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Abstract

■ A set of assertions is consistent provided they can all be true at
the same time. Naive individuals could prove consistency using
the formal rules of a logical calculus, but it calls for them to fail to
prove the negation of one assertion from the remainder in the
set. An alternative procedure is for them to use an intuitive sys-
tem (System 1) to construct a mental model of all the assertions.
The task should be easy in this case. However, some sets of con-
sistent assertions have no intuitive models and call for a deliber-
ative system (System 2) to construct an alternativemodel. Formal

rules and mental models therefore make different predictions.
We report three experiments that tested their respective merits.
The participants assessed the consistency of temporal descrip-
tions based on statements using “during” and “before.” They
were more accurate for consistent problems with intuitive
models than for those that called for deliberative models.
There was no robust difference in accuracy between consistent
and inconsistent problems. The results therefore corroborated
the model theory. ■

INTRODUCTION

In Florida, a police officer stopped a driver on suspicion that
hewas drivingwhile drunk. As the officer spoke to the driver,
he noticed an open bottle of Jim Beam on the passenger’s
seat. Thedriver explained that he hadnot, in fact, beendrink-
ing while driving—because he drank only when the car was
stopped at traffic lights. He was arrested after failing a sobri-
ety test (Simmons, 2018). The temporal relations people can
reason about are complex. English encodes some temporal
relations in the tense and aspect of every statement, which
relate its temporal reference to a separate reference time and
to the time of the statement’s utterance (Reichenbach,
1947). These relations enable individuals to make inferences
about the order of events (Schaeken, Johnson-Laird, &
d’Ydewalle, 1996a). They can alsomake such inferences from
explicit temporal relations, as in “John shaved before he
cooked breakfast” (e.g., Ye et al., 2012; Münte, Schiltz,
& Kutas, 1998; Schaeken, Johnson-Laird, & d’Ydewalle,
1996b; Clark, 1971). Likewise, verbs themselves differ in their
temporal implications (see, e.g., Steedman, 2019; Moens &
Steedman, 1988; Miller & Johnson-Laird, 1976, Sec. 6.2.4;
Vendler, 1967, Chap. 4).
Logicians have formulated temporal logics, and re-

searchers in artificial intelligence (AI) have developed calculi
for reasoning about temporal relations (e.g., Øhrstrøm &
Hasle, 1995; Freksa, 1992; Allen, 1983, 1991; for reviews,
see Fisher, Gabbay, & Vila, 2005; Goranko, Montanari, &
Sciavicco, 2004). Temporal logics sometimes neglect

Reichenbach’s (1947) distinction among three sorts of
temporal referents (e.g., Prior’s, 1967; tense logic). Some
of the AI systems posit relations that do not map into sim-
ple everyday English. For instance, Allen’s (1983) system
has a primitive relation that can be expressed in English
only in multiple clauses: “Event A and event B began simul-
taneously, but event A ended before event B did.” None
of these systems captures the full flexibility of natural
language. For instance, tense and aspect can describe the
same event as lasting over an extended period or as a point
in time. It is exemplified in the difference between “Marie
was doing the dishes” and “Marie did the dishes” (see, e.g.,
Kamp, 2017). Perhaps the AI systems most relevant to psy-
chology are event calculi (see, e.g., Kowalski & Sergot,
1986), because they have axioms governing temporal rela-
tions, and so they are compatible with theories of reasoning
based on orthodox logic (e.g., Rips, 1994). A typical com-
monsense principle in event calculi is that a condition is
true at a particular time if and only if something happened
earlier that initiated it and nothing has happened since
to terminate it. Likewise, the following sort of axiom can
establish a consequence of temporal relations:

If X happened during Y and Y happened before Z,
then X happened before Z.

Various logical systems use such axioms to avoid producing
invalid temporal deductions. However, because these
systems yield only valid deductions, they have difficulty
in explaining why reasoners make systematic mistakes in
temporal inferences.

The present study focuses on temporal relations ex-
pressed with “during,” for example:

1a. The car broke down during the road trip.
b. Breckinridge graduated during the Progressive Era.
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These statements each describe an event—(1a) the break-
down and (1b) the graduation—that can be construed as
“punctate,” that is, as happening at a single point in time
within the span of a longer “durative” event—(1a) the road
trip and (1b) the Progressive Era. The sentential connective
“while” can yield similar interpretations, as in:

2a. The man slept while the neighbors fought.
b. The neighbors fought while the man slept.

Durative relations are temporal and concern at least one
event that has a duration. The examples in (2) illustrate a
subtle difference: (2a) couldmean that the neighbors fought
for longer than the man slept, whereas (2b) could mean the
converse. However, both assertions could also mean that
the two events began together and ended together. Only a
few empirical studies have examined durative relations,
which, they suggest, aremore complex than themere order
of events in time. For example, children comprehend and
produce the word “while” only after they have mastered the
words “before” and “after” (Winskel, 2003; Silva, 1991;
Keller-Cohen, 1981).

Individuals can make inferences based on “while” using
premises of the form “X happened while Y happened”
(Schaeken et al., 1996b). This and other studies showed
that they appear to simulate a mental timeline of events
(Bonato, Zorzi, & Umiltà, 2012; Casasanto & Boroditsky,
2008; Gentner, 2001). The studies also established that
some temporal reasoning problems are easy and some
are difficult—people take longer to make them and are
more prone to errors (Baguley & Payne, 2000; Schaeken
& Johnson-Laird, 2000; Vandierendonck & De Vooght,
1997). Temporal logics and event calculi are neither
intended to explain these errors, nor can they.

Psychologists have also examined how people perceive
the durations of experienced or anticipated events (Zakay
& Block, 1997). In typical tasks, participants estimate how
long a particular event took in minutes, in hours, or in
some qualitative measure. They tend to overestimate
short periods and underestimate longer ones (Lejeune
& Wearden, 2009). This robust pattern is known as
Vierordt’s law after the German physiologist who discov-
ered it. The two biases correlate with the amount of infor-
mation that individuals represent per unit of time (Wang &
Gennari, 2019). They compress information to avoid
representing all the time points over which an event takes
place (Faber & Gennari, 2015). Indeed, people can con-
ceive of a long and complex sequence of processes as
though they were a single punctate event, for example,
“Hillary and Tenzing climbed Everest in 1953.” They are
liable to make such compressions when nothing of impor-
tance happened during an interval of time. However,
particular tasks or demands may inhibit compressions.
In addition, very brief events that would otherwise seem
punctate, such as a blink of an eyelid, can be conceived
as a sequence in slow motion—an object looms in front
of a person’s eye and triggers a reflex, which in turn closes
the eyelid.

Khemlani, Harrison, and Trafton (2015) explained how
reasoners construct a mental timeline from descriptions
that used “while” and “during.”The idea of the compression
of sequences to form punctate events was one that they
added to a previous account (Schaeken & Johnson-Laird,
2000; Schaeken et al., 1996a). The theory predicted how
individuals cope with durations to make modal inferences
about what is necessary and possible and to assess the con-
sistency of descriptions (Khemlani, Lotstein, Trafton, &
Johnson-Laird, 2015). The present study investigated two
further consequences of this theory, one negative and
one positive. The negative consequence is that human rea-
soners do not rely on any formal temporal system akin to an
event calculus. The positive consequence is that they rely
instead on the contents of descriptions to construct mental
models of temporal relations. To test these claims, partici-
pants in experiments had to assess whether or not a set of
statements in a temporal description could all be true at the
same time, that is, whether the statements were consistent
with one another, which in logic means that they were
“satisfiable.” The advantage of this task for our purposes
is the striking contrast between the predictions of formal
calculi and the predictions of the theory of mental models.
We return to this contrast after we explain how models of
durations work.

Mental Models of Relative Durations

Khemlani, Harrison, et al.’s (2015) account of reasoning
about durations is based on the idea that language,memory,
and imagination rely on mental simulations of possibilities,
that is, mental models (Johnson-Laird, 2006; Johnson-Laird,
Girotto, & Legrenzi, 2004). Not all cognitive processes
require the use of mental models; for example, a musician
can improvise a tune without them. However, the theory of
mental models—the model theory, for short—proposes
that inferences depend on the construction, inspection,
and revision of models. They explain systematic patterns
of reasoning about spatial relations (Ragni & Knauff, 2013;
Jahn, Knauff, & Johnson-Laird, 2007; Jahn, Johnson-Laird,
& Knauff, 2004) and abstract relations (Khemlani,
Wasylyshyn, Briggs, & Bello, 2018; Goodwin & Johnson-
Laird, 2005). Khemlani, Harrison, et al. (2015) developed a
computational theory that shows that mental models can
also explain systematic patterns of reasoning about time.
The theory rests on three main assumptions, which we
discuss hereinafter.

Models of Time Are Iconic

Models are iconic representations of events in relation to
one another; that is, the structure of a model corresponds
to the structure of what it represents (see Peirce, 1931–
1958, Vol. 4). Models can also include noniconic elements,
such as the symbol for negation (Khemlani, Orenes, &
Johnson-Laird, 2012). There are two types of iconic models
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of events. The first type uses space to represent the tem-
poral position of events in a sequence. For instance, the
following statements

3. The clouds gathered after the sunrise.
The rain began after the clouds gathered.

can be represented in a static model with a temporal axis.
In the following model, the axis runs from left to right to
represent the chronology:

sunrise clouds rain

Each word stands for a mental simulation of an event. In
this case, the events can be visualized. However, mental
imagery often incorporates irrelevant details, and so it can
impede reasoning about relations (Knauff & May, 2006;
Knauff & Johnson-Laird, 2002). Amodel containing a single
mental token representing each event often suffices for
many inferences. Because the model is iconic, it can be
scanned to yield different conclusions that emerge from
its structure. Scanning the model of (3) shows that it
supports the conclusion that the rain occurred after the
sunrise. The conclusion is not explicit in the statements
but is instead an emergent consequence of the model.
Temporal models therefore imply a potential chronology,
that is, the order in which events occurred.
The second type of iconic representation is kinematic in

that a sequence of models unfolds in time to represent a
sequence of events. It uses time itself to represent time,
although not necessarily at the same rate—a simulation
can occur at a faster or slower rate than the real events.
People can use suchmodels to reason. For example, people
can understand informal algorithms that describe loops of
operations, as in “while there are dishes in the sink: select a
dish, wash it, and then rest it to dry.” Experiments called for
participants to use descriptions of informal algorithms to
infer the order of train cars on a set of tracks. Reasoners
spontaneously envisaged the temporal sequence of moves
of the cars, relying on a kinematic simulation (Khemlani,
Mackiewicz, Bucciarelli, & Johnson-Laird, 2013).
Khemlani, Harrison, et al. (2015) showed that models

can be used to represent and to reason about relations
between durations and punctate events. For inferences
about durations,models often need to demarcate the starts
and ends of events. There are various ways in which such
representations can be constructed, and they need to take
into account that some states have no clear beginning or
ending, for example, “Pat loves Viv,”whereas other habitual
events occur as a series, for example, “He climbs moun-
tains.” The following temporal relation

4. The meeting happened during the sale.

can be represented as a minimal iconic model in which time
runs from left to right, as in the following diagram,where the
square brackets denote the start and end of an event:

[meeting]
[ sale ]

The inclusion of one set of brackets within another
represents the temporal inclusion of one event during
another. So, the diagram shows that the meeting occurred
during the sale. For clarity, events can be represented in
separate temporal streams as above. A computationalmodel
implementing the theory (Khemlani, Harrison, et al., 2015)
uses an analogous representation in which lists represent
the starts and ends of events, as in the following: saleSTART
meetingSTART meetingEND saleEND. These sorts of model are
uniform, efficient, and computable until the number of inde-
terminacies between events becomes intractable. They can
represent events over different timescales from nanosec-
onds to millennia, and they can represent definite, indefi-
nite, or unknown durations, as in Example (4). Yet, because
of the additional processes required to track the starts and
ends of events, reasoning about durations should be more
difficult than reasoning about punctate events, and when
possible, reasoners should tend to collapse durations into
punctate events. As we show below, they also use other
strategies.

Two Cognitive Systems Exist: Intuition and Deliberation

The model theory postulates that reasoners rely on two
systems of inference: an intuitive process that builds a sin-
gle mental model and a deliberative process that considers
alternative models, if any, to the initial intuitive one (see,
e.g., Khemlani & Johnson-Laird, 2013). The late Peter
Wason was the first to propose two systems of reasoning
(Wason & Johnson-Laird, 1970), and they have remained
a core component of the model theory (see, e.g.,
Johnson-Laird, 1983, Chap. 6). The two modes of thinking
have been adopted in many other dual-process frame-
works (e.g., Pennycook, Fugelsang, & Koehler, 2015;
Kahneman, 2011; Stanovich & West, 2000). Recent evi-
dence corroborates differential brain networks for the
two processes: Intuitions often recruit long-term memo-
ries, whereas deliberations recruit cognitive control and
working memory mechanisms (Williams, Kappen,
Hassall, Wright, & Krigolson, 2019).

According to the model theory, intuitions underlie the
rapid construction of an initial mental model ( Johnson-
Laird, Khemlani, & Goodwin, 2015). The process is subject
to various heuristics (Jahn et al., 2007), and so reasoners
who engage in only the intuitive process are prone to
make systematic errors (Khemlani & Johnson-Laird,
2017). To validate an initial conclusion based on an intui-
tive model, a slower deliberative process can revise the ini-
tial model. It can yield “alternative models,” that is, models
in which the premises remain true. An alternative model
can invalidate an initial conclusion—it is a model of a
“counterexample” in which the premises are true but
the conclusion is false. A conclusion is “necessary” if it
holds in all models of the premises, “probable” if it holds
in most models of the premises, “possible” if it holds in at
least one model of the premises, and “impossible” if it
holds in no models of the premises. Likewise, a set of
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premises is “consistent” if there is at least one model in
which all the premises are true, and it is “inconsistent” if
there is no such model.

A working memory for intermediate results, or initial
models, is the heart of computational power (see, e.g.,
Johnson-Laird, 1983, Chap. 1). Human working memory
is limited in capacity, and deliberation requires a model
to be held there while a search is made for an alternative.
So, reasoners tend to rely on their initial models. If such a
model yields a correct conclusion, its inference should be
easy: It should be faster and more accurate. If, however,
the initial model yields an incorrect conclusion, then delib-
eration is needed to arrive at a correct one, and reasoners
should be slower and less accurate (see, e.g., Khemlani,
2018; Knauff, 1999; Johnson-Laird & Bryne, 1991, p. 124).

Models Should Underlie the Assessment of Consistency

Themodel theory explains in principle how individuals could
assess the consistency of a set of statements, that is, whether
or not they can all be true at the same time. Consider, for
example, this set of statements that concerns a duration:

5. The meeting happened during the sale.
The conference happened before the sale.
The conference happened before the meeting.

The first two statements together yield the followingmodel:

[ meeting ]
[ conference ] [ sale ]

The third statement holds in this model too, and so the set
of statements is consistent. In contrast, consider this set of
statements:

6. The meeting happened during the sale.
The conference happened before the meeting.
The conference happened during the sale.

The first two statements hold in the model above, but the
third statement is inconsistent with it, which suggests that
the set of statements is inconsistent. Deliberation, however,
can yield an alternative model of the first two statements:

[ conference ] [ meeting ]
[ sale ]

This model accommodates the third statement, and so the
set is, in fact, consistent. Hence, reasoners should be more
likely to make an error with (6) than with (5).

When the first two statements are consistent with more
than one temporal model, the theory postulates that peo-
ple introduce representations of events into a model in the
same order in which the premises mention these events.
They also enter representations in a way that aims to avoid
having to rearrange those events that the model already
represents (see Ragni & Knauff, 2013, who reported an
analogous heuristic for spatial reasoning).

Another two illustrations concern inconsistent sets of
statements. Consider this problem:

7. The meeting happened during the conference.
The sale happened before the conference.
The meeting happened before the sale.

The first two statements yield only one model:

[ meeting ]
[ sale ] [ conference ]

This model is inconsistent with the third statement, and
no alternative model exists, and so the set of statements
is inconsistent too. They yield the “null” model, which
corresponds to an inconsistency. Now, consider these
statements:

8. The meeting happened during the conference.
The sale happened before the meeting.
The conference happened during the sale.

The first two statements yield at least two differentmodels:

[ sale ] [ meeting ]
[ conference ]

and

[ sale ] [ meeting ]
[ conference ]

There are yet other possibilities; for example, the sale can
overlap the beginning of the conference but end before the
start of the meeting. However, no model of the first two
statements can accommodate the third, and so the set of
statements is again inconsistent. The detection of these
inconsistencies should be quite straightforward, because
any model of the first two statements is inconsistent with
the third statement. Such inconsistencies often prompt
reasoners to try to explain how the conflict arose (Khemlani
& Johnson-Laird, 2011, 2012). For more complex descrip-
tions, reasoners may disregard inconsistent information
to build a coherent model (Otero & Kintsch, 1992).

The Crucial Predictions

The model theory predicts that reasoners tend to rely on
intuitions rather than deliberations. Hence, for consistent
sets of statements, people should be correctmore often for
sets yielding only onemodel than for sets yieldingmultiple
models; for inconsistent sets of statements, however, no
reason exists for them to differ in accuracy between prob-
lems whose first two premises yield onemodel or multiple
models, because whichever model they construct, the
third premise will be inconsistent with it. Event calculi
and other theories based on axioms and rules of inference
diverge from these predictions. These systems enable rea-
soners to derive valid conclusions from premises. They
have only one general procedure that can yield a correct
assessment of whether or not a set of statements is consis-
tent. If there is a proof that the negation of a statement in
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the set follows from the other statements in the set, then
the set is inconsistent; otherwise, if there is no such proof,
then the set is consistent. Granted that it is easier to find a
proof than to make an exhaustive search that fails to find
one, this approach predicts that correct assessments of
inconsistency should be easier than those of consistency.
Because proofs do not use models, these theories have
no grounds to predict that consistent problems with only
one model should be easier to assess than those with mul-
tiple models. The two accounts therefore make opposing
predictions. In particular, if the model theory is correct,
then one-model consistent problems should yieldmore ac-
curate responses than multiple-model consistent prob-
lems, whereas if the logical theories are correct, then the
two sorts of problem should not differ reliably. If the logical
theories are correct, then inconsistent problems should
yield more accurate responses than consistent problems,
but if the model theory is correct, then there should be
no reliable difference between them. We carried out three
preregistered experiments to test these predictions.

EXPERIMENT 1

To test participants’ accuracy in assessing consistent one-
model and multiple-model problems, and in assessing
inconsistent and consistent problems, Experiment 1
manipulated relevant variables. It used descriptions of
durations, which were either consistent or inconsistent,
and the first two of the three statements in a description
yielded either one model or multiple models. An example
of a consistent problem with one model is the following:

The speech happened during the press coverage.
The press coverage happened before the fireworks.
The speech happened before the fireworks.
Can all three of these sentences be true at the same time?

The question is equivalent to asking participants to decide
whether all three statements are consistent, but the word
“consistent” often confuses naive participants, that is,
those with no background in logic. The task had not been
used before to study temporal reasoning—previous
experiments restricted the number of relations reasoners
had to consider by asking them to infer the relation
between two given events (Schaeken et al., 1996a). It also
posed the same uniform question for all problems.

Methods

Participants

Fifty participants completed the experiment for monetary
compensation ($2 and a 10% chance of a $10 bonus) on
Amazon’s Mechanical Turk (AMT). Five participants were
excluded from the analysis—some because they made ex-
cessive and inappropriate key presses, and others because
they provided debriefing responses that implied that they
had misunderstood the problems. The analyses reported

below are based on the remaining 45 participants (mean
age = 35.0 years; 21 women). All but one of these 45 par-
ticipants were native English speakers, and only three had
taken a course in introductory logic.

Preregistration and Data Availability

The preregistrations, data, and analysis scripts are available
at osf.io/evprc/.

Task and Design

Theparticipants acted as their own controls and carried out
16 different problems. Each problem had three premises
that described the temporal relations among three differ-
ent events and asked whether the premises could all be
true at the same time. Four sorts of problems occurred
equally often in the experiment. The first two premises
could yield either one model or multiple models, and the
third premise was either consistent with the first two pre-
mises or inconsistent with them, therefore yielding the null
model representing contradictions.

The first premise of each problem was of the following
form: X happened during Y. Hence, the following is an
example of a problem designed to yield one model, which
we present as it cumulates over the three premises:

9. X happened during Y. [Y [X]]
Y happened before Z. [Y [X]] [Z]
X happened before Z. [Y [X]] [Z]

The models of the events next to each premise show how
Khemlani, Harrison, et al.’s (2015) system updates the rep-
resentation after interpreting new information. The prob-
lem presents a consistent description of events, because all
three premises can be true at the same time.

In contrast, the set of premises in (10)

10. X happened during Y. [Y [X]]
Z happened before X. [Z] [Y [X]] (i)

[Y [Z] [X]] (ii)
Y happened during Z. Null model

corresponds to a multiple-model problem, because the
second premise is consistent with at least two different
situations: one in which Z happened before Y started (i)
and another in which Z happened after Y started (ii).
Neither of these possibilities is consistent with the third
premise, and so (10) is an inconsistent problem with
multiple models for the first two premises. Appendix A
summarizes the 16 problems used in the study. For each
participant, once the contents had been assigned to the
problems, their order of presentation was random.

Materials

The variables in the schemas for each problem were re-
placed with everyday events, for example, “the meeting,”
“the snowstorm,” and “the ceremony.” The materials were
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drawn from 16 sets of three events (see Appendix B). Each
set was designed to describe events that last for indetermi-
nate durations such that any event in a set could take place
during any other event, for example,

The meeting happened during the snowstorm.
The snowstorm happened during the ceremony.
The meeting happened during the ceremony.
The snowstorm happened during the meeting.

and so on. Therefore, the sets did not group together an
event that occurs in only a second or so, such as a sneeze,
with an event that takes significantly longer, such as a
concert. In addition, the events of each set did not have any
obvious causal relations to one another. The 16 material
setswere rotated over the 16 different problems. Therefore,
across the experiment as a whole, each set of materials
occurred about equally often with each of the problems.

Procedure

The instructions explained that the task was to judge
whether or not sets of statements could all be true at the
same time. The participants saw a schematic of how their
fingers should be placed on the computer keyboard, and
they carried out a simple practice problem. For each prob-
lem, the participants considered the initial premise and
then pressed the spacebar to reveal each of the remaining
premises in turn. To encourage participants to read the
premises in the given order, the program required 1 sec
to pass after it displayed each premise before a spacebar
press could trigger the next premise. Each premise
remained on the screen during the display of the subse-
quent premises. After a participant had revealed all three
premises, the program displayed the question: “Can all
three of these sentences be true at the same time?” The
participant then pressed the “F” or “J” key to register a
“yes” or a “no” response. After completing all 16 problems,
the participants answered four open-response debriefing
questions, which probed their intuitive definitions of
“before” and “during” as well as their strategies for tack-
ling the problems.

Analysis

The data for all the experiments were subjected to paired
nonparametric Wilcoxon tests for each effect and to a gen-
eralized logistic mixed effects model (GLMM) regression
(using the R package “lme4”; Bates, Mächler, Bolker, &
Walker, 2015) that controlled for noise as a result of differ-
ences among participants, items, and temporal relations
in each problem, for example, “during/during/during,”
“during/before/during,” and so forth. We included this
factor because several participants reported that they based
their judgments on these patterns alone. The model gave
estimates for the main effects of problem type (one- vs.
multiple-model), consistency, and their interaction. We
examined relevant simple effects using estimated marginal

means (using the R package “emmeans”; Lenth, Singmann,
Love, Buerkner, & Herve, 2019).
While we collected RT data in each experiment, some

participants reported using strategies that, unbeknown
to them, prevented their data from being interpretable:
They described tapping the spacebar and waiting for all
premises to be available before they started reading the
premises. We therefore omit any report of RTs, but we
include the data and the relevant analyses in the on-line
supplement.

Results and Discussion

Figure 1 presents the proportion of participants’ correct
assessments of consistency depending onwhether the first
two premises yielded one model or multiple models and
on whether the three premises were consistent or incon-
sistent. Participants made accurate judgments reliably
more often than chance (30 of the 45 participants did so,
five did not do so, and therewere 10 ties; binomial test, p<
.0001) and were more accurate for one-model problems
than for multiple-model problems (78% vs. 69%;
Wilcoxon test, z = 3.02, p = .003, Cliff’s δ = 0.43;
GLMM, β = 1.49, z = 2.49, p = .013). The difference
between participants’ accuracies did not reliably differ
depending on whether the problem was consistent or in-
consistent (72% vs. 75%; Wilcoxon test, z= 1.12, p= .266,
Cliff’s δ= 0.17; GLMM, β= 0.50, z= 1.13, p= .257). The
results exhibited an interaction between the problem type
(one- vs. multiple-model) and the consistency of the pre-
mises (Wilcoxon test, z = 4.03, p < .0001, Cliff’s δ = 0.42;
GLMM, β = −3.06, z = 3.24, p = .001). The interaction
reflected the participants’ greater accuracy for consistent
one-model problems than for consistent multiple-model
problems (83% vs. 61%; Wilcoxon test, z = 4.32, p <
.0001, Cliff’s δ = 0.56; GLMM, β = −3.03, z = 3.22,

Figure 1. The proportions of correct responses in Experiment 1 (n =
45) depending on whether the initial two premises yielded one model
or multiple models and on whether the three premises were consistent
or inconsistent. Error bars indicate 95% confidence intervals.
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p = .001), whereas inconsistent problems showed no
marked difference between problem types.
Experiment 1 supported the predictions of the model

theory, but as we noted above, some participants reported
that they developed heuristics based on the patterns of
relations across the three premises:

“[A]bout halfway through [I] could skim…[such that]
during-during before/after = no [and]
during-during-during = yes”

These heuristics do not require reasoners to engage with
the particular contents of the problem, and they could
have led participants to make incorrect responses. All the
problems in the experiment had a first premise in which
one event occurred during another, and so there were
only four possible combinations of relations that the other
two premises could describe. We therefore carried out
Experiment 2 as a replication in which each problem
consisted of four premises interrelating four events. The
design increased the number of possible relation patterns
and made it less feasible for participants to develop these
heuristics.

EXPERIMENT 2

Experiment 2 replicated Experiment 1 in that itmanipulated
whether temporal descriptions referred to one model or
multiple models over the first three of their statements
and whether the sets were consistent or inconsistent. It
further sought to eliminate the use of the heuristics
described above by using sets of four statements.

Methods

Participants

Fifty participants completed the experiment for compen-
sation ($2) on AMT. One participant’s results were exclud-
ed from the analysis, because of a mean accuracy of 2 SDs
below the sample’s mean accuracy. The analyses reported
below were based on the remaining 49 participants (mean
age = 36.6 years; 20 women). All participants were native
English speakers, and only two had taken a course in intro-
ductory logic.

Design

The same task was used as in Experiment 1, but the prob-
lems had four premises. For one-model problems, the
first three premises were consistent with only one model,
and for multiple-model problems, they were consistent
with multiple models. Half the problems had a fourth
premise that was consistent with the previous three,
and half the problems had a fourth premise that was in-
consistent with them. There were four instances of each
sort of problem, and they were presented in a different

random order to each participant. Appendix C summa-
rizes the 16 problems.

Materials and Procedure

The experiment changed the sets of materials and the dis-
play of the problems. We added a new event to each set of
materials to accommodate the increase to four premises;
we shortened unnecessarily long names of events; for
example, we used “wash cycle” instead of “dishwasher
cycle.” In addition, we eliminated those events that typi-
cally occur in a fixed sequence, for example, “earthquake,”
“light flicker,” and “scream.” Appendix B shows all the
changes. Participants in the current experiment pressed
the spacebar to view each premise including the first
one. Otherwise, the procedure and analysis were the
same as in Experiment 1.

Results and Discussion

Figure 2 presents the proportions of participants’ correct
assessments of consistency depending onwhether the first
three premises yielded one model or multiple models and
on whether the problems were consistent or inconsistent.
Participants made accurate judgments reliably more often
than chance (36 of the 49 participants did so, four did not
do so, and there were nine ties; binomial test, p < .0001).
They were more accurate for one-model problems than
multiple-model problems (78% vs. 54%; Wilcoxon test,
z = 5.34, p < .0001, Cliff’s δ = 0.66; GLMM, β = 1.27,
z = 5.37, p < .0001). Unlike in Experiment 1, participants
were more accurate for inconsistent problems than for
consistent problems (74% vs. 57%; Wilcoxon test, z =
3.64, p < .001, Cliff’s δ = 0.45; GLMM, β = 1.20, z =
4.38, p< .0001). However, this difference was attributable
to an interaction between the type of problem (one- vs.

Figure 2. The proportions of correct responses in Experiment 2 (n =
49) depending on the type of problem (one- or multiple-model) and on
whether the premises were consistent or inconsistent. Error bars
indicate 95% confidence intervals.
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multiple-model) and the consistency of the premises,
which was reliable in the nonparametric analysis
(Wilcoxon test, z = 4.39, p < .0001, Cliff’s δ = 0.52), but
not in the logistic regression (GLMM, β=−0.74, z= 1.32,
p= .188). As in Experiment 1, the interaction reflected the
participants’ greater accuracy for consistent one-model
problems than for consistent multiple-model problems
(76% vs. 37%; Wilcoxon test, z = 5.35, p < .0001, Cliff’s
δ = 0.76; GLMM, β = 1.65, z = 4.17, p < .0001).
Responses were also more accurate for inconsistent one-
model problems than for inconsistent multiple-model
problems, but the difference was much smaller (78%
vs. 71%) and only reliable in the GLMM (Wilcoxon test,
z = 1.76, p = .078, Cliff’s δ = 0.12; GLMM, β = 0.90, z =
2.62, p < .01).

The difference in accuracy between one-model and
multiple-model consistent problems was striking. For
three of the four multiple-model consistent problems,
the mean accuracy was less than 25%; that is, it was much
lower than chance performance. One reason was evident
in many of the participants’ remarks in the debriefing
questionnaires:

“I didn’t take into account that one event could last
longer than another.”
“In my head ‘during’ became ‘=’.”
“I thought if something happened during something
else, the two were equivalent….”

This interpretation treats “the meeting happened during
the conference” as though themeeting and the conference
started and ended at the same time. Hence, we refer to it as
the “equal duration” interpretation. It predicts erroneous
judgments of inconsistency for the three consistentmultiple-
model problems mentioned above. In fact, 43% of all con-
sistent multiple-model trials resulted in errors that could
reflect the equal duration interpretation. Some participants
in Experiment 1 had likewise reported using the same
interpretation. Because the equal duration interpretation
affected only consistent multiple-model problems, it is a
confound. Experiment 3 eliminated this confound.

EXPERIMENT 3

Experiment 3 replicated the design of the previous exper-
iment—it manipulatedwhether sets of four temporal state-
ments referred to one model or to multiple models and
whether they were consistent or inconsistent. Changes to
the instructions were aimed at preventing the equal dura-
tion interpretation: They established that all the events in a
problem had different durations.

Methods

Participants

Fifty participants completed the experiment for compen-
sation ($2) on AMT. The results from four participants

were excluded from analysis (for performance more than
2 SDs below themean or for violations of the instructions).
The analyses below are for the results of the remaining 46
participants (mean age = 37.0 years; 25 women). All the
participants were native English speakers, and only two
had taken a course in introductory logic.

Design and Materials

They were the same as in Experiment 2.

Procedure

The experiment changed the instructions to prevent the
participants from making an equal duration interpreta-
tion of the premises. They received an example of a prob-
lem paired with the instructions: “None of these events
have the same duration” and “All of the events last for
different lengths of time.” They were then quizzed on
their interpretation of the instructions. During the exper-
iment itself, there was the following reminder under-
neath all the response options: “Remember: None of
the events have the same duration.” Otherwise, the pro-
cedure and analysis were the same as in Experiment 2.

Results and Discussion

Figure 3 presents the proportion of participants’ correct as-
sessments of consistency depending on whether the pre-
mises yielded one model or multiple models and on
whether they were consistent or inconsistent. Participants
made accurate judgments reliably more often than chance
(28 of the 46 participants did so, four did not do so, and
there were 14 ties; binomial test, p < .0001). Participants
were more accurate for one-model problems than for

Figure 3. The proportions of correct responses in Experiment 3 (n=46)
depending on the type of problem (one- or multiple-model) and on
whether the premises were consistent or inconsistent. Error bars indicate
95% confidence intervals.
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multiple-model problems (71% vs. 52%; Wilcoxon test, z =
4.88, p< .0001, Cliff’s δ= 0.51; GLMM, β= 1.01, z= 5.21,
p < .0001). There was no difference between participants’
accuracies depending on whether the problem was consis-
tent or inconsistent (62% vs. 61%). As Figure 3 shows, there
was a trend toward an interaction between problem type
(one- vs. multiple-model) and consistency, but it was not
reliable. The results once again validated the primary effect
predicted by the model theory: Participants were more
accurate for consistent one-model problems than for consis-
tent multiple-model problems (75% vs. 49%; Wilcoxon test,
z= 4.36, p< .0001, Cliff’s δ= 0.49; GLMM, β= 1.20, z=
3.76, p < .001).
The postexperimental questionnaires showed that the

instructions had blocked the equal duration interpretation:
The participants acknowledged that the events need not
have the same durations. For example, one participant
noted that “during” means two events are “[h]appening
at the same time but [that] doesn’t necessarily mean they
will start or end together.” Participants nevertheless made
more errors on consistent multiple-model problems than
on consistent one-model problems.

GENERAL DISCUSSION

How do people mentally represent and reason about
temporal relations, such as those expressed with “during”
and “before”? Many logical frameworks describe ideal
temporal reasoning (Fisher et al., 2005; Goranko et al.,
2004), and a plausible candidate for everyday reasoning
is an event calculus (e.g., Kowalski & Sergot, 1986).
Such frameworks are compatible with theories of reason-
ing based on standard logic (see, e.g., Rips, 1994), which
can invoke postulates that capture the logical properties
of connectives, such as the transitivity of “during”:

11. X happened during Y.
Y happened during Z.
Therefore, X happened during Z.

The drawbacks of such an approach are threefold.
First, the formal rules and axioms of standard logic do

not state the conditions in which assertions are true or
the conditions in which they are false. So, they provide
no machinery for how an individual seeing a sequence of
events can determine that a temporal description of them
is true or else false.
Second, standard logic allows that infinitely many con-

clusions are provable from any set of premises, and it pro-
vides no principles guiding which conclusions are worth
drawing. Rips (1994) therefore compensates for this prob-
lem: His theory focuses on the evaluation of given conclu-
sions and curbs the power of rules, such as A; therefore, A
or B or both, which can be used to introduce an indefinite
number of new statements. In contrast, iconicity in the
model theory constrains the possibilities that people con-
sider and the conclusions that they draw. When reasoners

build a model of a set of premises, they aim to maintain
semantic information and to draw a conclusion that is
true in all models of the premises but that is not stated
in an explicit premise ( Johnson-Laird, 1983, pp. 37–40;
for an early algorithm embodying these principles, see
Johnson-Laird & Bryne, 1991, Chap. 9).

Third, the only general way to use formal rules to assess
whether or not a set of statements is consistent is to try to
prove the negation of onemember of the set from the other
members of the set. The existence of such a proof estab-
lishes the inconsistency of the set, whereas a failure to derive
a proof after an exhaustive search establishes the consisten-
cy of the set. This procedure is cognitively implausible
(Johnson-Laird, Legrenzi, Girotto, & Legrenzi, 2000). The
model theory has a simple solution (Khemlani, Lotstein,
et al., 2015): If and only if there is amodel of all the premises,
then they are consistent.

Because the model theory distinguishes between two
different systems, intuitive and deliberative, it follows that
statements for which intuition (System 1) yields a correct
model should be easier to assess as consistent than state-
ments that call for deliberation (System 2) to build an
alternative model. Consider, for instance, the following
consistent problem from Experiment 1:

12. The meeting happened during the snowstorm.
The ceremony happened before the snowstorm.
The ceremony happened before the meeting.

The first two statements yield the following model, where
the square brackets denote the start and end of events:

[ meeting ]
[ ceremony ] [ snowstorm ]

The third statement holds in the model, and there is no
alternative model. So, this one-model problem should be
easy. A more difficult problem is the following:

13. The meeting happened during the snowstorm.
The ceremony happened before the meeting.
The ceremony happened during the snowstorm.

The first two statements yield the same intuitive model
as in (12) above, but the third statement is inconsistent
with this model, and so many participants should
incorrectly judge the set of statements as inconsistent.
Those who deliberate may discover this alternative model
of the statements:

[ ceremony ] [ meeting ]
[ snowstorm ]

So, the set of statements is, in fact, consistent, but it
should be difficult to make this assessment. The model
theory and logical rule theories therefore make divergent
predictions:

Models predict that one-model consistent problems
should be easier than multiple-model consistent
problems, whereas logic does not. Logic predicts that
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inconsistent problems should be easier than consistent
problems, whereas the model theory does not.

Our three experiments corroborated the model theory.
Judgments of consistency were more accurate for descrip-
tions with one model than for descriptions with multiple
models, and these judgments were not reliably less accu-
rate than those for inconsistent descriptions (Experiment 1).
Some participants reported that they had developed a
strategy in which they assessed only the relational terms
in the three statements—they responded “yes” to three
occurrences of “during”; otherwise, they responded
“no.” Reasoners do often spontaneously discover such
strategies (see, e.g., Schaeken & Johnson-Laird, 2000).
The use of four statements in descriptions prevented the
participants from developing them. Yet, the difference
between the two sorts of consistent descriptions still
occurred: Those depending on one model yielded a
greater accuracy than those depending on multiple
models (Experiment 2). However, now, consistent descrip-
tions yielded fewer accurate responses than inconsistent
ones—a phenomenon that reflected the considerable diffi-
culty of consistent descriptions yielding multiple models
(see Figure 2). Some participants reported that they had
assumed that, when one event occurred during another,
both events started together and ended together. This
interpretation might have explained their difficulty with
consistent descriptions that had multiple models. When
a new study used instructions and practice to prevent this
unwarranted assumption, the main pattern of results was
corroborated once again. One model led to more accu-
rate judgments of consistency than multiple models,
and no reliable difference in accuracy occurred between
consistent and inconsistent descriptions (Experiment 3).

These results conflict with the hypothesis that individ-
uals use some sort of logic or event calculus to assess the
consistency of temporal descriptions. Likewise, reasoners’
difficulty in deducing temporal relations correlates with
the number of models they need to consider rather than
the steps needed to prove those relations (Schaeken &
Johnson-Laird, 2000). Defenders of logical calculi may
counter that perhaps a different set of rules could predict
the results. In contrast, these studies of consistency are not
open to this defense—logical calculi have no direct proce-
dure for assessing the consistency of a set of statements,
and so they are bound to predict that inconsistent sets
should be easier to assess than consistent ones. Our exper-
iments show otherwise.

Concerns and Limitations

Some readers may disagree with our analysis of “during.”
Consider the following set of statements (from Example 8
above):

14. X happened during Y.
Z happened before X.

They allow for the following model in which Z continues
beyond the start of Y:

[ X ]
[ Y ]

[ Z ]

However, following Kamp (2017), an accurate descrip-
tion of the preceding model is as follows:

15. Part of Z happened during part of Y and ended
before X.

We took (15) to be inconsistent with the third statement
in (8)

16. Y happened during Z

because only part of Y happened during part of Z. Perhaps
people aremore liberal in their reading of “during.” Even so,
the possibility of these interpretations does not alter the
impact of our results: Consistent problems should be
consistent on any reasonable interpretation of “during.”
More liberal interpretations of “during” can explain only why
people sometimes judge inconsistent descriptions to be
consistent, but such judgments are contrary to our findings.
Our experiments were limited in at least two ways. First,

they did not explore the causes of errors. Errors on consis-
tent problemswithmultiplemodels could result from a fail-
ure to deliberate or from a failure of deliberation to yield an
appropriate alternative model. If researchers can identify
the cause of errors, then they may be able to develop inter-
ventions to improve reasoning. Second, our studies
focused on the preposition “during” and, by design,
ignored the many other ways in which to describe the
co-occurrence of events. For example, the sentential con-
nective “while” has a similar interpretation to “during,” and
both are in the 200 most frequent words in American
English (Davies, 2008). As we noted earlier, “while” also
has an important interpretation in informal descriptions
of algorithms; for example, “While this condition holds,
carry out the following operations,” and participants use
other similar expressions to describe loops of operations,
such as “as long as” and “until” (see Khemlani et al., 2013).
Future studies should examine how individuals interpret
these different ways to express relative durations.

Conclusion

As in our opening example, everyone can envisage a man
who drinks whiskey in his car during its stops at traffic
lights, but not while it is in motion. That imaginative ability
is the main postulate of the model theory. In addition, the
theory has the great advantage over temporal logics and
event calculi that models represent what speakers can
perceive, imagine, and communicate. An accurate model
is an immediate demonstration of the consistency of a
description, and it explains the spontaneous conclusions
that individuals draw. They capitalize on the iconic nature
of models.
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Event 1 Event 2 Event 3 Event 4 Replacements

burglar alarm fire siren explosion

dishwasher cycle shower baking news report wash cycle

speech press coverage fireworks interview monologue

hike conversation hailstorm negotiation

commute sunrise podcast windstorm

pep talk hiccups applause intermission

car alarm argument prank sunset

sale headache shopping trip book signing game

manhunt summer camp cold spell contest camping trip, heat wave

scream light flicker earthquake thunderstorm phone call, nap, movie

caroling session fog sled ride tribute rap battle, publicity stunt

bus ride sunset traffic jam fight eclipse

rainstorm heat wave thunder celebration workshop, farmer’s market

meeting snowstorm ceremony video conference

concert beach party volleyball tournament bonfire tournament

vacation engagement flu carnival flood, outbreak

The plain text events were used in all three experiments. The underlined events were used only in Experiment 1. The italicized events were only used
in Experiments 2 and 3, including a fourth event for each set and replacements for underlined items.

Number of Models Consistency First Premise Second Premise Third Premise

One model Consistent X happened during Y Y happened before Z X happened before Z

One model Consistent X happened during Y Z happened during X Z happened during Y

One model Consistent X happened during Y Y happened during Z X happened during Z

One model Consistent X happened during Y Z happened before Y Z happened before X

Multiple models Consistent X happened during Y X happened during Z Z happened during Y

Multiple models Consistent X happened during Y Z happened during Y Z happened during X

Multiple models Consistent X happened during Y Z happened before X Z happened during Y

Multiple models Consistent X happened during Y Z happened during Y X happened before Z

One model Inconsistent X happened during Y Y happened before Z Z happened during X

One model Inconsistent X happened during Y Z happened during X Z happened before Y

One model Inconsistent X happened during Y Y happened during Z X happened before Z

One model Inconsistent X happened during Y Z happened before Y X happened before Z

Multiple models Inconsistent X happened during Y Z happened before X Y happened during Z

Multiple models Inconsistent X happened during Y X happened during Z Z happened before Y

Multiple models Inconsistent X happened during Y X happened during Z Z happened before X

Multiple models Inconsistent X happened during Y X happened before Z Z happened before Y

APPENDIX A: THE 16 SORTS OF PROBLEM USED IN EXPERIMENT 1

APPENDIX B: THE 16 SETS OF CONTENTS IN EXPERIMENTS 1–3
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Number of Models Consistency First Premise Second Premise Third Premise Fourth Premise

One model Consistent W happened during X X happened during Y Y happened before Z W happened before Z

One model Consistent W happened during X Y happened during W X happened before Z Y happened during X

One model Consistent W happened during X Y happened before X Z happened during W Y happened before Z

One model Consistent W happened during X X happened before Y Z happened during Y W happened before Z

Multiple models Consistent W happened during X Y happened during X Z happened during Y Z happened before W

Multiple models Consistent W happened during X W happened during Y W happened before Z Y happened during X

Multiple models Consistent W happened during X Y happened before W Z happened before Y Y happened during X

Multiple models Consistent W happened during X W happened before Y Z happened during X Y happened during Z

One model Inconsistent W happened during X X happened during Y Y happened during Z Z happened before W

One model Inconsistent W happened during X X happened before Y Y happened before Z W happened during Z

One model Inconsistent W happened during X Y happened before X Z happened during Y Z happened during W

One model Inconsistent W happened during X Y happened during W Z happened before X W happened before Z

Multiple models Inconsistent W happened during X W happened before Y X happened during Z Y happened before Z

Multiple models Inconsistent W happened during X Y happened before W Z happened during Y Z happened during W

Multiple models Inconsistent W happened during X W happened during Y Y happened before Z Z happened before X

Multiple models Inconsistent W happened during X X happened during Y Z happened before W Y happened during Z

APPENDIX C: THE 16 SORTS OF PROBLEM IN EXPERIMENTS 2 AND 3
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