩ B =  ∅ Intersection of A and B is empty. 
Some A are not B. A – B ≠ ∅ Set of A’s that are not B’s is not 

empty. 
Most A are B. | A ∩ B | > | A  - B | Cardinality of intersection of A and 

B is greater than that of A’s that are 
not B’s. 

More than half of A’s 
are B’s. 

| A ∩ B | > | A | / 2 Cardinality of intersection of A and 
B is greater than that of half of A’s. 
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The simulation elucidates how individuals draw immediate inferences from one 

quantified assertion to another, such as the inference from All A are B to the intuitive  

conclusion All B are A, which is possible but not necessary, and to the deliberative 

conclusion, Some B are A, which is necessary granted that A’s exist.  As in the spatial 

algorithm, the simulation can add information from a subsequent assertion to update a 

model (see Table 1).  Hence, the following premises are those for a syllogism, that 

Aristotle was the first to study, and that has had a long influence on logic and on 

psychological studies of deduction: 

 Some musicians are painters. 

 All painters are imaginative. 

The second premise updates the model above of the first premise to yield the following 

typical model: 

 musician painter imaginative 
 musician painter imaginative 
 musician 
    painter imaginative 

The intuitive system 1 relies on heuristics in order to scan the model in order to draw a 

conclusion.  One heuristic reflects the order in which the model is constructed, and 

another reflects the traditional idea that a negative premise calls for a negative 

conclusion, and a premise with “some” calls for a conclusion with “some”.  As a result, 

system 1 delivers this conclusion from the model above: some musicians are imaginative. 

The deliberations of system 2 can search for an alternative model of the premises, 

and if they find one, they can attempt to formulate a new conclusion that satisfies all the 

current models of the premises.  This search relies on the sorts of operation that 

individuals used when they reasoned with different cut-out shapes to represent different 
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individuals, e.g., their most frequent operation was to add a new sort of individual to a 

model, albeit one consistent with the premises (see Bucciarelli & Johnson-Laird, 1999, 

Experiment 3).  The resulting simulation gives a more accurate account of syllogistic 

reasoning than other rival theories (Khemlani & Johnson-Laird, 2020, and for 

descriptions of these theories, see Khemlani & Johnson-Laird, 2012).  It also allows for 

deductions about possible sorts of individual, e.g.: 

 It is possible that only musicians who are painters are imaginative. 

 No complete simulation of reasoning with quantifiers exists.  And the completion 

of the present account needs a solution to the recursive structure of quantifiers, as in these 

examples: 

 Every one of more than three of the seven girls… 

 Most of the teachers of all the children of some of the employees… 

It needs an account of multiple quantifiers in an assertion (Johnson-Laird, 2006, Ch. 11), 

as in the following sequence of two deductions: 

 Chuck loves Di. 

 Everyone loves anyone who loves someone. 

 So, everyone loves Chuck. 

 So, everyone loves everyone. 

It needs an account of quantified properties, whose analysis in logic calls for the “second 

order” predicate logic (see Jeffrey, 1981, Ch. 7): 

 Some member of the Royal family has all the desirable properties of a princess. 

 One desirable property of a princess is to be beautiful. 

 So, some member of the Royal family is beautiful. 
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Finally, it needs an account of inferences hinging on connectives and quantifiers, e.g.: 

 Either Chuck loves Di or he doesn’t. 

 Everyone loves anyone who loves someone. 

 So, either everyone loves everyone or no-one loves anyone. 

The conclusion follows of necessity from the premises, but the inference is difficult 

because it depends on the repeated updating of models of the premises.  For example, if 

Chuck loves Di, then everyone loves Chuck.  The second premise above can be used 

again to update the model of this situation in order to represent that everyone loves 

everyone (see Cherubini & Johnson-Laird, 2004). 

 

8. Deductions of probabilities 

Some psychologists argue that deductions depend, not on logic, but on 

probabilities – an approach called the “new paradigm” (see, e.g., Oaksford & Chater, 

2020).  One crux is the new paradigm’s treatment of the probability of conditionals.  It 

takes the probability of If A then B to equal the conditional probability of B given A, an 

equality that philosophers sometimes refer to as “the Equation”.  For the model theory, 

the probability of a conditional should also fit the Equation provided individuals bear in 

mind that cases of not-A are presuppositions.  As described in Section 5, a conditional, if 

A then B, presupposes the possibility of not-A, which therefore holds for the negation of 

the conditional.  It follows that the probability of the conditional is the proportion of 

cases of A in which B occurs, because cases of not-A are irrelevant.  Unlike the new 

paradigm, however, the model theory postulates that probabilities underlie inferences 

only when tasks implicate them, and evidence corroborates this assumption. Individuals 
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deduce different conclusions from: If the wine is Italian then it is red than from If the 

wine is Italian then it is probably red (Goodwin, 2014).   

A long-standing puzzle, which the new paradigm does not solve, is how people 

deduce numerical probabilities from assertions that make no reference to them.  One way 

is “extensional” (Tversky & Kahneman, 1983).  They assume in default of knowledge to 

the contrary that each model represents an equiprobable possibility, and deduce the 

probability from the proportion of models of these exhaustive possibilities in which the 

event occurs, or from the sum of the frequencies of each of these possibilities (Johnson-

Laird et al., 1999).  For example, the assertion: 

There is a box in which there is at least a red marble, or else there is a green  

marble and there is a blue marble, but not all three marbles 

has the following two mental models of what is in the box: 

red 
 green  blue 

On the assumption that the two models are equiprobable, they yield a probability of ½ 

that the box contains a green and a blue marble, and a probability of zero that it contains 

a red and a green marble.  An experiment corroborated these predictions.  However, the  

fully explicit models of the assertion are: 

 red  green ¬ blue 
 red ¬ green  blue 
 red ¬ green ¬ blue 
¬ red  green  blue 

They show that the two previous probabilities should both be ¼.  So, as other findings 

corroborated, mental models predict deductions of extensional probabilities, and granted 

that models are equiprobable, system 2 yields valid deductions of them. These predictions 

follow from a computational simulation (https://modeltheory.org/models). 



Mental	models	and	the	algorithms	of	deduction	 40 

No extensional method is feasible to deduce the probability of a unique event, 

such as: 

 Trump is re-elected President of the US. 

A big mystery about such inferences, which people are happy to make, is where the 

numbers come from and what determines their magnitudes.  A theory and a computer 

implementation of it solve the mystery (Khemlani, Lotstein, & Johnson-Laird, 2015). The 

program deduces the probability of a unique event in the same way as an extensional 

deduction except that the models it uses are not of the event, but of evidence pertinent to 

it. The first step of inferring, say, the probability of Trump’s re-election is to call to mind 

relevant evidence, such as:  

 Most incumbent US Presidents who run again are reelected.   

Individuals build a single mental model of such incumbents to represent this belief: 

 incumbent reelected 
 incumbent reelected 
 incumbent reelected 
 incumbent 

The first three rows represent incumbents who are reelected, but the last row represents  

an incumbent who is not reelected.  The numbers of individuals in the model are not 

fixed, and can be modified during an inference, or even tagged with deduced numerical 

values from other evidence, provided that they do not contravene the meaning of the 

assertion.  Because Trump is an incumbent, the model can be sampled to yield a 

representation of the probability of his reelection.  The intuitive system 1 constructs a 

representation of this probability.  It is “pre-numerical” because it represents a magnitude 

in the same way as infants and non-numerate adults do (see, e.g., Carey, 2009).  The 
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following diagram depicts the representation, in which for convenience the main axis is 

from left to right:   

 |−−−−−−  | 

The left vertical represents impossibility, the right vertical represents certainty, and the 

proportional length of the line between them represents a probability.  It can be translated 

into a description such as: “The re-election of Trump is very likely: it is highly possible.” 

 Individuals are likely to consider other evidence, such as: 

 Politicians who are known liars tend not to be re-elected. 

The probability inferred from this evidence has to be combined with the previous 

probability.  Most people do not know the correct way to form the conjunction of two 

probabilities.  According to the model theory, they seek an intuitive compromise, and so 

the simulation sets up a pointer, ^, to represent the probability based on the second piece 

of evidence within the representation of the first probability: 

 |−−^−−−  | 

The simulation then shifts the pointer and the right-hand end of the line towards one 

another.  The two meet at a point corresponding to their rough average.  It represents the 

compromise probability of the event.  The theory postulates that intuition uses the same 

procedure to deduce the probability of a disjunction from the probabilities of its two 

clauses. 

  In contrast, the deliberative system 2 can map analog magnitudes representing 

probabilities into numerical values.  The major impediment to the rationality of system 2 

is ignorance.  Individuals who have not mastered the probability calculus do not know 

how to compute the probability of compounds, such as conjunctions, disjunctions, or 
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conditional probabilities. They can grasp that the probability of the conjunction of two 

independent events is their product, that the probability of a disjunction of inconsistent 

events is the sum of their probabilities, and that the conditional probability of A given B 

is the subset of the possibilities of B in which A occurs.  The algorithm embodies these 

principles, and experimental results have corroborated the errors in estimates that often 

violate the principles of the probability calculus (Byrne & Johnson-Laird, 2019; 

Khemlani et al., 2015). 

 

9.  Conclusions   

 Psychological theories of deductive reasoning can take too much for granted, 

so that what they predict about a particular inference is often difficult to figure out 

(Johnson-Laird, 1983, p. 6). They may not predict anything. It is too easy to construct 

psychological theories if they concern only what conclusions people make and not how 

they make them.  For instance, the existence of over a dozen theories of syllogistic 

reasoning is embarrassing for cognitive science (see Khemlani, 2020).  Few of them have 

computational simulations. Simulations of the model theory yielded surprising 

predictions about human rationality, such as inferences that are cognitive illusions (see 

Section 5). 

 An account solely of what the mind computes can be embarrassing in another 

way.  Its computer implementation may reveal its intractability.  For instance, several 

theories extend Ramsey’s (1990, p. 155) idea of how to determine the credibility of a 

conditional: granted that its if-clause is consistent with a stock of knowledge, assess the 

likelihood of its then-clause in that same stock.  Yet, a check of whether the if-clause is 
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consistent with a set, say, of ten beliefs takes far too long to be realistic.  In the worst 

case, it can take 210 assessments.  A viable theory of deduction must explain how humans 

overcome such intractability. Hence, a prophylactic for all these problems is to ensure 

that a theory accounts for human mental processes too, and to develop a simulation of 

them.  The preceding account shows how to base such simulations on mental models to 

capture people’s intuitive mistakes, biases, and default assumptions, as well as their 

ability to overcome their intuitions. 
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