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Abstract

In Wason’s “selection” task, individuals often overlook potential counterexamples in selecting evidence to test hypotheses. Our
recent meta-analysis of 228 experiments corroborated the main predictions of the task’s original theory, which aimed to explain
the testing of hypotheses. Our meta-analysis also eliminated all but 1 of the 15 later theories. The one survivor was the inference-
guessing theory of Klauer et al., but it uses more free parameters to model the data. Kellen and Klauer (this issue) dissent. They
defend the goal of a model of the frequencies of all 16 possible selections in Wason’s task, including “guesses” that occur less
often than chance, such as not selecting any evidence. But an explanation of hypothesis testing is not much advanced by
modeling such guesses with independent free parameters. The task’s original theory implies that individuals tend to choose items
of evidence that are dependent on one another, and the inference-guessing theory concurs for those selections that are inferred.
Kellen and Klauer argue against correlations as a way to assess dependencies. But our meta-analysis did not use them; it used
Shannon’s measure of information to establish dependencies. Their modeling goal has led them to defend a “purposely vague”
theory. Our explanatory goal has led us to defend a “purposely clear” algorithm and to retrieve long-standing evidence that refutes
the inference-guessing theory. Individuals can be rational in testing a hypothesis: in repeated tests, they search for some examples

of it, and then exhaustively for counterexamples.
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With four [free] parameters I can fit an elephant, and
with five I can make him wiggle his trunk. (von
Neumann cited in Dyson 2004)

Kellen and Klauer (this issue) disagree with our meta-
analysis of studies of the selection task (Ragni et al. 2018).
We thank them for their critique. It has led us to several dis-
coveries. One root of the disagreement is the difference be-
tween the two theories—the model theory of Ragni et al.
(ibid.) and the inference-guessing theory of Klauer et al.
(2007). Another root is the difference in our respective goals,
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which is more a matter of scientific taste than an empirical
issue. Our goal is to apply a general explanation of thinking—
the model theory—to the mental processes of testing hypoth-
eses. Kellen and Klauer (henceforth K&K) have the goal,
following Klauer et al., of a precise model of the frequencies
of occurrence of each of the 16 possible selections in tests of
abstract conditional hypotheses. Their goal has led them to
criticize two of the three main predictions of our theory and
our fit of their theory (and ours) to experimental data. In this
reply, we defend the model theory, restore its two predictions
that they criticize, and show that the inference-guessing theo-
ry, despite its premeditated vagueness, is false.

Our goal goes back to Peter Wason’s invention of the se-
lection task. Consider this hypothesis:

If anyone has cholera, then they have had close contact
with an infected person.

Doctors in the nineteenth century realized that counterex-
amples occurred: people caught the disease without personal
contact, and so the hypothesis was false. The resulting contro-
versy about how the disease leapt large distances led John
Snow and others to found epidemiology (see, e.g., Johnson-
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Laird 2006, Chap. 27). The selection task was one of
Wason’s experimental paradigms devised to find out whether
naive individuals—those innocent of science, logic, or
philosophy—understood the importance of counterexamples.
Later, Johnson-Laird devised another task with the same goal,
the repeated selection task.

In Wason’s (1966, 1968) initial studies, participants had to
select potential evidence to test a general but abstract hypoth-
esis, such as Ifthere is a D on one side of a card, then there is a
3 on the other side. They were told to select all, and only, those
cards—from the four on the table in front of them—that they
needed to turn over to find out whether the hypothesis was
true or false about the four cards. Different individuals made
different selections where by definition a selection is the set of
cards that a participant chose. The first four studies of the task
yielded these percentages of selections for abstract conditional
hypotheses, if p then g:

pq 46%
p33%

pqq 7%
pq 4%

where pq signifies the selection of the two cards correspond-
ing to the clauses in the conditional (D and 3 in the hypothesis
above), and the bar over q signifies the selection of the not-q
card (the 2 card in the hypothesis above). We refer to these
four different selections as canonical. There are 16 possible
selections, including selecting all four cards and selecting
none of them. And the remaining 10% of miscellaneous se-
lections in the first four studies each occurred less often than
chance (1/16 =6.25%) or not at all, e.g., there were no selec-
tions of q alone (Johnson-Laird and Wason 1970a, p. 136).
The important result was a negative one: most participants
failed to select the q card. But with p on its other side, it is a
counterexample falsifying the hypothesis.

Wason thought that most people relied only on their intuitions
whereas J-L took comfort from the few who deliberated and had
insight into the power of potential counterexamples. He therefore
devised an algorithm simulating a theory that allowed a switch
from intuition to deliberation (Johnson-Laird and Wason 1970a).
It was a dual-process theory, one of the first in modern studies,
and perhaps unique in having an algorithmic description (cf.
Evans 1984). The algorithm represents the meaning of any hy-
pothesis, such as a conditional or a disjunction (as used in Wason
and Johnson-Laird’s (1969) study). And for a conditional if p
then g, it yields intuitive selections of pq or p depending on
whether or not the conditional is interpreted as implying its con-
verse. If deliberation leads to a partial insight into falsification, it
can yield pqq, and complete insight yields only the correct se-
lection, pq (see Johnson-Laird and Wason 1970a, Fig. 2).

The failure of participants to select potential counterexam-
ples was stunning. And defenders of human rationality
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pounced (see Ragni et al. 2018) for a description of their
arguments). Prior to their criticisms, however, Johnson-Laird
and Wason (1970b) reported on the repeated selection task. In
this paradigm, the participants make a series of choices that
can be q or q and get immediate feedback that q occurs with p,
and q occurs with p. Nearly every participant in the first study
began by selecting instances of q, but they soon realized the
importance of potential counterexamples, and then they all
selected every instance of q. Critics of the selection task, like
its later investigators, often overlooked the rationality of these
selections.

The Meta-analysis

The initial investigators aimed to explain the mental processes
underlying the testing of hypotheses (Wason and Johnson-
Laird 1972, Chap. 13—15). And they thought that they had
made enough progress to allow them to take up different
topics for research. Others, however, started to investigate
the selection task. What shocked them was the robust but
irrational neglect of counterexamples. Half a century later,
what shocked us was the existence of 16 theories of the task.
That was not a sign of scientific progress. So, we decided to
try to use evidence to refute as many theories as possible.
Back we went to the original theory and implemented its al-
gorithm in the programming language Python. Unlike the
original version, our implementation copes only with condi-
tionals because they are the focus of almost all the experi-
ments in the literature, and we replaced the truth table for a
conditional with its core meaning in the model theory (see,
e.g., Johnson-Laird et al. 2015). This replacement has no ef-
fect on the predictions for the selection task, but as we will see,
it creates a more sensible normative account of hypothesis
testing. The model theory’s algorithm for conditionals works
in an identical way to the original one.

Some of the 16 theories seemed too sketchy, some seemed
too sophisticated, and almost all seemed too narrow—pur-
pose-built for the standard selection task so that if the hypoth-
esis were changed to a disjunction, they would not work.
Some could not be formulated in an algorithm, and some
could not be used to fit data. What to do? In the end, we asked
one decisive question: does experimental evidence refute
them? The model theory makes three main predictions. The
meta-analysis corroborated them (Ragni et al. 2018) and re-
futed all but one of the alternative theories. The only surviving
alternative was the inference-guessing theory due to Klauer
et al. (2007). Their theory concerns the abstract selection task
with a conditional hypothesis, and the researchers wrote: “The
purpose ... is to develop and validate a mathematical model
for the 16 possible selection patterns” (ibid., p. 681). Given
this goal, their theory opts to have no account of what condi-
tionals mean or of how people make the inferences that it
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postulates as yielding selections. As K&K comment, “The
model is purposely vague about the nature of the underlying
reasoning process.” It sufficed for Klauer et al. to formulate a
multinomial processing tree with ten free parameters to fit the
frequencies of the 16 selections in their large online experi-
ments. So, individuals either guess or infer a selection (one
parameter). If they guess, their guesses for each of the four
cards are independent of one another (four parameters). If they
reason, they make one or two inferences (five parameters)
yielding 11 different selections. These ten parameters are free
in that they can take any values whatsoever in order to yield
the best possible fit to the data. Indeed, 10 parameters for 16
outcomes do an extravagantly good job.

We now turn to K&K’s critique of the model theory. We
deal first with their criticisms of its three main predictions. We
introduce three of its other predictions whose corroborations
refute the inference-guessing theory. Finally, we address their
analysis of fitting theories to data.

The Three Main Predictions of the Model
Theory

Prediction 1: Only the four canonical selections should
occur more often than chance

The model theory postulates that the meaning of a general
conditional, if p then q, refers to the possibility of p and q in
default of knowledge to the contrary and to the possibility of
not-p whether the conditional is true or false (Johnson-Laird
et al. 2015). It follows that a general conditional is true given
that there is at least some example of p and q and no counter-
examples of p and q. The theory therefore predicts that four
canonical selections should occur more often than chance: pq
and p, which are examples of the hypothesis depending on
whether or not it is interpreted as implying its converse; pqq,
which reflects partial insight into falsification; and pg, which
reflects complete insight. Any other of the 16 possible selec-
tions should not occur more often than chance (6.25%). The
theory recognizes that all cognitive experiments may have
participants who cannot or will not do the task, who guess,
or who make eccentric selections or none at all, e.g., one of
Wason’s initial participants, alas, went into a catatonic trance.
K&K write: “[Guessing processes] play a critical role when
evaluating the merit of competing theories, especially when
doing so on the basis of aggregate data.” But guesses, refusals,
and eccentricities, which fall into their category of “guesses”,
do not elucidate the mental processes underlying the testing of
hypotheses. Their analogs occur in other cognitive tasks, such
as syllogistic reasoning.

K&K claim that there is no clear rationale for treating cer-
tain selections as canonical and others as “idiosyncratic and
rare”. In fact, a clear rationale existed from the beginning: All

and only selections occurring more often than chance should
be treated as canonical. Three selections occurred more often
than chance in the initial studies (see above), and we added the
correct selection, in part because it is correct and in part be-
cause over 30% of participants made it in another early study
(Wason 1969). Subsequent experiments confirmed these four
selections as canonical, but they also raised the frequencies of
two other selections to a marginal status (of 6% over all con-
tents): q alone, and all four cards: pp qq (see Ragni et al. 2018,
Table 2). As Ragni et al. argued, good theoretical grounds
exist for rejecting these selections as idiosyncratic in the stan-
dard selection task.

K&K make three arguments for changes to the set of ca-
nonical selections. First, an experimental manipulation could
make a selection, such as q alone, occur more often than
chance. It might. But consider again the hypothesis that if
anyone has cholera then they have had contact with an infect-
ed person. To investigate it by studying only those who have
had contact with a cholera victim (q alone) would be stupid
because it would be impossible to discover that the hypothesis
is false. So, a manipulation that increases the frequency of this
hitherto negligible or non-existent selection may show only
that experiments can stupidify their participants. Second, an
exclusion of selections such as guesses could distort the inter-
pretation of thoughtful processes. We agree. Guessing can
yield a canonical selection, too. Some way to correct for this
problem is needed to assess the fit of a theory to data. But
more is at stake than goodness of fit. Experimental results can
refute theories. Third, the partial insight pattern, pqq, which
passes the criterion for a canonical selection, is no more fre-
quent than q alone or of all four cards, and so either the
prediction of canonical selections is false or else these two
selections should be included in the set. What this claim over-
looks is that the partial insight selection became the most
frequent of all in Wason’s (1969) study. And the model theory
allows that an explicit biconditional, if and only if p then q,
should lead to the selection of all four cards (see, e.g., Ragni
etal., Fig. 2), but none of the studies in our meta-analysis used
explicit biconditionals. Some of the everyday contents in se-
lection tasks may have suggested this interpretation, which
may explain the 9% selections of them (see ibid., Table 2).

The case for adding q alone and all four cards to the canon-
ical set rests on the frequencies of their selections in later
experiments. So, what happened to increase these frequen-
cies? Some studies may no longer have instructed participants
to be economical, i.e., to select only those cards relevant to
truth or falsity. When economy matters, no one selects all four
cards. A major change, however, was to test participants in
online studies. It led to a greater diversity of selections than in
face-to-face experiments. The median amount of statistical
information—a measure that we explain below—in the selec-
tions from the 89 face-to-face experiments with 4230 partici-
pants was 2.15 bits, whereas from the 10 online experiments
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with 3787 participants, the median was 2.67 bits (a highly
reliable difference, Mann-Whitney test, W= 172, p <.0002).
So, the selections in online studies are more idiosyncratic than
those in earlier studies, e.g., q alone now occurs whereas it
never occurred in the four initial experiments (see above). No
need exists to change the canonical set. Moreover, the addition
of new selections to it cannot rehabilitate any theories that fail
to predict the four original ones. The set is viable, and its
corroboration refutes 12 of the alternative theories.

Prediction 2: Choices in selections should
be dependent

Both the model theory and the inference-guessing theory im-
ply that some selections should be based on choices of cards
that are dependent on one another. In statistics, two events,
such as A and B, are dependent on one another if the proba-
bility of A does not equal the conditional probability of A
given B (see Feller 1957, p. 115). Hence, some studies used
correlations between different pairs of cards to confirm depen-
dency (see Ragni et al. 2018, for a review).

K&K argue that aggregate data of selections do not permit
inferences about subject-level dependencies. We agree. An
individual participant who makes a selection may have
thought or guessed. K&K illustrate their claim with a signifi-
cant correlation between the selections of two cards but from
data that can be split into two subsets that neither yield a
reliable correlation. We agree again: it can be dangerous to
evaluate dependency from correlations. But we have never
used them to assess dependency. We relied on a different
method (see Ragni et al. 2018).

Suppose you believe that people always select each card
independently of the others. You notice that two cards often
occur together in a selection so that, given their independence,
they should each occur without the other in appropriate fre-
quencies. Yet, they do not. And so you wonder about their
independence, and you are right to do so. Is there a way to
transform this thought experiment into a test that applies to all
the selections in an experiment?

There is. The test considers the probability in an experi-
ment of each possible selection, P;, where i denotes the ith
selection in the set of 16. It multiplies this ith probability by
its logarithm to the base 2: P;log,P;. The result is Shannon’s H,
the informativeness of each of the 16 sorts of selection. The
measure is additive, and their sum yields the amount of infor-
mation in the experiment as a whole:

H= —ZPiIOgZPi

where the minus sign switches the sign of the sum because log,
of a probability between 0 and 1 is a negative number. A simple
Monte Carlo procedure can make a wholly independent selec-
tion: it decides whether or not to choose a card for a selection
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solely from its overall probability of occurrence over all the
selections in an actual experiment, and it uses this procedure
on all four cards in order to create the selection. It does not
generate just one such selection; it generates the same number
of selections that occurred in the actual experiment. The infor-
mativeness (H) of this simulated experiment will tend to be quite
high because nothing constrains selections other than the indi-
vidual probabilities of the four cards. There are many possible
such simulations. So, the test generates 10,000 simulations of the
experiment. Their overall mean informativeness approximates to
the H for independent selections. In contrast, if the actual exper-
iment embodied dependent choices of cards, it will be less infor-
mative. In fact, the informativeness of the 99 experiments in the
literature—those that recorded the frequencies of all 16
selections—was often smaller than any of the 10,000 values in
their simulations. Some exceptions occurred, but overall, the
actual experiments were reliably less informative than their sim-
ulations embodying independence. Their reduced informative-
ness shows that the actual selections of cards were often depen-
dent on one another.

Can we divide an experiment yielding a lower H than the
mean of its simulations into two subsets that both yield higher
H’s than the means of their respective simulations? The addi-
tive nature of H makes such a division unlikely. But we tested
the possibility using an experiment yielding a lower value of
H than its simulations. A program split the experimental data
into two arbitrary subsets at random 10,000 times. In none of
these splits did both subsets yield H’s larger than their respec-
tive simulations based on independent selections. Hence, such
a split is unlikely to occur often enough to refute Ragni et al.’s
(2018) corroboration of dependent selections. It occurred in
experiments with the abstract selection task, with everyday
conditionals, and with the deontic version of the task (ibid.,
Table 3). The results corroborate both the model theory and
the inference-guessing theory and refute nine theories that do
not predict dependent selections.

Prediction 3: Salience of counterexamples should
increase the selection of pq for conditionals

The model theory predicts that manipulations that increase the
saliency of potential counterexamples should increase the
likelihood that participants make the correct selection of pq
for conditionals. K&K do not criticize this prediction, which
experimental results corroborate (see Ragni et al. 2018). But
they do claim: “there are many more reliable findings in the
Wason selection-task paradigm”. In fact, no findings from the
228 experiments appear to be either so large or so robust (see
Ragni et al. 2018, Table 4). Yet, ten theories of the selection
task fail to make the prediction.

In summary, the meta-analysis corroborated the model
theory’s three main predictions. Of the remaining 15 theories of
the selection task, 6 make none of the three predictions, 5 make
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one of the predictions, and 3 make two of the predictions. Strictly
speaking, the inference-guessing theory does not make the pre-
dictions, but it can tweak its free parameters to model them.

Evidence Against the Inference-Guessing
Theory

The model theory makes other predictions apart from its three
principal ones, and it is time to consider a further three of
them. Prompted by K&K’s critique, we have discovered
existing evidence that corroborates them, and that is contrary
to the inference-guessing theory.

Individuals Use the Meaning of a Hypothesis to Select
Evidence to Test It The alternative according to the
inference-guessing theory is that individuals make inferences
from the hypothesis. What is at stake is a participant selecting
an item of evidence, q, because its occurrence with p falsifies
the hypothesis, as opposed to selecting q because together
with the hypothesis if p then q it implies p. The two processes
are different: one depends on a counterexample to a meaning,
and the other depends on a modus tollens deduction, which
could be carried out—as Klauer et al. allow—using, not
meaning, but a formal rule of inference. No experiments seem
to have addressed which of the two processes occurs. But,
when participants had to justify their selections, their reasons
for selecting p tended to be to determine whether the hypoth-
esis was true, and their reasons for selecting q tended to be to
determine whether the hypothesis was false (Goodwin and
Wason 1972). They referred to truth or falsity rather than to
ponens and tollens. The phenomenon corroborates the model
theory but is contrary to the inference-guessing theory.

The Meaning of a Hypothesis Determines the Correct
Selection The correct selection for a conditional hypothesis
is pq. Why? According to the model theory, it follows from
the meaning of the conditional hypothesis (see Prediction 1
above). The inferences in the inference-guessing theory, how-
ever, neither identify the correct selection nor explain why it is
correct (see Fig. 1 below). Its authors presuppose the “logical-
ly correct solution” (Klauer et al., p. 680). But orthodox logic
has no need for examples of conditional hypotheses in order to
verify them, and so it leads to the “paradox” of confirmation
(Hempel 1945). A conditional hypothesis, such as:

If anything is a black hole then it has a massive gravity

is equivalent in orthodox logic to:

If anything does not have a massive gravity then it is not
a black hole.

Koala bears do not have a massive gravity and are not black
holes, and so they corroborate the hypothesis about black
holes. Philosophers and others have sought to eradicate this
paradox. The model theory postulates a different meaning for
conditionals (see Prediction 1 above). Confirmation of a gen-
eral conditional hypothesis calls for at least one example of it
to exist—a black hole with a massive gravity, and for no
counterexamples to exist—black holes without a massive
gravity. Koalas are irrelevant. The selection task cannot dis-
criminate between this meaning for a conditional and its
meaning in orthodox logic. But the repeated selection task
can and does: people look for examples of a hypothesis, and
once they have found some, they switch to an exhaustive
search for potential counterexamples (Johnson-Laird and
Wason 1970b). The inference-guessing theory cannot predict
this exhaustive search. Likewise, it cannot predict the ability
of participants to explain the correctness of the selection pq
(Wason and Johnson-Laird 1972, p. 173-4).

A Partial Insight into Falsification of if p then q Can Lead to
the Selection of pqq This selection is a crucial test between
the two theories—a result of deliberation according to the
model theory, but a result only of “guessing” according to
the inference-guessing theory. Suppose an experimental ma-
nipulation made the partial insight selection the most popular
of all with a frequency so high, and with such a paucity of
other selections, that its lowly informativeness could not be a
result of independent guessing. The finding would bear out
the model theory, but refute the inference-guessing theory.
Wason (1969) reported such a result nearly 40 years before
the publication of the latter theory. Each of a series of experi-
ences, such as imagining what was on the other side of a card,
made participants in an experiment more likely to think of
counterexamples. By the end of the experiment, the most fre-
quent selection was the partial insight one (53% of partici-
pants), and the next most frequent was the correct selection
(31% of participants). The increase in the partial insight selec-
tion could not have resulted from independent guesses of each
card. And the final selections were far too dependent to result
from independent guessing.

Subjective reports, such as justifications of selections, are
indicative rather than decisive. The repeated selection task is
not the standard selection task. But the experimental manipu-
lation of the partial insight selection refutes the inference-
guessing theory, and the other results support its refutation.

Some Technical Nuggets in Fitting
the Theories to Data

Another way to assess theories is to determine how well they
fit data. The inference-guessing theory has ten free parame-
ters, but if a difference in fit between two theories depends
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Fig. 1 The tree for the inference-
guessing theory in Klauer et al.
(2007) in which we have crossed
out those branches we pruned,
and beneath it is the resulting
pruned tree in Ragni et al. (2018)
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only on four independent parameters for guessing each card,
then its results would hardly be conclusive. Indeed, when
K&K made such a fit by adding four parameters for guessing
to the model theory, they report that the two theories were
“succeeding and failing together”. In contrast, Ragni et al.
(2018) simplified the inference-guessing theory in order to
compare its fit with the model theory’s for all 228 experi-
ments, and the model theory showed signs of a slightly better
fit. But K&K made some cogent criticisms of our procedure,
and here we reply to their main points.

1. Our pruning of their multinomial processing tree to ad-
dress only canonical selections “risks distorting and/or limit-
ing [its] ability to account for data at large”. There is no need
to reduce the number of its parameters to fit it to the four
canonical selections. The only issue “[is] the inability to ob-
tain a unique set of best fitting parameters ...”. But had we
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neither pruned its tree nor introduced a new path for the se-
lection of pqq, we could have been accused of not enabling the
theory to make the canonical selections. Figure 1 presents
both Klauer et al.’s original tree and the result of our pruning.
It shows that the pruning itself did not err. The pruned tree
yielded an excellent fit to the data, and its only major problem
was that it had one more free parameter than the model theory.
Given that the original inference-guessing theory uses five
parameters to infer selections, no simple way exists to fit the
theory to just the four canonical selections, one of which it can
only guess.

2. In our fittings of the two theories, they both have too
many parameters for four canonical selections (i.e., they are
“over-saturated”). The model theory has two sets of best-

fitting parameter values (i.e., it is not “identifiable”), and

the simplified inference-guessing theory’s “range of
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predictions completely covers the space of possible outcomes™
(i.e., it is not “testable”). Despite their criticism, K&K went
ahead to fit the model theory to the results of each experiment
(see point 5 below). And one of our aims was to use the
pruned tree as a baseline for comparison with the model
theory.

3. Our goodness-of-fit results reported in terms of root
mean square errors are “simply impossible”, and must favor
the inference-guessing theory rather than, as we reported, the
model theory. The results are in Table 6 of Ragni et al. (2018),
and as its caption states, they are the output of the L-BFGS-B
algorithm. So, they are not impossible, but the outcome of a
standard procedure. The values of the root mean square errors
are miniscule, but not zero, and do not favor the inference-
guessing theory.

4. Our use of the Bayesian Information Criterion, BIC, to
select between the two theories is invalid because the model
theory has more than one set of optimal parameter values and
the inference-guessing theory completely covers the possible
outcomes for the canonical selections. Nonetheless, it is clear
that the model theory is more parsimonious than the
information-guessing theory, even with a guessing set of pa-
rameters added to it.

5. K&K made a new fit of the model theory to the canonical
selections in each experiment separately, and “in the cases
where fit is not perfect, [the model theory| always underesti-
mates the probability of responses p and pqq and overesti-
mates pq”. We are grateful to K&K for showing that the
model theory’s algorithm may not yield the best three-
parameter fit of the data. But perhaps they have corroborated
that the partial insight pattern, pqq, is a consequence of
deliberation.

The Resolution of the Controversy

We agree with K&K on some matters, such as the need to
winnow theories, and the importance of empirical results in
refuting theories. One nub of the disagreement is how to treat
guessing. It is one of the “defining characteristics” of the
inference-guessing theory, which fits it using independent free
parameters. The theory emphasizes the goodness of fit of the-
ories to data. But, oddly, it does not allow that one card in a
selection is inferred while another is guessed—a contingency
that any theory of guessing in cognitive tasks should consider.
By contrast, the model theory discounts any selection that
occurs less often than chance because it is unlikely to illumi-
nate the mental processes of selecting potential evidence. The
theory instead aims to explain the remaining selections, even
though some instances of them may result from guessing.
K&K argue that to focus only on four canonical explanations
is to exclude 26% of data from theoretical explanation, and so
it is risky. But Klauer et al. (ibid. p. 691) consigned about 25%

of their data to independent “guessing”. The difference is that
the model theory drops these selections from any further anal-
ysis: there is no need to try to explain noise whereas the
inference-guessing theory does not try to explain them. It fits
their frequencies with four free parameters. In the initial face-
to-face studies of the task, only 10% of selections occurred
less often than chance. So, a pertinent factor is whether or not
an experiment was online, which yielded a greater percentage
of such miscellaneous selections.

Three theoretical differences separate the two theories.
First, like some other accounts, the inference-guessing theory
bases thoughtful selections on inferences from a card and the
hypothesis whereas the model theory uses the meaning of the
hypothesis to search for examples and counterexamples. The
reasons that participants gave for their selections favor the
model theory. Second, the inference-guessing theory cannot
predict that participants make an exhaustive search for coun-
terexamples in the repeated selection task. And it cannot pre-
dict individuals’ ability to explain what counts as a correct
selection—it does not distinguish correct selections in any
way. The model theory’s use of the meanings of hypotheses
predicts both phenomena. Third, the inference-guessing theo-
ry treats the selection of pqq as a result of guessing; the model
theory treats it as a result of thought. The evidence corrobo-
rates the model theory: in one study, it was the participants’
most frequent selection.

To model data, both theories use free parameters, which
can take any value in order to yield an optimal fit. And free
parameters are a telltale sign of theorists’ ignorance. Imagine,
say, that all and only those individuals with no training in logic
interpret if p then q as implying its converse, and so as a result,
they choose p and q according to both the inference-guessing
theory and the model theory. We could then replace the cor-
responding free parameter in both theories with a decision
based on evidence about an individual’s training. In our col-
lective ignorance, however, both theories suffer for using a
free parameter instead. So, the number of free parameters in
amodel is an index of ignorance: theorists do not know which
course of thought participants will take. With many free pa-
rameters, it becomes all too easy to fit erroneous theories to
data. The inference-guessing theory fits the data well, and yet
it is wrong. In the epigraph to our paper, the great polymath
von Neumann embodied his skepticism about free parameters.
With no theory at all, they can take values to fit an elephant. It
was not empty boasting (see Mayer et al. 2010).

K&K write: “we are still far from a much-needed theoret-
ical winnowing.” But, if all the past experiments—with
enough participants to populate a small town—still leave us
with 16 theories of the selection task, then we are doing some-
thing wrong. We are engaged, not in science, but in a scholas-
ticism impervious to empirical refutation. A warning sign,
perhaps, is when experimental paradigms replace cognition
as the target of theorizing. Theories of the abstract selection
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task alone do not comprehend the testing of hypotheses. They
need reformulations for new sorts of hypotheses, for the ef-
fects of feedback, for the reframing of hypotheses, and so on.
In another half century, thanks to their “purposely vague” and
“charitable” natures, they will have metastasized still further.
Three dozen theories will not add up to a science of hypothesis
testing.

Conclusions

Ragni et al. (2018) eliminated all but one alternative to the
model theory. K&K’s critique has led us to a refutation of that
one alternative, the inference-guessing theory. So, after
50 years of research, do cognitive scientists at last understand
the mental processes underlying the selection of potential
evidence to test hypotheses? We hope so, and with one caveat,
we believe so. The repeated selection task shows that
naive individuals grasp what is at stake in testing a hypothesis.
They first check for examples of the hypothesis, but once
they have some, they switch to an exhaustive search for
counterexamples—an exact corollary of the goals for induc-
tion (see Nicod 2000/1924, p. 219). The role of intuition in
yielding examples and deliberation in yielding counterexam-
ples is a theme of the model theory that runs through its ac-
counts of many sorts of reasoning (e.g., Johnson-Laird et al.
2015). A typical abstract version of the selection task bam-
boozles people. They have not thought about testing an arbi-
trary hypothesis before, and they have only one chance to get
itright. They rely on their intuitions, or else on rarer occasions,
they opt out—they guess or balk at the task. Yet, depending on
their cognitive ability and the contents or framing of the task,
they may go beyond intuition to deliberate about possible
counterexamples. For the caveat, we are indebted to K&K:
the algorithm implementing the model theory may need cor-
rection. For K&K, the next step may be to show that an alter-
native multinomial processing tree yields a better fit. For the
model theory, the next step may be a better algorithm. Any
computable theory can be implemented in many different
algorithms—a denumerable infinity of them, and so it is im-
portant not to confuse theory with algorithm (Johnson-Laird
1983, p. 7). The two research goals need not be at odds; they
are compatible. Theories for precise fits of data could be better
if they embodied precise accounts of mental processes.
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