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Abstract
A major hypothesis about conditionals is the Equation in which the probability of a conditional equals the corresponding
conditional probability: p(if A then C) = p(C|A). Probabilistic theories often treat it as axiomatic, whereas it follows from
the meanings of conditionals in the theory of mental models. In this theory, intuitive models (system 1) do not represent
what is false, and so produce errors in estimates of p(if A then C), yielding instead p(A & C). Deliberative models
(system 2) are normative, and yield the proportion of cases of A in which C holds, i.e., the Equation. Intuitive estimates
of the probability of a conditional about unique events: If covid-19 disappears in the USA, then Biden will run for a
second term, together with those of each of its clauses, are liable to yield joint probability distributions that sum to over
100%. The error, which is inconsistent with the probability calculus, is massive when participants estimate the joint
probabilities of conditionals with each of the different possibilities to which they refer. This result and others under
review corroborate the model theory.
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Introduction

Someone with only the most modest knowledge of
probability mathematics could have won himself the
whole of Gaul in a week.
— Hacking (1975, p. 3).

What are the probabilities of the following two conditionals?
If the next throw of this fair dice yields an even number then it
will be a six.
If the US vaccination program fails then the Democrats
will lose control of the Senate.

We invite readers to estimate both probabilities. In a
distinction due to Tversky and Kahneman (1983), the first
example calls for an extensional estimate, and the second
example calls for an intensional estimate. Extensional es-
timates are based on knowledge of the frequencies with
which mutually exclusive alternatives occur, or on the
ability to infer them. Naive but numerate individuals can
infer that given a fair toss yielding an even number, the
probability of a six is 1/3, where “naïve” means only that
they have not studied the probability calculus. Unique
events have no prior frequencies of occurrence, and so
they call for intensional estimates, which are based on
evidence and sometimes heuristics, such as how represen-
tative an entity is of a category (Tversky & Kahneman,
1983). They can yield a “conjunction fallacy” in which
the probability of a conjunction, p(A & C), is judged to be
higher than the probability of a conjunct, p(A) – a differ-
ence that is inconsistent with the probability calculus
(Kolmogorov, 1950).
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The contrast between extensional and intensional in-
ferences mirrors the long controversy over whether prob-
abilities refer to frequencies (e.g., Venn, 1888) or to
degrees of belief (e.g., Ramsey, 1990a/1926). Some psy-
chologists reject the probabilities of unique events as
meaningless or outside the scope of the probability cal-
culus (e.g., Cosmides & Tooby, 1996; Gigerenzer, 1994).
Most others assume that individuals estimate their degree
of belief in a proposition as a subjective probability.
Quite how individuals make such estimates, however, is
also a matter of debate. Controversy promotes research.
And there are many papers on these issues (see, e.g.,
Baron, 2008; Nickerson, 2015).

The present article concerns the probabilities of condi-
tionals, which it defines as any sentence with the gram-
matical structure in English of if A then C, where A and C
are declarative clauses, or any sentence equivalent in
meaning, such as, C if A. Its goal is to determine how
people make such estimates, and whether they equal the
corresponding conditional probabilities. This relation is
the well-known Equation, so named in Edgington
(1995), but a psychological conjecture first mooted in
Rips and Marcus (1977):

The Equation: p if A then Cð Þ ¼ p CjAð Þ:

The content or context of conditionals can elicit vari-
ous estimates of their probabilities (Dieussaert et al.,
2002). Because the probability of any assertion depends
on its meaning, the present article begins with the main
theories of their meanings: standard logic, probability log-
ic, and mental models. Logic includes the sentential cal-
culus that deals with conditionals, and we use the term
“logic” throughout this article to refer to this standard
account (e.g., Jeffrey, 1981). It treats conditionals as ma-
terial implications, and so if A then C equals not-A or C,
where “not-A” denotes the negation of A, and the disjunc-
tion is inclusive, i.e., both its clauses can hold. Probability
logic differs (Adams, 1998). It is based on the assumption
that the meaning of a conditional is the conditional prob-
ability in the Equation. The model theory has developed
over many years, and so we distinguish its basic princi-
ples, applying to any sort of reasoning, from its account
of the meanings of conditionals, which in the theory’s
original formulation were consistent with logic, but which
later diverged from it in a radical way. The theory predicts
that intuitions yield conjunctive estimates of the probabil-
ities of conditionals, but deliberations yield normative es-
timates that fit the Equation. The paper aims to assess all
the experiments in the literature that have investigated the
Equation. Finally, it discusses the implications of their
results for the different theories of conditionals.

Conditionals in logic and probability logic

In logic, the partition of a compound assertion, such as if A
then C, is the set of all possible conjunctions of affirmations
and negations of its two clauses:

A & C
A & ¬ C

¬ A & C
¬ A & ¬ C

where the symbol “&” here and later denotes logical conjunc-
tion in whichA&C is true in caseA is true andC is true, and is
otherwise false; and the symbol “¬” denotes negation in which
¬ A is true in case A is false, and vice versa. The probabilities
of the four conjunctions in the partition for a compound asser-
tion make up its joint probability distribution (JPD). In the
probability calculus, their sum equals 100%, because they
are mutually exclusive and exhaustive (Kolmogorov, 1950).
A subadditive function in arithmetic is one whose value as a
whole is less than the sum of the values of its parts, for exam-
ple, square-roots are subadditive: √(4 + 4) < √4 + √4. In con-
trast, probabilities are additive, not subadditive:

p(A) = p(A & C) + p(A & ¬ C).

Hence, p(A & C) can never be greater than p(A), and the
conjunction fallacy is subadditive: it yields a JPD that can
sum to 100% only if one or two of its cases have negative
probabilities. Estimates that contain no conjunctions, howev-
er, can also produce a subadditive JPD, for example, p(A),
p(C), and p(C|A). “Support” theory, which is due to Tversky
and Koehler (1994), predicts that when descriptions are
unpacked into separate disjunctive components, their proba-
bility estimates are subadditive, for example, probability esti-
mates of deaths from heart disease, from cancer, or so on, are
subadditive in comparison with those of deaths from natural
causes. What determines the probability of a conditional, as
we mentioned, is its meaning, and so we now consider condi-
tionals in logic.

Conditionals in logic In (standard) logic, conditional assertions
are truth functional, that is, their truth or falsity depends solely
on the truth or falsity of their clauses. Hence, material condi-
tionals, as they are known, are true for any case in their parti-
tion except the one in which their if-clause is true and their
then-clause is false (see, e.g., Jeffrey, 1981, Ch. 4). Table 1
presents the corresponding truth table for the material condi-
tional, and it also presents other tables that we come to, by and
by. Some theorists accept the material conditional (e.g., Grice,
1989; but cf. Byrne & Johnson-Laird, 2019). It implies that
the probability of a conditional, If A then C, should equal the
probability of an inclusive disjunction, not-A or C, which has
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the same truth table. But, in fact, estimates of the probability of
a conditional seldom equal those of a material conditional. It
also yields striking “paradoxes,” for example, the falsity of its
if-clause ensures that it is true (see Table 1).

Philosophical theories have treated conditionals as refer-
ring to “possible worlds” (Lewis, 1973; Stalnaker, 1968).
Roughly speaking, a conditional is true if in a world in which
its if-clause is true, and which otherwise doesn’t differ from
the actual world, its then-clause is also true. We go no further
into details, because there are too many possible worlds rele-
vant to the real world, and so – to paraphrase Partee’s (1979)
assessment – they cannot fit in anyone’s head.

The probabilistic meaning of conditionalsAn influential view
about conditionals is in a footnote describing what is now
known as Ramsey’s test (1990b/1929, p. 155). We quote it
in its entirety:

If two people are arguing “If p, then q?” and are both in
doubt as to p, they are adding p hypothetically to their
stock of knowledge and arguing on that basis about q; so
that in a sense “If p, q” and “If p, not-q” are contradic-
tories. We can say that they are fixing their degree of
belief in q given p. If p turns out false, these degrees of
belief are rendered void. If either party believes not p for
certain, the question ceases to mean anything to him
except as a question about what follows from certain
laws or hypotheses.

The test concerns estimates of the subjective probabili-
ties of conditionals, not their meanings, which Ramsey
took to be truth-functional (but cf. Ramsey, 1990c). If so,
why should people ignore the cases in which the if-clause
is false, when they argue about conditionals? Ramsey’s
answer, we suspect, would be that the claim is obvious.
His test is central to recent probabilistic theories (p-
theories) of conditionals (e.g., Evans & Over, 2004;
Fugard et al., 2011; Jeffrey, 1991; Oaksford & Chater,
2007; Over, 2009). These proponents refer to their theories

as instances of a “new paradigm” in which subjective prob-
abilities replace logic in theories of human reasoning. Not
every probabilist, however, accepts the Equation implicit
in Ramsey’s test (e.g., Howson & Urbach, 1993, p. 82;
Lewis, 1976). So, it is an assumption, not a fact.

Some theorists have transformed Ramsey’s test into a se-
mantics in which a conditional, If A then C, has only a partial
truth table. It is true in case A& C holds, false in case A& ¬ C
holds, but void in any other case, i.e., in any case in which A is
false. One theorist has sometimes treated “void” as though it
were a third truth-value (de Finetti, 1992/1936; see also
Baratgin et al., 2013; Politzer et al., 2010), but at other times
as an epistemological attitude (de Finetti, 1995/1935). Others
have treated “void” as signifying that the truth function for
conditionals returns no truth-value. Table 1 presents this
partial truth table.

The partial truth table yields “paradoxes” too. As Table 1
shows, a conditional that is true implies that its if-clause is true
too; likewise, a conditional that is false implies that its if-
clause is true. People judge certain conditionals to be true,
and certain others to be false (Quelhas et al., 2017). A condi-
tional that they judge to be false is, for example:

If Anna has flu, then she is healthy.
And so it follows from the partial truth table that Anna has flu.
Such inferences are absurd.
The partial truth table treats cases of ¬ A as void, and so they
are irrelevant to the probability of a conditional. It therefore
depends on the following ratio

p if A then Cð Þ ¼ p A&Cð Þ
p A&Cð Þ þ p A&:Cð Þ

And the ratio equals p(C|A). An ingenious solution that yields
the Equation without treating the cases of ¬ A as void is
Jeffrey’s (1991) probability table. He argued that confi-
dence in a conditional is defined in a table of probabilities
(see Table 1), not truth-values (see also Sanfilippo et al.,
2020). It blocks the “paradoxes” of the partial truth table,
but does not state the cases in which conditionals are true
or are false.

Table 1 Three truth tables and one probability table for a conditional, If
A then C: The material conditional of logic, the partial truth table with no
truth-values when a conditional’s if-clause is false (de Finetti, 1995/

1935), the model theory’s truth table, and Jeffrey’s (1991) table of
probabilities.Each row shows a conjunction in the partition, and, given
its truth, the value of the conditional according to the four tables

The partition of cases The material conditional The partial truth-table The model truth-table The Jeffrey table of probabilities

A C True True True 1

A ¬ C False False False 0

¬ A C True Void Possibly true &
possibly false

p(C|A)

¬ A ¬ C True Void Possibly true &
possibly false

p(C|A)
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Adams (1998) goes one step further. He argues that condi-
tionals do not have truth values. They have only imitation
ones, which he refers to as “ersatz.” He assumes that the
meaning of a conditional is the conditional probability in the
Equation. A corollary of this account is that conditionals can-
not be embedded within other compounds or negated, because
the negation of p(C|A) make no sense (ibid., p. 115).
Likewise, inferences concerning conditionals cannot be valid
in logic: they can only be probabilistically valid (p-valid). P-
validity requires the uncertainty of a conclusion not to exceed
the sum of the uncertainties of its premises, where the uncer-
tainty of a proposition, A, equals 1 – p(A). Various inferences
are valid in logic but not p-valid, such as the contrapositive
inference: If A then C; therefore, If not-C then not-A (see also
Bennett, 2003).

Although p-logic avoids the paradoxes of material condi-
tionals and of partial truth tables, it suffers from implausibility.
Conjunctions and disjunctions have truth values, whereas con-
ditionals do not (ibid., p. 187). And, as we have already illus-
trated, people do judge conditionals to be true or false. The
following disjunction in logic:

Wordsworth wrote The Ancient Mariner, or Coleridge
did, or both of them did

refers to the same cases as the conditional:

If Wordsworth didn’t write The Ancient Mariner then
Coleridge did.

They both rule out only one case in the partition – the one in
which neither of the two poets wrote the poem. Individuals
infer conditionals from disjunctions and vice versa (e.g.,
Richardson & Ormerod, 1997). So, they infer an assertion
with a truth-value from one without a truth value.

The cure seems no better than the earlier paradoxes, and it
postulates the Equation without providing any grounds for it.

A characteristic of everyday reasoning, which was first
addressed in artificial intelligence
(AI), is its non-monotonicity (or defeasibility):

The term “non-monotonic logic” covers a family of for-
mal frameworks devised to capture and represent defea-
sible inference. Reasoners draw conclusions defeasibly
when they reserve the right to retract them in the light of
further information (Strasser & Antonelli, 2019).

Despite aiming for a defeasible logic, Adams failed to produce
one. Hence, some p-theorists have imported the non-
monotonic system P from AI into p-theories in order to cap-
ture defeasibility (e.g., Gilio, 2002; Pfeifer & Kleiter, 2003.)

In logic, given that A implies C, it follows that if A then C.
An “inferentialist” account of the meaning of conditionals

proposes the converse relation: a conditional is true given that
A implies C, though the relation can be inductive rather than
deductive (Douven, 2015; Douven et al., 2018; Ryle, 1949).
This hypothesis may explain the finding that the Equation
seems to apply only when the probability of A is reasonably
high (Skovgaard-Olsen et al., 2019). When it is zero, the con-
ditional probability p(C|A) is undefined in the probability cal-
culus. The inferentialist hypothesis is a component of a prob-
abilistic account of conditionals, but, unlike p-logic, it allows
that conditionals can have truth values. Inferentialism, how-
ever, yields its own “paradox.” It implies that conditionals can
be used only to assert inferential relations. Yet, If the company
is in debt then it’s not in their books, makes no such assertion.
Debts don’t imply omission from the books.

Some proponents of p-theories take for granted the
Equation as embodied in p-logic (see Johnson-Laird et al.,
2015a, for a review). Some derive it from the partial truth table
(e.g., Fugard et al., 2011; Oaksford & Chater, 2007), or from
de Finetti’s notion of a conditional event (Fugard et al., 2011;
Pfeifer, 2013; Pfeifer & Kleiter, 2007), or from the Jeffrey
table (Coletti & Scozzafava, 2002). And it is to the credit of
the approach that it has led to a burgeoning of studies of the
probabilities of conditionals, and some of its proponents liken
it to a paradigm shift in science (but cf. Knauff & Castañeda,
2021). To succeed onKuhn’s (1962) account, a new paradigm
needs to solve puzzles that its predecessors could not. But, as
we show, the new paradigm has yet to do so, and it has even
led to some results for which it offers no adequate explanation.

The theory of mental models

The great pioneer was Craik (1943), who argued that people
base decisions on their mental models of the world. A more
recent theory differs from Craik’s conjecture. This theory pro-
poses that perception and comprehension of discourse yield
mental models, and so they also underlie reasoning (Johnson-
Laird, 1970, 1975), whereas Craik took reasoning to depend
on verbal rules (ibid., p. 79). The newer theory treats models
as iconic insofar as possible, i.e., their structure corresponds to
the structure of what they represent, whereas Craik took
models to have only the same input-output relations as what
they represent, for example, Kelvin’s tidal predictor, which
has a structure remote from the moon, the earth, and the tides
(ibid., p. 51). And, the newer theory allows for more than one
model of premises, whereas Craik made no provision for mul-
tiple models.

In this section, we begin with the model theory’s original
basics, then introduce its progressive steps from logic to de-
feasible reasoning, from material conditionals to conjunctions
of possibilities, and from modal logics to a semantics of pos-
sibly A in which it presupposes possibly not-A. These three
steps, which each have empirical corroborations, lead to its
account of the probability of conditionals and the Equation.
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The basics The original model theory postulated several
fundamental principles that still hold (see, e.g., Johnson-
Laird, 1983). Reasoning is a semantic process. Its goal is a
conclusion that maintains the meaning of the premises, and
expresses it in a parsimonious conclusion that is new, not
the regurgitation of a premise (ibid., p. 40). An inference is
valid if its conclusion holds in all the models of the pre-
mises, i.e., it has no counterexample, which is a model of
the premises in which the conclusion is false. Reasoning
has two principal levels of expertise (ibid., Ch. 6) in what
is now known as a “dual-process” theory. This idea is due
to Wason (1966), and it was first implemented in an algo-
rithm for his well-known “selection” task, which concerns
the selection of evidence to test conditional hypotheses
(Johnson-Laird & Wason, 1970). Its algorithm predicts nu-
merous subsequent results (Ragni et al., 2018), and is more
accurate than probabilistic accounts of the task (Evans,
1977; Kirby, 1994; Oaksford & Chater, 1996, 2007).
Psychologists later developed other dual-process theories,
for example, Evans (2008), Kahneman (2011), and Sloman
(1996); and the approach even has its critics (e.g., Keren &
Schul, 2009). Perhaps because Wason’s account did not
name two systems, i t has been overlooked (see
Manktelow, 2021, p. 3). So, the model theory refers to its
intuitive level as system 1, and its deliberative level as
system 2. System 1 lacks a working memory for interme-
diate results, which is available to system 2. As a conse-
quence, system 2 makes correct inferences. It is normative,
and decides for any putative inference whether its conclu-
sion is necessary, possible, or impossible, bearing in mind
the computational intractability of sentential reasoning
(Cook, 1971), i.e., as the number of clauses in an inference
increases, there comes a point where it is beyond the hu-
man brain to make the decision.

For a conditional, such as:

If it is raining, then it is hot

system 1 constructs two intuitive models (Johnson-Laird &
Byrne, 1991, p. 47):

raining hot
. . .

The first model represents the case in which it is raining and
hot – we use words in these diagrams for simplicity. The
second model, the ellipsis, has no explicit content, but allows
for cases in which it is not raining. The further premise:

It is raining

allows reasoners to drop the second model, and to draw the
conclusion of a modus ponens inference from the first model:

Therefore, it is hot.

Instead, the further premise for an inference of modus tollens:

It is not hot

calls for reasoners to drop the first model, but the ellipsis
yields no conclusion, and so they respond:

Nothing follows.

This response is outside logic, which allows a countable infinity
of valid conclusions from any premises, for example, a disjunc-
tion of the premises. System 2 can flesh out the intuitive models
above into explicit models of the conditional (ibid., 48):

raining hot

¬ raining ¬ hot

¬ raining hot

where “¬ raining” denotes: it is not raining. The premise for
modus tollens, It is not hot, eliminates the first and last
models, and so reasoners can infer from the second model:

Therefore, it is not raining.

So, modus ponens is easier than modus tollens, and mental
logic makes the same prediction, which experiments corrobo-
rate (e.g., Johnson-Laird & Byrne, 1991; Rips, 1994). The
difference

between the two sorts of inference is a robust result.
The model theory’s first basic prediction is:

1. More models mean more work: inferences take longer,
and are more prone to error.
A biconditional such as:

If, and only if, it is raining then it is hot

has only two explicit models:

raining hot

¬ raining ¬ hot

Hence, it follows that modus tollens should be easier to
infer from a biconditional than from a conditional. In contrast,
mental logic yields the same formal proof from both sorts of
premise (Rips, 1994, p. 178). Experiments corroborated the
model theory (Johnson-Laird et al., 1992).

The theory’s second basic prediction is:
2. Certain premises yield systematic fallacies (or illusory

inferences).
The prediction follows from the theory’s principle of truth,
which postulates that system 1’s intuitive models represent
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what is true and ignore what is false. The fallacies can be so
compelling that their system 2 corrections in a program
implementing the theory seemed at first like a bug (Johnson-
Laird & Savary, 1999). An early experiment tested extension-
al probabilities, such as:

If one of these assertions is true about a specific hand of
cards then so is the other:

There is a jack if and only if there is a queen.
There is a jack.

The participants tended to estimate the probabilities of a jack
and of a queen being in the hand as the same (Johnson-Laird
& Savary, 1996). It’s a fallacy, which follows from the intu-
itive model of both assertions being true:

jack queen

However, both assertions could be false. In which case, the
queen is bound to be in the hand, but the jack may not be.
Such “illusory” inferences are a telltale sign of the use of
intuitive models (Johnson-Laird et al., 2000).

The theory’s third basic prediction is:
3. The neglect of models of possibilities should yield errone-

ous conclusions that are consistent with the premises, but
that do not follow from them.

When there are many possibilities, it is easy to overlook one.
The results in the laboratory are conclusions that take only
some possibilities into account (e.g., Bauer & Johnson-
Laird, 1993; Johnson-Laird et al., 1992). The results in daily
life can be catastrophic, such as the capsizing of The Herald of
Free Enterprise, a cross-channel car ferry. Its master
overlooked the possibility that the bow-doors had not been
closed, and the sea rushed into the vessel (Johnson-Laird,
2012).

As the theory developed, it has maintained these basic pre-
dictions and corroborated them in many studies. Its starting
point was consistent with logic, and it treated the meaning of if
as a material conditional (Johnson-Laird & Byrne, 1991).
What changed are its semantics, its range of applications,
and its account of reasoning.

Defeasible reasoning The theory’s first step away from stan-
dard logic was to implement the defeasibility of inferences.
From indeterminate premises about spatial relations, reasoners
created a preferred model, which theymight adjust tomaintain
consistency with a later premise (Johnson-Laird & Byrne,
1991, Ch. 9; see also Ragni & Knauff, 2013). Robust facts
lead individuals to abandon even a valid conclusion, to amend
a premise to restore consistency, and to try to construct an
explanation to resolve the inconsistency (Johnson-Laird
et al., 2004). The mSentential program implementing the the-
ory carries out the same steps, which include assembling a

causal explanation in a probabilistic way from pre-existing
links in its knowledge-base (ibid., p. 661) Such explanations
tend to be rated as more probable than mere amendments of
premises (ibid., p. 654). Standard logic does not allow defea-
sible inferences, and AI systems do not generate explanations.
The theory accordingly predicts:

If a salient fact rebuts a conclusion, reasoners withdraw
it; amend a premise, if need be to restore consistency;
and try to explain the origins of the inconsistency.

Conditionals refer to conjunctions of default possibilities The
next step away from logic was to treat the models of condi-
tionals as referring to a conjunction of possibilities (see its
presage in Johnson-Laird et al., 1994, p. 735). The four cases
in a partition are mutually exclusive and so their conjunction is
a self-contradiction. But, the conjunction of their possibilities
is not contradictory, just as: It may rain and it may not rain is
consistent. Barrouillet and his colleagues corroborated this
account. They showed that when participants list what is pos-
sible given a conditional, If A then C, albeit with sensible
contents, they tended to list all the possibilities in the condi-
tional’s explicit models:

A C

¬ A ¬ C

¬ A C

and they listed the remaining case as impossible:

A ¬ C

So, the conditional refers to a conjunction of possibilities. And
the listing above is in the order in which children acquire
them. Very young children list only the first possibility, and
then acquire the others in the same order that adults list them
as shown above (e.g., Barrouillet et al., 2000). Analogous
listings of possibilities also occur for other sorts of assertions,
such as disjunctions (Hinterecker & Johnson-Laird, 2016).

One influential critique claimed that even though condi-
tionals in the model theory refer to possibilities (Johnson-
Laird & Byrne, 2002), “the extensional semantics underlying
this theory is equivalent to that of the material, truth-functional
conditional” (Evans et al., 2005, p. 1040). This claim is prov-
ably false. Barrouillet’s results showed that people make in-
ferences, such as:

If A then C.
Therefore, it is possible that A and C.

But, for a material conditional, the inference is invalid, as a
counterexample demonstrates. Suppose that A is impossible.
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It follows both that the material conditional is true (because
its if-clause is false, see Table 1), and that the conjunctive
conclusion is false (because A is impossible). The inference
leads from a true premise to a false conclusion, and so it
cannot be valid in truth-functional logic. As Johnson-Laird
and Byrne (2002, p. 673) wrote: “Conditionals are not truth
functional. Nor, in our view, are any other sentential connec-
tives in natural language.” Yet, p-theorists are incorrigible in
identifying the model theory as truth-functional (Evans &
Over, 2004, p. 152; Fugard et al., 2011; Pfeifer, 2013; and
more).

The possibilities to which a conditional refers each hold in
default of knowledge to the contrary. Such knowledge can
modulate the interpretation of a conditional both by preventing
the construction of a model and by adding information to a
model (Johnson-Laird & Byrne, 2002). To refute a conditional,
it is therefore necessary to rule out the default possibilities to
which it refers, and the critical one – for reasons we explain
below – is the first one, A& C. Studies have shown that people
make the different predicted interpretations of conditionals that
modulation can yield (e.g., Quelhas et al., 2010) and that they
judge certain conditionals to be true, and others to be false, from
the general knowledge they use in modulation (Quelhas et al.,
2017). The general principle is therefore:

Conditionals refer to a conjunction of possibilities that
each hold in default of knowledge to the contrary.

The theory extends to counterfactual conditionals, because
their meanings parallel those of factual conditionals (Adams,
1975; Byrne, 2005; Byrne & Johnson-Laird, 2019). A factual
conditional, such as:

If it rains today then it is hot

refers to the three possibilities and the one impossibility illus-
trated earlier. A counterfactual conditional is one in the sub-
junctive mood in English and in which its if-clause is known
to be false. The following conditional is therefore counterfac-
tual, and it parallels the preceding factual conditional:

If it had rained today (and it didn’t) then it would have been
hot.
It refers to a fact and to two counterfactual possibilities, which
are cases that were once possible but that did not occur
(Byrne, 2005; Johnson-Laird & Byrne, 2002), whereas what
was impossible given the factual conditional remains
impossible:

rain hot – a counterfactual possibility

¬ rain ¬ hot – a fact

¬ rain hot – a counterfactual possibility

rain ¬ hot – an impossibility

The definitive truth values of factual conditionals with false
if-clauses depend on parallel counterfactuals. You claim, for
example:

If it rains today then it will be hot

but we claim on the contrary:

If it rains today then it won’t be hot.

In fact, it doesn’t rain. In logical truth tables, the two condi-
tionals are both true; and in partial truth tables, they are both
void (see Table 1). But, in the model theory, they are each
possibly true, and their definitive truth value depends on
their parallel counterfactuals. Your parallel counterfactual
is: if it had rained today then it would have been hot; our
parallel counterfactual is: if it had rained today then it
wouldn’t have been hot. The definite truth of the condition-
al depends on which of the two counterfactuals is true
(Byrne & Johnson-Laird, 2019). It can be difficult to verify
counterfactuals, but it is possible in some cases, and they
do not always depend on experiments (pace Shpitser &
Pearl, 2007). Those who believe otherwise have never
watched a game of cricket, in which umpires make judg-
ments of whether the ball would have hit the wicket had the
batsman’s body not interposed itself. On appeal, the
Hawkeye TV system usually confirms these judgments.

Possibilities and their presuppositions The model theory has
long advocated that reasoning concerns possibilities (e.g.,
Johnson-Laird & Byrne, 2002). Its most recent assump-
tion provides a primordial basis for them. What underlies
possibilities and probabilities is the human ability, in al-
most any situation, to model a small number of exhaustive
and mutually exclusive alternatives. They can each be
realized in an indefinite number of different ways
(Johnson-Laird & Ragni, 2019). Toss a dice, and it has
six possible outcomes, but each of them as in a “possible
worlds” semantics can occur in infinitely many ways, de-
pending on the number of times the dice spins, its speed
of its rotation, its mass, and so on and on. This finite
foundation is common to all assertions of possibilities,
but modulation from content and context can yield differ-
ent interpretations (Johnson-Laird, 1978; Kratzer, 1977).
Hence, the modal auxiliary verb “may” is not ambiguous,
but it can be interpreted as deontic in giving permission,
epistemic in expressing a possibility or a probability based
on knowledge (Lassiter, 2017), or alethic in asserting a
relation, such as one between premises and conclusion.
When a fire-chief tells the inhabitants of a building after
a fire: You may go back to your apartments now, she can
be both giving them permission and asserting that it is
possible to do so (Johnson-Laird & Ragni, 2019).
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Presuppositions entered the model theory in its account of
negation (Khemlani et al., 2014), and their key feature is that
they hold for both an assertion and its denial.

The assertion:

It’s possible that it’s raining

presupposes:

It is possible that it is not raining.

If the latter weren’t possible, then it would be certain that it is
raining. Likewise, the latter assertion presupposes the former
one. Indeed, people accept the inferences from one to the other
(Ragni & Johnson-Laird, 2021). Modal logics deal with pos-
sibilities, and there is a countable infinity of them (Hughes &
Cresswell, 1996). Yet, all normal modal logics reject the pre-
ceding inferences as invalid.

The presuppositions of possibilities have consequences for
conditionals. A conditional, if A then C, refers to the possibil-
ity of A, and so it in turn presupposes the possibility of not-A.
The conditional therefore refers to the default conjunction of:

A C – a possibility

¬ A ¬ C – a presupposed possibility

¬ A C – a presupposed possibility

A ¬ C – an impossibility

The presuppositions also hold for the conditional’s denial:

It is not the case that if A then C.

So, it refers to the default conjunction of:

A ¬ C – a possibility

¬ A ¬ C – a presupposed possibility

¬ A C – a presupposed possibility

A C – an impossibility

These cases correspond to those for: if A then not-C, which is
the most frequent denial of a conditional (Handley et al., 2006;
Khemlani et al., 2014). It is now clear why the possibility of A
& C is crucial for if A then C. It is possible only if the condi-
tional is true; whereas A & ¬ C is possible only if it is false;
and the other two possibilities can hold in either case. Table 1
above states this truth table.

A conditional can be particular, in which case only one
case in its partition can hold; and a conditional can be general,
in which case several cases in if partition can hold, for
example:

If it is a black hole, then it has massive gravity.

Given that “it” can refer to anything, the conditional is true if
at least one black hole has massive gravity (A & C), and
there are no black holes without massive gravity (A & ¬
C). The other two cases in its partition can occur, and they
are consistent with the truth or falsity of this conditional.
These same conditions apply to the induction of scientific
hypotheses (Nicod, 1950, p. 219). This account also re-
solves the well-known “paradox” of confirmation
(Hempel, 1945). In logic, the preceding hypothesis implies
its contrapositive:

If it hasn’t a massive gravity then it is not a black hole.
A teddy bear doesn’t have a massive gravity and it’s not a
black hole, and so it corroborates this latter claim, and thus
in logic it also corroborates the hypothesis about black
holes. But, of course teddy bears imply nothing whatsoever
about the gravity of black holes. The very idea is absurd. In
the model theory, however, a teddy bear is consistent with
both the black-hole hypothesis, if A then C, and its denial,
if A then not-C. But, as an instance of ¬ A & ¬ C, it is
irrelevant to the confirmation of either the hypothesis or its
negation.

Presuppositions also solve a puzzling anomaly between
two sets of experimental results. When people have to
make a list of the possibilities to which a conditional
refers, they include those in which its if-clause is false
(e.g., Barrouillet et al., 2000), but when they chose evi-
dence relevant to the truth or falsity of a conditional, they
do not select these cases, which they judge to be “irrele-
vant” (e.g., Johnson-Laird & Tagart, 1969). So, cases that
are possible given a conditional are judged to be irrele-
vant to its truth-value. Psychologists have tried to recon-
cile this discrepancy (e.g., Barrouillet, Gauffroy, Lecas,
2008). But, the model theory resolves it in a general
principle:

Cases in which the if-clause of a conditional is false are
possible, but they are presuppositions, which hold
whether the conditional is true or false.

Earlier, we asked why people ignore the cases in which the if-
clause is false in Ramsey’s test – a question for which he
offers no answer. But, the reason is now clear: they ignore
these cases because they hold whether or not the conditional
is true. We now turn to the probabilities of conditionals.

The model theory of the Equation

Cases in which the if-clause of a conditional is false, namely,
¬ A & C and ¬ A & ¬ C, have no bearing on whether the
conditional is true or false, and they have no bearing on its
probability, either. Hence, its probability is embodied in this
relation:
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p if A then Cð Þ ¼ p A&Cð Þ
p A&Cð Þ þ p A&:Cð Þ

The right-hand side of this relation equals p(C|A), and so the
model theory implies the Equation. In general, there are three
main ways to infer a conditional probability. One is to use
Bayes’s theorem to compute the corresponding conditional prob-
ability, but individuals are unlikely to know its formula. Another
is to use the ratio on the right-hand side of the equation above as
advocated in the ratio procedure (Evans et al., 2003). And the
third depends on the subset procedure (Johnson-Laird et al.,
1999, p. 80). The latter is easy to overlook, but it has the singular
consequence that the conditional probability can be inferred in
ignorance of the probabilities of the two conjunctions above in
the ratio procedure. Their occurrence on the right-hand side of
the equation above simplifies to:

p A&Cð Þ
p Að Þ

Elementary arithmetic shows that this expression is equivalent
to the proportion of cases of A that are C. Consider the fol-
lowing problem, as an example. Among a number of shapes in
a box, there are three triangles, of which one is red. Someone
selects a shape at random from the box. It’s a triangle, so
what’s the probability that it’s red? The subset procedure
yields a conditional probability of 1/3. Yet, the statement of
the problem does not even fix the probability of selecting a
triangle, let alone the probabilities of the two conjunctions in
the ratio: triangle & red, and triangle & not red.

The subset procedure has a corollary. It fixes only part of
the JPD, and for the example above:

triangle red 1

triangle not-red 2

Subadditivity can occur only in one of the two remaining
cases in the JPD for shapes that are not triangles. Hence,
random assignments of probabilities to p(C|A), p(A), and
p(C), yield one subadditive entry in the JPD on a mean of
1/2 the occasions, discounting those in which p(A) is assigned
zero. In contrast, p(A & C) fixes only one case in the JPD, and
so subadditivity can occur in two of the three remaining cases
in the JPD. Hence, random assignments of probabilities to p(A
&C), p(A) and p(C) yield subadditive JPDs on 1/2 + 1/3 = 5/6
of occasions (Khemlani et al., 2015, Appendix B). Despite
their smaller likelihood of subadditivity, conditional probabil-
ities are on the borderline of individuals’ competence, whereas
those of conjunctions are beyond them. A true but telling
example is that two pilots disagreed about the probability that
both engines on a twin-engined plane fail. The ex-fighter pilot
said: double the probability of one engine failing; the glider
pilot said: halve it. For conditional probabilities, one difficulty
is to realize that they are required for certain problems, such as

Monty Hall’s famous dilemma (e.g., Bar-Hillel & Falk, 1982;
Falk, 1992; Johnson-Laird et al., 1999; Nickerson, 1996).
How people estimate them depends on whether they are mak-
ing an extensional or intensional estimate.

Extensional probabilities The model theory of extensional
probabilities was formulated in Johnson-Laird et al. (1999),
and it predicts that intuitive models should yield an erroneous
estimate of the probabilities of conditionals, whereas explicit
models predict normative estimates that fit the Equation. The
extensional probability of an event depends on the proportion
of equiprobable models from the partition in which the event
occurs, or, if relevant, on the sum of their frequencies or
chances (ibid., p. 68). People tend to use intuitive models
and so they are susceptible to illusory inferences about exten-
sional probabilities (ibid., p. 75 et seq.). Given a JPD, one can
in principle compute any conditional probability in its domain.
So, from a relevant JPD, the probability of this conditional:

If Pat has symptom A, then she has disease C

can be inferred in the three ways outlined earlier, which in-
clude the subset procedure. The intuitive models of the con-
ditional are:

Suppose that the JPD is stated in chances out of 10, and the
chance of the first of the two models above is 3. But, out of
how many? There are various possibilities, and the most sa-
lient is that the chances are out of JPD as a whole, and so the
probability of the conditional is 3 chances out of 10. Such
estimates are wrong: they are for the probability of the con-
junction that Pat has symptom A and disease C. In contrast,
System 2 can construct explicit models of the two relevant
possibilities, and import their chances from the JPD:

symptom A disease C 3

symptom A ¬ disease C 2

The subset of cases of symptom A in which disease C occurs
has 3 chances out of 5 (ibid., p. 79). The procedure is less
ambiguous than using intuitivemodels, but more complicated.
It calls for holding two models and their numerical chances in
mind, and computing the subset. So, it should take longer than
system 1’s estimate, which depends on only one model. In
sum, system 2’s estimates should yield values of p(if A then
C) that fit the Equation. They should take longer to make, be
less variable, and have a higher probability than those from
system 1.

system A disease C
. . .
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Intensional probabilities The model theory explains how peo-
ple make estimates of intensional probabilities (Khemlani
et al., 2011, 2012, 2015). Consider the probability of this
event:

The Democrats will lose control of the Senate in the mid-
term elections.
At the time of writing, people make estimates such as: “It’s
quite likely,” and even assign a numerical probability, such as:
60%. A major mystery is where the numbers come from in
intensional estimates of the probabilities of unique events.
Khemlani et al. (2015) proposed this solution: Individuals
use the same machinery as for extensional estimates, but use
instead models of evidence, and the numbers come from sub-
sets in these models. This solution is implemented for systems
1 and 2 in the mReasoner program at: https://www.
modeltheory.org/models/mreasoner/.

This is how the process works (ibid., p. 1227 et seq.)
System 1 adduces one or two pieces of relevant evidence,
represents them in intuitive models, and accumulates from
these models a single coarse, granular, and non-numerical
proportion. A relevant piece of evidence for the example
above is:

Most mid-terms result in a loss of Senators from the
administration’s party.

It yields a single intuitive model of a small but arbitrary num-
ber of mid-terms in which an appropriate proportion of losses
occurs (see Khemlani & Johnson-Laird, 2021, for models of
quantifiers such as “most mid-terms”). As the administration
is Democrat, and has a majority of only two senators, the
chances that the party loses control of the Senate have a sim-
ilar probability. System 1 represents the probability in an icon-
ic line:

|———— |

The left vertical represents impossibility, the right vertical
represents certainty, and the line between them represents a
probability as a direct analogy: the longer the line, the greater
the probability (ibid., p. 1229). Similar iconic representations
appear to be used by animals, infants, and adults in cultures
without numbers (see, e.g., Carey, 2009). Further evidence
can push the line one way or the other: it exists to accumulate
the effects of separate pieces of evidence on a probability. So,
the evidence that few administrations that enact popular mea-
sures lose senate seats, shrinks the line, so it is just above the
mid-point between the verticals. System 1 maps the line onto
an intuitive scale from impossible, nearly impossible, and so
on up to certainty, to yield an informal description, such as:
“It’s likely.” System 2, however, can measure the line and
transform it into a numerical probability, such as: 60%.

Analogous methods apply to estimates of the probabilities
of conditionals, such as:

If Biden’s vaccination program fails to eliminate Covid-
19, then in the mid-term elections the Democrats will
lose control of the Senate.

System 1 estimates the probability of the then-clause, p(in the
mid-term elections the Democrats will lose control of the
house), from models of relevant evidence as we described
above, and then treats the if-clause, Biden’s vaccination pro-
gram fails to eliminate Covid-19, as an additional piece of
evidence, adjusting the line to take into account its effects.
The estimate treats the if-clause as evidence, but neglects its
probability. In general, estimates of p(A), p(C), together with
an estimate of either p(if A then C) or p(C|A), are therefore
liable to yield subadditive JPDs. Because of the way in which
individuals estimate the probability of conjunctions, this ten-
dency is greater for p(A), p(C), and p(A & C), as corroborated
experimentally (Khemlani et al., 2015), and the difference
between conditionals and conjunctions is therefore indepen-
dent from unpacking a category (Tversky & Koehler, 1994).
In contrast, system 2 can use the subset procedure, which
yields a correct estimate from the numerical proportion of
A’s that support C in models of evidence. These estimates
yield additive JPDs.

The model theory’s predictions Extensional estimates of the
probability of a conditional derive from at least part of its JPD
or an equivalent. Intuitive models yield a conjunctive error;
deliberative models are amenable to the subset procedure, and,
whether extensional or intensional, should fit the Equation.
They should be slower, less variable, and more accurate than
intuitive estimates. And, intuitions should yield considerable
subadditivity when individuals estimate the joint intensional
probability of a conditional with each of the four cases in its
partition. We now assess whether experimental studies sup-
port these predictions.

Experimental studies of the probabilities of
conditionals

A skeptical, if not cynical, reviewer suggested that we selected
only some results from the literature, and adapted the model
theory retroactively to fit their results. In fact, we searched the
literature using both our knowledge and Google scholar, and
we have reviewed all the experiments on the Equation that we
could find. Their results are fairly uniform. The model theory
of extensional probabilities antedates all these studies
(Johnson-Laird et al., 1999), and led to Girotto and Johnson-
Laird’s (2004) experiments testing the Equation. Likewise,
the model theory of intensional probabilities (Khemlani
et al., 2015) was developed to explain estimates of conditional
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probabilities, not the probabilities of conditionals, and we did
not adjust it to hark back to earlier experimental results.
Instead, it inspired intensional studies of the Equation, includ-
ing two that yield results contrary to p-theories (Byrne &
Johnson-Laird, 2019; Goodwin & Johnson-Laird, 2018).

Probabilists who defend the Equation sometimes take for
granted that individuals know how to compute conditional
probabilities. In fact, their grasp is tentative at best, for exam-
ple, they often infer a conditional probability solely from its
converse (Johnson-Laird, 2006, p. 203). Nor do they know the
Equation. So, ideal tests of its predictions call for experiments
in which each participant makes numerical estimates of the
probabilities of conditionals and of the analogous conditional
probabilities. Our analyses include such studies, but also those
that neglect one side of the Equation.

Experiments on extensional estimates One of two pioneering
studies of the probabilities of conditionals is due to Evans
et al. (2003). They gave participants JPDs of the frequencies
of four sorts of shape in a pack of cards, and the overall
frequencies were either large or small. For example, the JPD
in one condition was:

1 yellow circle
4 yellow diamonds
16 red circles
16 red diamonds

The study assumed that participants knew how to compute
conditional probabilities, because it called for no estimates
of them. The investigators instead computed them from the
JPDs they presented in the experiment. The participants’ esti-
mates of the truth of a conditional, If A then C, such as:

If the card is yellow then it has a circle printed on it,

and the falsity of the conditional, summed to around 100%.
Likewise, as the frequency of A & C increased, so the partic-
ipants tended to estimate a higher probability for a conditional,
and as the frequency of A & ¬ C increased they tended to
estimate a lower probability. The participants differed one
from another in whether their estimates of the probability of
conditionals correlated more with the computed conditional
probability or more with the probability of the corresponding
conjunction in the JPD. When the probability of the if-clause,
A, was lower, the participants tended to rate a conditional as
less probable. The investigators’ explanation of this phenom-
enon and of the conjunctive estimates was based on their
version of Ramsey’s test. It calls for individuals to use the
ratio procedure, that is, to compare the probabilities of the
two conjunctions: p(A&C) and p(A&¬C). The investigators
argued that those individuals who forgot to use the second

conjunction were affected by the lower probability of A, and
tended to make conjunctive estimates of the probability of the
conditional. Edgington (2003) was skeptical about the ratio
procedure. Her skepticism is borne out in our earlier example
of the subset procedure: among a number of shapes, there are
three triangles, of which one is red. There is no need to com-
pute the ratio – indeed, it cannot be done from this description.
Individuals can use the subset procedure to estimate that given
a yellow card, the probability that it has circle on it is 1 in 5.
The rest of the JPD is irrelevant.

The other pioneering study is due to Oberauer andWilhelm
(2003), and they required their participants to estimate the
probabilities of conditionals and the corresponding
conditional

probabilities. They gave participants the frequencies of
each of the four cases in the JPD for a conditional concerning
letters and colors, for example:

If a card has an A then it is red.

In one condition, the JPD had these frequencies:

red 900

A ¬red 100

¬ A red 500

¬ A ¬red 500

Over four conditions, the frequency ofA& redwas either high
(as above) or low, and the ratio of p(A & red) to p(A & ¬ red),
which fixes p(red|A), was either high (90%, as above) or me-
dium (50%). In two such experiments, participants – adoles-
cents and adults, respectively – estimated the conditional
probability. They also estimated the probability of the condi-
tional based on a random sample of 10 cards from the popu-
lation as a whole. The reason for the random sample, as the
authors explained, is that the presence of a large number of
counterexamples “logically entails that the statement cannot
be true for the complete deck of cards” (ibid., p. 682). The
results showed that estimates for p(if A then C) were smaller,
and had a larger standard deviation, than those for p(C|A). The
first of these findings was also corroborated in a between-
participants design (Weidenfeld et al., 2005). The individual
raw data are no longer available (Oberauer, p.c.), but the paper
reports that 23% of adolescents and 52% of adults made esti-
mates that fit the Equation. As the investigators noted, some
peoplemade the conjunctive interpretation. But, they conclud-
ed: “… the probabilistic interpretation is the modal psycho-
logical meaning of if among logically untrained adults…”
(ibid., p. 690). The slight oddity here is their earlier appeal
to the use of a sample of cards, because the JPD shows that the
conditional cannot be true. We agree with the authors, but
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their action is contrary to the probabilistic interpretation of
conditionals: truth value is more important than probability.

A subsequent extensional study with estimates of both
sides of the Equation corroborated the two different sorts
of estimate, one conjunctive and one matching the
Equation (Oberauer, Geiger, et al., 2007). Individuals dif-
fered in which interpretation they tended to make.
Estimates that fit the Equation related to the participants’
judgments of truth and falsity corresponding to the partial
truth table (see Table 1), whereas conjunctive estimates
related to the participants’ judgments corresponding to a
conjunction. But, conjunctive estimates, as their third
Experiment showed, were not a result of an incomplete
ratio procedure in which individuals estimate only p(A &
C). So, these investigators proposed a theory combining a
probabilistic account with mental models to explain the
conjunctive errors.

Another way to examine extensional estimates is to allow
participants to infer their own numerical values from simple
descriptions. Girotto and Johnson-Laird et al. (2004) used
three such problems, of which one was:

There are three cards face down on a table: 3, 6, and 8.
Paolo takes one card at random, and then he takes another
at random. Vittorio says:

If Paolo has the 8 then he has the 3.

What’s the probability that Vittorio’s assertion is true?

The experiment used this indirect question, because
when participants thought aloud about a question such as:
What’s the probability that if Paolo has the 8 then he has
the 3? they at once transformed it into a demand for a
conditional probability: If Paolo has the 8, then what’s
the probability that he has the 3? Requests for the proba-
bility of a conditional tend to be ambiguous in this way
(Baron, p.c., March, 2021), and it is a factor likely to en-
hance estimates matching the Equation. There are only
three possible pairs of cards in the problem: 8 & 3, 6 &
3, and 8 & 6. Vittorio’s assertion implies that only the first
two of them are possible for Paolo’s selections, but he
cannot have chosen the remaining pair of 8 & 6. Hence,
given that he has an 8, the conditional probability that has a
3 equals 1/2. On separate trials with different cards, the
participants estimated the probabilities of conditionals
and the corresponding conditional probabilities. The ex-
periment investigated two other problems, and one of them
was a check that the participants understood the nature of
the task, because its conditional probability was equal to 1.
Most participants (88%) made this estimate. For the pres-
ent problem, however, more participants (50%) made a
conjunctive estimate than one satisfying the Equation

(42% of participants). Over all the problems, these results
were robust. Estimates for conditionals tended to be either
those for conjunctions or for conditional probabilities, but
most participants violated the Equation. The variation in
estimates of the probabilities of conditionals was greater
than the variation in estimates of conditional probabilities
– a difference attributable to the conjunctive estimates.

In a further extensional investigation, Fugard and his
colleagues studied estimates of the probabilities of condi-
tionals concerning the outcomes of throws of a dice
(Fugard et al., 2011). The experimenters computed the
conditional probability in the Equation rather than requir-
ing the participants to estimate it. Over the trials of the
experiment, the proportion of estimated probabilities of
conditionals matching the Equation increased from around
40% at the beginning, when the majority of estimates were
conjunctive, to around 80% by the end of the experiment.
The participants also made the conjunctive estimates faster
than they made the conditional probability estimates. How
the participants’ estimates of conditional probabilities
might have changed over the experiment is, of course, im-
possible to tell. And, alas, these authors take Johnson-
Laird and Byrne’s theory (2002) to be a fragment of clas-
sical logic in which the material conditional holds; cf. our
earlier proof to the contrary.

As we showed in the previous section, the model theory
made these predictions about extensional estimates of the
probabilities of conditionals:
& System 1’s intuitive estimates of p(if A then C) will be

close to p(A & C).
& System 2’s deliberations use the subset procedure, and so

they will yield the larger value, p(C|A), which fits the
Equation.

& Intuitive estimates will be faster but more variable than
deliberative estimates.
Overall, the extensional estimates bore out these pre-

dictions, and its account of conjunctive estimates is more
plausible than the alternative accounts. One surprise was
the people differ reliably in whether they rely on intui-
tions or on deliberations. But, the final study implied that
with repeated tests individuals switch from system 1 to
system 2.

Experiments on intensional estimates These estimates in ex-
periments concern unique events, for which no JPD or its
equivalent exists. Likewise, estimates of the intensional
probability of a conditional, p(if A then C), or of a con-
ditional probability, p(C|A), are subjective, and therefore
neither correct nor incorrect. But, when such an estimate
is combined with estimates of p(A) and p(C), they can
together yield subadditive JPDs in which the probabili-
ties sum to more than 100% contrary to the probability
calculus.
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A pioneering intensional study examined factual and coun-
terfactual conditionals (Over et al., 2007). These conditionals
concerned causal relations, such as:

If Adidas gets more superstars to wear their new football
boots then the sales of these boots will increase.

The experimenters chose conditionals for which p(A) and p(C)
were likely to have high or low probabilities, and they used all
four combinations in the conditionals in their study. The par-
ticipants estimated the probabilities of each of the four cases in
a conditional’s JPD with the proviso that the four values
should sum to 100% – an important constraint that prevents
subadditivity. In two experiments, the participants’ estimates
of the probability of conditionals correlated with conditional
probabilities that the investigators computed from the values
of the participants’ estimated JPDs. The investigators assumed
that the probability of a counterfactual conditional is the same
as the probability of the parallel factual conditional for which
the occurrence of the event in its if-clause is still an open
question (Adams, 1975; see also Elqayam & Over, 2013).
And they argued that their results supported Ramsey’s test,
and the partial truth table. They also reported a correlation
between the probabilities of conditionals and those of con-
junctions in the JPDs, but there was no reliable evidence for
a particular group of participants making conjunctive esti-
mates (ibid., p. 78).

Individuals have no overt knowledge of how to estimate
conditional probabilities. This point was borne out in Girotto
and Johnson-Laird’s (2004) extensional study in the previous
section. It was also corroborated in a subsequent study of
intensional estimates as elicited in questions, such as:

What is the chance that there will be a substantial de-
crease in terrorist activity in the next 10 years, assuming
that a nuclear weapon will be used in a terrorist attack in
the next decade?

The participants estimated p(A), p(C|A), p(C), and p(A|C)
for 16 different sets of contents (Khemlani et al., 2015). Their
first three estimates yielded a subadditive JPD on almost a
quarter of the trials, and 42 of the 43 participants made one
or more such estimates. As system 1 predicts, their estimates
of conditional probabilities, p(C|A), tended to rely on a small
adjustment to their estimates of p(C), which occurred on 63%
of trials. On the remaining trials, their estimates matched the
Equation. The first three estimates above allowed the fourth
estimate to be computed from Bayes’s theorem, but the cor-
relation between the two was tiny and not reliable. One strik-
ing finding was that participants’ estimates of p(C|A) were
faster after they had estimated p(A) and p(C) than before they
had made these estimates. P-theories have no ready

explanation for the difference, but the model theory does:
system 1 has to estimate p(C) in order to nudge its value to
obtain p(C|A).

In a further study to test the model theory, participants were
presented with conditionals, such as:

If the legal drinking age in the United States is reduced,
then there will be more traffic
accidents.

They judged their joint truth with each case in their partitions,
and they also estimated their joint probabilities with each case
in their partitions (Goodwin & Johnson-Laird, 2018). They
were not instructed that these probabilities should sum to
100%. The two tasks were presented all together on the same
webpage. The participants overall estimates of the joint prob-
abilities for various sorts of conditional conjoined with possi-
bilities in their partitions were as follows:

If A then C, and A and C: joint probability = 81%

If A then C, and not-A & not-C: joint probability = 60%

If A then C, and not-A & C: joint probability = 51%

These results show a striking degree of subadditivity. The
model theory predicts both this result and the reliable trend
over the three probabilities in terms of the availability of
models of conditionals (see, e.g., Barrouillet et al., 2000).
The participants also tended to judge that each pair could be
jointly true, which is a direct rebuttal of the partial truth table
but which corroborates the model theory’s truth table (see
Table 1).

A series of experiments examined pairs of everyday factual
and counterfactual conditionals (Byrne & Johnson-Laird,
2019), which the model theory implies have meanings run-
ning in parallel with one another. The participants estimated
the joint probabilities of a conditional with each of the four
cases in its partition. Both factual and counterfactual condi-
tionals yielded similar probabilities. For example, in one ex-
periment the mean estimates of the joint probability of If A
then C with each case in its partition were as follows, for
factual and counterfactual conditionals, respectively:

A C: 80% and 78% probabilities

not-A not-C: 64% and 64% probabilities

not-A C: 35% and 35% probabilities

A not-C: 28% and 27% probabilities

Sums of JPD: 207% and 204% probabilities

When participants in another experiment were told that
their estimates should sum to 100%, not surprisingly
subadditivity disappeared, but the same trend over the four
cases still occurred. The results corroborated intensional esti-
mates of conditionals as based on nudges of intuitive estimates
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of p(C), a procedure that is liable to be subadditive. Because
participants had to use such estimates four times on each trial,
the subadditivity was massive.

In a study of reasoning from conditionals, Singmann et al.
(2014) also asked their participants to make estimates of the
probabilities of various assertions relating to everyday condi-
tionals, such as:

If Greece leaves the Euro then Italy will too.

As our analysis of the raw data shows, the participants’
estimates of the probabilities of conditionals over three
trials were closer to their estimates of conditional proba-
bilities on a mean of 1.9 trials, and closer to their esti-
mates of conjunctions on a mean of 1.1 trials (both sorts
of estimate occurred reliably, Wilcoxon tests, z > 4.76 and
4.1, ps < .0001).

Theorists supporting the “inferentialist” view, which
we described earlier, have argued that the Equation holds
only in case A implies a greater likelihood of C than ¬ A
does, i.e., p(C|A) is greater than p(C|¬A), and so this
probabilistic relevance has a positive value (Skovgaard-
Olsen et al., 2016; see also Krzyżanowska et al., 2017).
When other investigators manipulated probabilistic rele-
vance numerically, varying the frequencies of the cases
in the partition, it had no reliable effects on estimates of
the extensional probabilities of conditionals (Oberauer,
Weidenfeld, & Fischer, 2007). But, Skovgaard-Olsen
and his colleagues manipulated it using, not numerical
means, but scenarios that should affect probabilistic rele-
vance. The probability of conditionals with a positive rel-
evance tended to match the Equation, those with a nega-
tive relevance elicited reliably lower matches, and those
with zero relevance had the lowest match of all. The par-
ticipants did not have to calculate the values of probabi-
listic relevance, and no evidence showed that they did.
Perhaps the scenario itself had a direct effect on the cred-
ibility of the conditionals.

As we showed earlier, the model theory made these predic-
tions about intensional estimates of the probabilities of
conditionals:
• Intuitive estimates nudge estimates of p(C), which can

yield a subadditive JPD.
• Deliberative estimates should tend to equal p(C|A).
• The four joint estimates of the probability of a conditional with

each case in its JPD should yield considerable subadditivity.
The experimental evidence corroborates this account, and

the judgements that conditionals can be jointly true with each
of the cases in their partitions rule out the partial truth table,
but corroborate the model theory’s truth table (see Table 1).
The most surprising result was that the vast subadditivity of
joint probabilities of conditionals with each case in their
partitions.

General discussion

Our goal is to reach a conclusion about how people estimate
the probabilities of conditionals. To get there, however, we
first assess the various assumptions underlying probabilistic
theories (p-theories). Some of their proponents have adopted
Ramsey’s test (e.g., Evans & Over, 2004; Oaksford & Chater,
2007, p. 109; Oberauer & Wilhelm, 2003). Some have
adopted in addition de Finetti’s partial truth table (e.g.,
Baratgin et al., 2013; Fugard et al., 2011). Some have adopted
Adams’s probabilistic logic (e.g., Evans, 2012; Oaksford &
Chater, 2007), though others reject it (e.g., Douven &
Verbrugge, 2010). And some have incorporated an AI non-
monotonic system P, which is not probabilistic (Kraus et al.,
1990), into their p-theories (e.g., Gilio, 2002; Pfeifer &
Kleiter, 2003).

These probabilistic theories have had the great merit of
inspiring research, and they have led to suggested rapproche-
ments with the model theory (e.g., Oaksford & Chater, 2010;
Oberauer, Geiger, et al., 2007). Their early developments,
such as an application to the selection task – in which partic-
ipants select evidence pertinent to testing general conditional
hypotheses (Oaksford & Chater, 1996) – seemed very prom-
ising. But, this development, unlike the model theory, failed to
predict some crucial phenomena (see Ragni et al., 2018).

P-theories and the model theory do agree on some funda-
mental points:
& Much reasoning in daily life is from uncertain premises –

probabilities (p-theories), or possibilities (the model
theory).

& Subjective probabilities correspond to degrees of belief.
& The Equation is normative: individuals ought to estimate

the probability of a conditional as equal to the correspond-
ing conditional probability.
The two theoretical approaches also agree that the percent-

ages of fits to the Equation in experiments are too small to
support the hypothesis that the everyday interpretations of
conditionals are always conditional probabilities. If less than
half the participants in a study make an interpretation, but it
increases during the course of the experiment (Fugard et al.,
2011), the participants are acquiring the interpretation. The
meaning of if, in contrast, is what they bring to the experiment.

The two approaches have different foundations. The model
theory is founded on possibilities that hold in default of
knowledge to the contrary. P-theories are founded on numer-
ical probabilities and the probability calculus. As a result, p-
theories have several quite profound problems, which we now
enumerate.

1. P-theories and the prediction of errors. A common ex-
tensional error is conjunctive: individuals estimate p(A &
C) instead of p(if A then C). Among p-theorists, only two
accounts of the error exist. In one, Evans et al. (2003)

Psychon Bull Rev



postulated a version of Ramsey’s test that yields the prob-
ability of a conditional from a ratio based on p(A&C) and
p(A & ¬ C), and they further proposed that some individ-
uals neglect the second conjunction, so, as a result, they
make the conjunctive error. But, as Edgington (2003)
remarked, this ratio hypothesis has neither a theoretical
nor an empirical motivation – beyond, perhaps, harking
back to the conjunctive error. In another account,
Oberauer and Wilhelm (2003) imported considerations
from the model theory to explain the error. In the current
model theory, however, conditionals refer to conjunctions
of three possibilities that each hold in default of knowl-
edge to the contrary. Only one of these possibilities is
unique to a true conditional (see Table 1), and the other
two are presuppositions that are also possible if the con-
ditional is false. The model of this unique possibility
yields the conjunctive error.

2. P-theories are not algorithmic. The various p-theories
specify that people compute probabilities, but none of
them proposes an algorithm for the underlying mental
processes. For example, no algorithm has ever been im-
plemented for a complete Ramsey’s test (pace Pearl,
2013). The algorithm should take as input an everyday
conditional, determine whether its if-clause is true or false
according to a body of knowledge, and if it is true, esti-
mate the probability of the conditional according to the
degree to which its then-clause holds in the same body of
knowledge. In case the if-clause is false, then all bets are
off: the test is void (see Ramsey’s footnote quoted earlier).
To decide whether the proposition in the if-clause is
at least consistent with what they know, people have
to compare it with their knowledge. But, the process
of assessing consistency is computationally intracta-
ble: it is NP-complete (Cook, 1971). Hence, with an
increasing number of propositions in the body of
knowledge that are relevant to an if-clause, the test
soon defeats any finite system, such as the human
brain. If p-theorists had formulated an algorithm for
the test, it would have forced them to constrain the
number of beliefs that it consults.

3. P-theories do not apply to deontic conditionals.
Numerical probabilities, unlike possibilities, cannot un-
derlie everyday speech acts that create conditional deontic
states (see Austin, 1975). For instance, a museum atten-
dant creates an obligation for you:
If you have a ticket for noon, then you must enter now.
The same obligation cannot be created in an assertion
referring, not to deontic possibilities, but to probabil-
ities. A reviewer suggested that “must” could have a
probabilistic interpretation, but the museum attendant
fails to create an obligation, or a speech act of any
sort , i f she asser ts instead its probabil is t ic
paraphrase:

If you have a ticket for noon, then you have a probability
of 100% of entering now.
Obligation does not guarantee certainty (Johnson-Laird &
Ragni, 2019): people often fail to meet their obligations.
Likewise, probabilities cannot paraphrase assertions that
create conditional permissions.

4. P-theories predict inferences that people reject. Here is
one crucial case in which the model theory predicts the
rejection of an inference that p-theories allow, but there
are others. The partial truth table in Table 1 predicts that
conditionals that have a truth-value must have true if-
clauses (see Table 1). Most people judge that this condi-
tional, for example:

If Mary has the flu then she is ill

is true without the need for any evidence (Quelhas et al.,
2017). They know that flu is an illness. So, according to
the partial truth table they should infer that the condi-
tional implies:

Mary has the flu.

The partial truth table has this consequence, because it
specifies that the only way in which a conditional can
have a truth-value is in case its if-clause is true.
Conversely, a conditional with a truth-value, whether
it is true or false, must have a true if-clause. The
partial truth table is therefore mistaken. And judg-
ments of joint truth of a conditional and cases in
which its if-clause is false are also contrary to the
partial truth table but corroborate the model theory’s
truth table (see Table 1).

5. P-theories fail to predict inferences that people make.
Here are two examples:
If the store sells shoes or sandals, then it follows that it
sells shoes.

and:
Few customers had sole or lobster.
Therefore, few customers had sole.

The model theory’s conjunctive analysis of disjunctions
predicts the first sort of inference, and people accept it.
The theory’s analysis of quantifiers allows certain of
them to refer to their own proper subsets (Johnson-
Laird et al., 2021; Khemlani & Johnson-Laird, 2021).
Yet, both these inferences violate p-validity and validity
in standard logic.

6. P-theories fail to predict subadditive estimates of
probabilities. Perhaps the most striking phenomenon that
the model theory predicts contrary to p-theories is the
subadditivity of certain joint probability distributions
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(JPDs). The process of estimating p(C) and then nudging
it one way or the other to estimate a unique p(C|A) can
lead with estimates of p(A) and p(C) to a predictable
subadditivity of the JPD (Khemlani et al., 2015). When
such estimates occur four times in a row to assess the joint
probabilities of a conditional with each case in its parti-
tion, the result is a massive subadditivity (Byrne &
Johnson-Laird, 2019; Goodwin & Johnson-Laird, 2018).
A tell-tale sign of the model theory is accordingly the
occurrence of subadditive judgments of probability in
the absence of either heuristic cues (Tversky &
Kahneman, 1983) or the unpacking of categories
(Tversky & Koehler, 1994).

7. P-theories and defeasible inferences.Defeasible reason-
ing appears to be ubiquitous in daily life, and at least some
p-theories, as we mentioned, have sought to allow it by
adopting system P (Kraus et al., 1990). However, defea-
sible reasoning in daily life differs in character from sys-
tem P: human reasoners tend to explain the origins of an
inconsistency rather than just to withdraw tentative con-
clusions. And they judge such explanations as more prob-
able than minimal edits to premises (Johnson-Laird et al.,
2004; Khemlani & Johnson-Laird, 2012).

8. P-theories and the automatic elicitation of
probabilities. In p-theories, conditionals automatically
elicit probabilities. In the model theory, probabilities have
no overt consequences unless the contents of a task or its
instructions elicit them, and its participants have at least a
rudimentary grasp of them. So, p-theories imply that no
essential difference should occur between these two
conditionals:

If a vaccine is approved then it is safe for human use and:
If a vaccine is approved then it is probably safe for human
use.
But, it follows from the model theory that they should elicit
different inferences. Goodwin (2014) corroborated the
model theory in a series of nine experiments: individuals
distinguished between the inferential consequences of the
two sorts of conditional. A pertinent finding also occurred
in a study of the strategies that individuals develop in order
to make simple inferences from premises including condi-
tionals (van der Henst et al., 2002). They thought aloud as
they inferred conclusions, and their protocols and the dia-
grams they drew showed that they developed various strat-
egies focused on the possibilities to which the premises
refer. About one in ten of their conclusions used modal
terms, such as may, might, can, could, and possibly
(Ibid., p. 548). They drew no conclusions referring to prob-
abilities. This failure is contrary to the automatic elicitation
of probabilities.
Table 2 summarizes the preceding analyses.
Proponents of the new paradigm have criticized the

model theory on several points (see Baratgin et al., 2015;

Oaksford et al., 2019), and its defenders have replied to
them (Johnson-Laird et al., 2015b; Hinterecker, Knauff,
& Johnson-Laird, 2019). The critics treat the subadditivity
of estimates of probabilities as peripheral; nonetheless they
are anomalies that p-theories cannot explain. The critics
call for a normative theory of human reasoning that is
complete and decidable. A formal calculus can be com-
plete, that is, any valid inference in the semantics of the
calculus is provable using the proof theory of the calculus,
and decidable, which means that a finite number of steps
determines whether or not it is valid (see, e.g., Jeffrey,
1981, p. 185). The model theory has only a semantic basis,
and so the question of its completeness is inapplicable.
System 2, however, is normative, and it yields a decision
about the status of a putative inference, bearing in mind
that even sentential reasoning soon becomes computation-
ally intractable with an increase in the number of clauses in
premises (Cook, 1971).

When a theory survives crucial comparisons with its rivals,
defenders of the latter theories seldom abandon them. Instead,
they try to devise experiments that refute the theory. So far,
they have not presented evidence of this sort against the model
theory. So, their criticisms concern, not what the theory pre-
dicts, but whether it has certain desirable properties. By far,
the most important of these properties is that the theory is open
to an empirical test that could falsify it. The model theory’s
three basic predictions, which we outlined earlier, are testable
in this way:

• Inferences dependent on multiple models should be
harder than those dependent on a single model. To determine
whether an inference depends on multiple models or a single
model, the decision rests on the program implementing the
theory, but it is obvious in many simple cases, for example,
conjunctions have one model, and conditionals have more
than one model.

• Inferences dependent on what is false should yield sys-
tematic fallacies (“illusory inferences”) in comparison with
those that do not. Again, the program predicts them: system
1 accepts conclusions that system 2 rejects.

• Errors arise from the neglect of possibilities – from
catastrophes in daily life to erroneous conclusions in ex-
periments, which, apart from illusory inferences, tend to be
consistent with models of the premises but not to follow
from them.

The underlying principles and their computer implementa-
tion made correct predictions about spatial and syllogistic rea-
soning, and later about reasoning about conditionals and other
compounds (see Johnson-Laird & Byrne, 1991).

The auxiliary principles of the model theory concern se-
mantics, such as that the meaning of a conditional refers to a
conjunction of default possibilities, in which those corre-
sponding to the falsity of the if-clause are presuppositions.
Robust results contrary to the resulting truth table and its
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predictions about the probabilities of conditionals would show
that this aspect of the theory is wrong.

The chief weakness of the theory is, in fact, that it does not
predict which individuals rely only on the intuitive models of
system 1 and which individuals also use the explicit models of
system 2. We were therefore forced to use a free parameter for
this decision in fitting the theory to data (e.g., Khemlani et al.,
2018). However, people of greater ability or training should be
more likely to use system 2 (see Stanovich, 1999), and thus to
estimate the probability of a conditional as a conditional prob-
ability rather than the probability of a conjunction (see Evans
et al., 2007). Likewise, the easier a problem – in terms of its
demands on the processing capacity of working memory – the
more likely individuals should be to engage system 2. For
instance, it is easy to enumerate the possibilities to which a
conditional refers, and adults typically list the three default
possibilities of the model theory (e.g., Barrouillet et al.,
2000). But, it is difficult to estimate the extensional probabil-
ity of a conditional, and a reliable proportion of participants
rely only on intuitive models, and somake erroneous conjunc-
tive estimates. P-theories aim to characterize human reasoning
and some of their proponents refer to the approach as the “new
paradigm.” The accumulation of anomalies such as those in
Table 2 suggests at the very least a need for a new new
paradigm.

Conclusions

People can have good lives without ever estimating a numer-
ical probability. Yet, most of them can assess intuitive proba-
bilities as in, “it’s highly likely.” This intuitive thinking (in
system 1) underlies even numerate individuals’ ability to

estimate the numerical probability of a conditional (in system
2). They can infer the probability of:

If the next throw of this fair dice yields an even number
then it will be a six.
They enumerate the subset of cases in which such a throw
results in a six. This subset yields an estimate that fits the
Equation in which the probability of a conditional equals the
corresponding conditional probability. Other individuals may
focus on the model of the one possibility that holds only if the
conditional is true: the fair dice yields an even number and it is
six. This conjunctive estimate is wrong. Deliberation takes
longer than intuition, but it yields more accurate and less var-
ied estimates. Individuals can also estimate the probability of a
conditional about a unique event, such as:

If the Prime Minister loses the next election, then he will
resign the party’s leadership.
They estimate the probability that the Prime Minister’s resig-
nation from the proportion of models of relevant evidence
supporting this event. They then nudge this probability a little,
one way or the other, depending on the effect of the loss of the
election, which they treat as though it were another piece of
evidence. Able individuals, however, can deliberate in order
to use the subset procedure.

The probability calculus supplements human intelligence
rather than underlies its deliberations. That may be a factor in
why it took so long to formulate the calculus as the epigraph
this paper makes clear. But, the human ability to manipulate
models of the world provides a basis for the development of
logic, the probability calculus, and their numerous
ramifications.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13423-021-01938-5.

Table 2 The main bases for probabilistic theories, and whether (+) or not (-) they and the model theory account correctly for phenomena concerning
conditionals. All theoretical bases in the table accept the Equation that p(if A then C) = p(C|A) as a norm

1. Predicts
conjunctive
errors in
estimates of
the Equation

2. Has an
algorithm
simulating
mental
processes

3. Applies to
creation of
permissions
and obligations

4. Free of the
‘p a r a d ox ’
that truth of if
A then C
implies A

5. Predicts
inferences
of the sort:
If A or B
then it
f o l l o w s
that A

6. Predicts
subadditive
JPDs

7. Predicts
explanations
in defeasible
reasoning

8. Has no
automatic
elicitation
of
probability

Ramsey’s test +* - - + - - - +

Partial truth table - - - - - - - +

Jeffrey table for probabilities - - - + - - - -

Adams’ probabilistic logic - - - - - - - -

de Finetti’s coherence and
system P

- - - - - - + -

Model theory of default
possibilities

+ + + + + + + +

* Evans et al. (2003) and Oberauer and Wilhelm (2003) offer explanations of conjunctive errors in estimates of the Equation (see text)
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