
International Journal of Child-Computer Interaction 31 (2022) 100443

a
t
u
f
p
f
c

A
i
s
s
c
h

h
2

Contents lists available at ScienceDirect

International Journal of Child-Computer Interaction

journal homepage: www.elsevier.com/locate/ijcci

Research paper

The causes of difficulty in children’s creation of informal programs
Monica Bucciarelli a,∗, Robert Mackiewicz b, Sangeet S. Khemlani c, P.N. Johnson-Laird d,e

a Dipartimento di Psicologia, Università di Torino, Centro di Logica, Linguaggio, e Cognizione, Università di Torino, Torino, 10124, Italy
b Department of Psychology, SWPS University of Social Sciences and Humanities, Chodakowska 19/31, 03-815 Warsaw, Poland
c Navy Center for Applied Research in Artificial Intelligence, Naval Research Lab, Washington, DC 20375, USA
d Emeritus, Department of Psychology, Princeton University, Princeton, NJ 08540, USA
e Department of Psychology, New York University, New York, NY 10003, USA

a r t i c l e i n f o

Article history:
Received 10 July 2021
Received in revised form 12 October 2021
Accepted 8 December 2021
Available online 14 December 2021

Keywords:
Computational thinking
Deduction
Informal programs
Kinematic simulations
Recursion

a b s t r a c t

We present a theory of the causes of difficulty in children’s creation of informal programs. Ten-year-
old children are able to devise such programs to rearrange the order of the cars in trains on a simple
railway track with a single siding. According to the theory, they rely on kinematic mental models
that simulate the required sequence of steps, and we devised a computer program, mAbducer, which
does so too in creating its own programs for such rearrangements. An experiment showed that a
simple measure of the complexity of its programs, based on Kolmogorov complexity, predicts ten-
year-olds’ difficulty in this task: the measure is the number of words in mAbducer’s programs for
solving the rearrangement in a minimal number of moves. Complexity, in turn, reflects the structure
of the required programs, which need loops of moves to be repeated, and often moves before and after
such a loop. Children’s errors are predictable in both their location and nature. Our results therefore
have implications for the assessment and pedagogy of computational thinking.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Informal programs underlie people’s everyday activities, such
s cooking from recipes, assembling kits, and making place set-
ings for a dinner table. Even five-year-old children are able to
nderstand ordered sets of instructions and to create them when,
or example, they have to construct a safe place for a little dog to
lay (Ehsan & Cardella, 2017). Likewise, the following instructions
rom a toy train set are an example of informal program that
hildren can follow in daily life:

(1) Unpack your train set.
(2) Visually inspect each piece for any obvious manufacturing

flaws.
(3) Start to build your railway track with the feeder piece.
(4) Connect pieces of straight track to the feeder piece until the

track has the length you desire.

s this example illustrates, an informal program is a description
n natural language of a series of instructions that use an input,
uch as the pieces of a toy railway track, to produce an output,
uch as a layout of the track. The example contains a recursive
omponent in the form of a loop as signaled by, ‘‘until the track
as the length you desire’’.

∗ Corresponding author.
E-mail address: monica.bucciarelli@unito.it (M. Bucciarelli).
ttps://doi.org/10.1016/j.ijcci.2021.100443
212-8689/© 2021 Elsevier B.V. All rights reserved.
Psychologists have investigated the comprehension and for-
mulation of informal programs much less often (fewer than
300 hits on Google scholar) than they have studied formal pro-
gramming (over 1500 hits on Google scholar). This neglect is
surprising, because informal programming is easier but illumi-
nates how people create programs, and so it can help to identify
the key abilities on which formal programs depend. These mental
processes are the foundation of computational thinking, and its
pedagogy and assessment is likely to depend on understanding
them.

The aims of the present paper are to elucidate computational
thinking, and they are mirrored in its plan. It begins with a
theory of how children who know nothing about programming
could rely on kinematic models to create informal programs. It
argues that the crucial component of programs, and the heart
of recursion, is a loop of instructions, and that the resulting
structure of a program yields the likely locus and nature of errors
in programming. It postulates that the difficulty in creating a
program depends on the complexity of its structure, for which
it proposes a measure based on Kolmogorov complexity (see Li &
Vitányi, 1997). Next, it presents an experiment in which children
had to devise informal programs to rearrange the order of cars
in toy trains on a railway track. Its results show that a measure
of complexity predicts the likelihood that the children erred, that
their use of loops correlates with the accuracy of their programs,

and that children’s errors are systematic rather than haphazard.

https://doi.org/10.1016/j.ijcci.2021.100443
http://www.elsevier.com/locate/ijcci
http://www.elsevier.com/locate/ijcci
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijcci.2021.100443&domain=pdf
mailto:monica.bucciarelli@unito.it
https://doi.org/10.1016/j.ijcci.2021.100443


M. Bucciarelli, R. Mackiewicz, S.S. Khemlani et al. International Journal of Child-Computer Interaction 31 (2022) 100443

d
w
w
i
p
r
f
a
f
d
(
f
i
d
a
p
B
e
i
a
c

o
t
t
o
t
e
n
u
(
i
n
c
i
i
p
l
t
w
w
i
(
f
c
f

d
i
t
e
t
e
a
l
t
t N
Finally, the paper draws some conclusions from this research
about the testing and development of children’s computational
thinking.

2. Recursion and the theory of informal programming

2.1. The formulation of programs

Computer programming depends on two sorts of reasoning:
eduction and abduction. Deduction is the process of inferring
hat follows from premises, and so it is essential for testing
hether a program is correct. Programmers infer from various

nputs the consequences of each step in a program, and its com-
onents, in order to determine whether they correspond to the
equired outputs. However, it is impossible to deduce a program
rom a description of what it is supposed to compute and ex-
mples of its required outputs. This conclusion follows at once
rom the fact that no general deductive procedure can even
etermine whether or not certain loops of instructions ever halt
see, e.g., Johnson-Laird et al., 2021). Programming calls instead
or abduction, that is, inferences that go beyond the premises to
ntroduce at least one novel concept, not explicit in either the
escription of the required computation or its examples. Given an
ppropriate description of these concepts and the required com-
utation, it is always possible in principle to deduce a program.
ut, from the standpoint of cognitive science, this maneuver
vades a crucial question: how does human thinking abduce new
deas? Computational thinking is therefore founded on deduction
nd abduction, so that ‘‘their solutions can be represented as
omputational steps and programs’’ (Aho, 2012, p. 832).
Any computable function has in principle an infinite number

f different programs for its computation. Many of them are
rivial variants of one another, but a major difference concerns
he implementation of recursion. In programming, recursion is
ften thought of as a highly specialized definition of a function
hat calls itself, i.e., it is self-referential (see, e.g., Johnson-Laird
t al., 2021). The task of devising such functions is difficult, if
ot impossible, for ten-year-olds (Dicheva & Close, 1996), and
nderstanding how they work is difficult for eleven-year-olds
Kurland & Pea, 1985). The original concept of recursion, however,
s in the theory of computability, and it concerns the definition,
ot of programs, but of the functions that they compute. This
oncept of recursive functions translates into a much simpler
dea than programs that call themselves—the idea of a loop of
nstructions. Primitive recursion, which suffices for all informal
rograms and nearly all formal programs, is equivalent to a for-
oop in which instructions are repeated for a given number of
imes. Certain functions, however, cannot be computed in this
ay. They call for a while-loop in which instructions are repeated
hile a given condition holds. These loops can also be used

nstead of for-loops to compute primitive recursive functions (see
Johnson-Laird et al., 2021), for a primer on these matters). The
undamental abduction in computational thinking is therefore to
reate an appropriate loop of instructions if the computation of a
unction requires it.

According to the theory of mental models, deduction and ab-
uction in programming rely on kinematic models, which unfold
n time in the same temporal order as the sequence of events that
hey represent (Johnson-Laird, 1983, p. 423). These processes are
asier to grasp from a concrete example, and so we will illustrate
hem using the environment in our experiment (see Khemlani
t al., 2013). It consists of a railway track with cars that can move
long the track and onto and off the siding. One track runs from
eft to right (hereafter, left track and right track, respectively), and
he siding can be entered only from left track and exited only
o left track. The environment can be presented in a computer
2

program, which we use in studies of adults (Khemlani et al.,
2013). But, in studies of ten-year-old children, we used the toy
railway shown in Fig. 1. Only three moves are allowed in order
to rearrange the order of the cars in a train, where n denotes one
or more cars:

R n: Move n cars from left track to Right track.
S n: Move n cars from left track to the Siding.
L n: Move n cars from the siding back to the Left track.

The participants moved cars for themselves in becoming familiar
with the set up, but they were not allowed to move them when
they devised programs for rearrangements.

An infinite number of rearrangements exist in principle. One of
them reverses the order of the cars in a train, so that, for instance,
their order ABCDEF on left track is rearranged to FEDCBA on right
track. A program to do so makes no use of the letters on cars,
which are to help participants to keep track of the whereabouts
of the cars, but depends solely on the relative positions of cars,
e.g., the car at the end of a train in a reversal, A, becomes the
head of the train in its rearrangement. Alternative proposals of
how people comprehend informal programs suggest that the
creation of a reversal program might depend on assertions in
the ‘‘language of the mind’’ to represent the state of the railway
and knowledge of recursion, and then the use of formal rules of
inference to infer a solution (see, e.g., Pylyshyn, 2003). However,
the model theory postulates instead that individuals envisage the
effects of moves using a kinematic mental model. So, to compute
the reversal above, they realize that they cannot move A over to
right track to be at the head of the rearranged train, because the
other cars are in the way. The first step must therefore be to move
these other cars onto the siding so that they are out of the way.
The effect of the move is shown in this diagram:

A[BCDEF]–
which is similar to the state of the kinematic model that the
computer program mAbducer uses (see below): it represents A
on the left track, BCDEF on the siding which the square brackets
demarcate, and ‘–’ as the empty right track. The rest of the
reversal consists in moving car A on the right track:

–[BCDEF]A
and then in moving each car, one at a time, from the siding to left
track and then over to the right track, resulting in the required
solution:

–[ – ]FEDCBA
The sequence of moves yielding this solution is as follows, where
N is the number of cars in the train:

S(N − 1) R1 L1 R1 L1 R1 L1 R1 L1 R1 L1 R1
S(N − 1) refers to moving one less than the number of cars in
the train to the Siding, and R1 refers to moving one car to the
Right. The preceding sequence describes the required number
of repetitions of L1 and R1 moves for a train of six cars, but a
program could instead describe them in a loop.

Many programs, such as this one for a reversal, need a loop
if they are to apply to trains of any length. Hence, the use of
a loop in the formulation of a program calls for a major shift
in computational thinking. Not only does the program work for
trains of any length, but it also is more parsimonious for a train
of a fixed length. When children simulate a rearrangement, and
grasp that it calls for a sequence of moves to be repeated more
than once, they may be able to describe the sequence in an
explicit loop. The larger the number of cars in a rearrangement,
the fewer the words in a program using a loop of moves, and so
children should be more likely to have the insight to use them.
Loops put a greater load on working memory in deducing the
consequences of a program (e.g., Bucciarelli et al., 2018), but they
may improve the accuracy of programming.

A program for a reversal using a for-loop is as follows, where
is the number of cars in the train:
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Fig. 1. A toy train with six cars, the track, and the picture of the required rearrangement, used in the experiment.
w
s
i
n
h

S(N − 1) – move N-1 cars from left track to the siding.
R1 – move one car from left track to right track.
For (N − 1)
times: L1 R1.

– for N-1 times, move one car from the
siding to left track and then over to right
track.

aive programmers who devise a correct for-loop may be sur-
rised to learn that to determine its required number of repeti-
ions calls for them, in effect, to solve two simultaneous linear
quations. But, a while-loop should be easier to devise, because
t calls for programmers only to note the conditions in which the
oop is entered, and in which it halts. For a reversal, a while-loop
s repeated as long as there is at least one car on the siding. So,
ts program is as follows:

S(N − 1)
R1
While at least 1 car is on the siding:

L1
R1.

The discovery of loops is the essential abduction in creating a
rogram for a rearrangement.
As we have mentioned, we devised a computer program,

Abducer, which itself could solve rearrangements, create pro-
rams for those depending on a single loop, and deduce their
onsequences—all for trains with any finite number of cars. Its
ource code in Common Lisp is available at: http://mentalmodels.
rinceton.edu/programs/mAbducer-1.0.lisp. It uses kinematic sim-
lations to create its programs using both for-loops and while-

loops, and it also translates the latter into informal English (see
Table A.1 in Appendix A for examples of all three sorts of its
program for each of the problems in our experiment reported
below). It bases its programs on solutions that it discovers to have
the smallest number of moves—a task that is feasible for small-
scale problems. It uses the same method for all rearrangements
including reversals: it searches for loops in sequences of moves
that solve a rearrangement, and for the required moves, if any,
before and after a loop (for the details, see Johnson-Laird et al.,
2021).

Our previous studies showed that adults who know nothing
about computer programming can abduce informal programs
for rearranging trains of any length, and they can deduce their
consequences for a given train (Khemlani et al., 2013). Ten-year-
old children have the various abilities needed for these tasks:
they can carry out means-ends analyses (e.g., Kuhn, 2013), plan
(e.g., Aamodt-Leeper et al., 2001), and make mental simulations
(e.g., Ianì et al., 2020). Indeed, when we tested such children,
we discovered that they could also devise informal programs and
deduce their consequences (e.g., Bucciarelli et al., 2016, 2018).

They were therefore the participants in our present experiment. i

3

2.2. The complexity of programs

Our experiment examined the following five sorts of rear-
rangement.

Input Output Our name for the rearrangement
ABCDEF BADCFE Swap adjacent pairs
ABCDEF FEDCBA Reversal
AABBCC ABCCBA Make palindrome
CCBBAA ABCCBA Two-loops palindrome
ABCDEF ACEBDF Parity sort

Previous studies showed that children and adults can create
some recursive programs more easily than others. The differ-
ences tended to be systematic, e.g., most children can infer a
program for a reversal, but few can infer one for a parity sort
(Bucciarelli et al., 2016). The difficulty of finding the moves for
a rearrangement depends largely on the number of moves it
calls for, e.g., a reversal, is quite difficult to solve, because of the
number of moves it calls for (see, e.g., Khemlani et al., 2013). In
contrast, the principal source of difficulty in abducing a program
to make the rearrangement does not depend on the number of
moves it elicits. It seems to depend on the complexity of the
program. But, how is this factor to be assessed? We explored
a number of ways to measure it, including the nature of the
working memory required to carry out the program, the number
of loops it calls for, and the number of times a rearrangement
has to be repeated to get back to the original order of the train
(Johnson-Laird et al., 2021). However, the simplest and easiest
to assess was a version of Kolmogorov complexity, K-complexity
for short. It uses the number of words in a program written in a
standard programming language as the measure of the program’s
complexity (Li & Vitányi, 1997). We used the number of words
in mAbducer’s translations into informal English of its while-loop
programs for the five sorts of programs in our experiment (see
Table A.1 in Appendix A).

2.3. Errors in informal programs

Errors could occur at any step in the creation of a program. The
first step for a programmer is to understand what the program
is intended to compute. Some rearrangements, such as reversals,
make it obvious. Others are less transparent, such as the parity
sort:

ABCDEF ⇒ ACEBDF
here the double arrow represents the function—from the initial
tate of the train to its required final state. It calls for all the cars
n odd-numbered positions, ACE, to be behind all the cars in even-
umbered positions, BDF. No systematic study, as far as we know,
as compared the difficulty of understanding what a program

s supposed to compute from the presentation of examples of

http://mentalmodels.princeton.edu/programs/mAbducer-1.0.lisp
http://mentalmodels.princeton.edu/programs/mAbducer-1.0.lisp
http://mentalmodels.princeton.edu/programs/mAbducer-1.0.lisp
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its computation. A verbal description of the required function
is likely to be helpful, but it is also likely to present clues to
the required informal program. Hence, in our experiment, we
eschewed such descriptions in favor of a presentation of examples
of input and required output. And we asked our participants to
describe their understanding of the nature of the rearrangement.

The next major step in creating programs for the five rear-
angements above is the abduction of loops. People often err. The
heory predicts that they are more likely to do so for programs
ith higher K scores. Their errors could be arbitrary, so that the
nly way to simulate them would be to make a random move in
program, and to do so with the same probability that an error
ccurs among the participants. Yet, individuals differ reliably in
heir ability to create accurate programs (see, e.g., Bucciarelli
t al., 2016), and errors may tend to occur at particular places
n the formulation of a program. Accurate programs for the five
orts of rearrangement above tend to have three principal stages
see Table A.1 in Appendix A): pre-loop instructions, one or more
oops, and post-loop instructions. Some of these stages are not
equired for certain programs, e.g., swap adjacent pairs has only
loop of instructions for its minimal solution. The three stages
ield potential places for sources of error (see also Appendix B
or their occurrence in programs for particular rearrangements):

1. The pre-loop moves. Only two sorts of initial move are
possible, S or R, though the number of cars in a move can vary.
Likewise, unless the first instruction is an R move, there are
three sorts of second instruction. Hence, it should be harder to
formulate a correct second instruction than a first instruction.
Errors in general are more likely in this stage, because it sets up
the environment for a loop.

2. Repetitions in a loop. When the instructions in a loop concern
the same car, then individuals are more likely to describe the loop
correctly than when the instructions concern different cars in the
loop. For example, the description of a loop such as L1 R1 in a
reversal should be likely to be correct, because the instruction
calls for a single car to be moved from the siding to left track
and thence to right track. In contrast, the description of an S1 R1
loop in a parity sort (see Table A1) should be less likely to be
correct, because its instructions call for one car to be moved to
the siding, and then a different car to be moved to right track. To
formulate the required loop, the programmer has to change focus
back from the siding to left track, and to formulate an instruction
concerning a different car. This difference should also occur when
a program merely repeats the same sequence of moves more than
once instead of formulating an explicit loop.

3. The post loop moves. After participants have described a loop
r an equivalent sequence of repetitions, they may forget where
hey are in formulating the program. Hence, they may perseverate
ith the loop, terminate it too soon, or describe an erroneous
ost-loop move. Perseveration is likely when at the end of the
oop there are still cars on the left track. Otherwise, termination
f the program is likely.
We turn now to the experiment that we carried out to test the

heory’s predictions.

. The experiment

The experiment called for ten-year-old children to devise their
wn rearrangement programs using the railway domain. The
articipants were children at this age because, as we pointed
ut earlier, they have all the abilities needed to devise infor-
al programs, e.g., they can plan and they can make kinematic
imulations (Bucciarelli et al., 2016). But, they are more likely
o err than adult programmers, and the experiment aimed to
nvestigate errors. The experiment was designed to test whether
-complexity predicted children’s difficulty in devising accurate
rograms, whether there was any relation between their use of
oops and the accuracy of their programs, and whether their
ystematic errors corroborated the model theory.
4

3.1. Method

3.1.1. Participants
After their parents had given their informed consent, 28 fifth-

grade children (15 females and 13 males; mean age = 10;4 years,
sd = 0.3) attending two schools in Turin, Italy, took part in the
xperiment. The schools did not include courses in program-
ing and, as we confirmed, none of the participants had taken
uch courses elsewhere. The experiment had the approval of the
thical Committee of the University of Turin.

.1.2. Design and materials
The children acted as their own controls and had to formulate

rograms for the five rearrangements shown above (see Table A.1
n Appendix A for the programs that mAbducer devised). The
xperiment used a toy train on a wooden track with a siding, and
he cars in the train had letters as labels (see Fig. 1). For each
earrangement, the children first devised a program for a train of
ix cars and then immediately afterwards a program for a train of
ight cars. This second program was prefaced with the additional
nstruction to make a short rule to rearrange the train, which
imed to encourage children to abduce a more parsimonious
escription, such as a loop of instructions. Each child carried out
he five sorts of rearrangement in a different random order.

.1.3. Procedure
The children were tested individually in a quiet room and in

he sole presence of the experimenter. They began by learning
he three rules for moving the cars, and how to describe moves
sing only the number of cars in a move and not the letters on
he cars. For each problem in the experiment, the child saw the
nitial arrangement of the cars on the left track and the required
earrangement of the cars depicted in a photograph behind the
ight track. We chose to use only examples of the input and
utput, because a description of the rearrangement could bias
he participants to use the same terms in their program, so that
hey parroted parts of the question back in their programs (see
ane et al., 2001). However, before the children tried to create
ach program, they were invited to reason about the difference
etween the initial and final arrangements until they noticed
he relevant differences. The children with the assistance of the
xperimenter, if necessary, noticed the following aspects of the
earrangements:

• the cars are swapped round two by two (swap adjacent
pairs),

• the cars are reversed in order (reversal),
• the first adjacent pair of cars with the same labels, CC, is in

the center, then on their sides
there are the cars of the second pair, then those of the third
pair (make palindrome),

• the last pair of cars, CC, moves to the center, then on their
sides there are the cars of the pair
that comes after, then those of the last pair (two-loops
palindrome),

• the cars in even-numbered positions, BDF, move in front of
those in odd positions, ACE (parity sort).

his procedure and the examples of each rearrangement sufficed
or most participants to appear to understand their task.

The experimenter read the instructions to each child, and the
ey instruction (translated from the Italian) was:
Try to tell me in words, without moving the cars, how would
you form this train [in the photo]. Remember not to use the
names of the cars, but tell me how many cars move from
one part of the track to another.
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Table 1
The percentages of accurate programs that the children in the Experiment (N = 25) devised for the five sorts of
rearrangements of trains of six cars, trains of eight cars, and overall, and the K-complexities of correct programs,
i.e., the numbers of words in minimal informal programs using while-loops (see Table A.1 in Appendix A).
Sorts of rearrangement Percentages of accurate programs K-complexities

Trains of six cars Trains of eight cars Overall

Swap adjacent pairs 68 72 70 38
Reversal 40 60 50 40
Make palindrome 44 24 34 44
Two-loops palindrome 56 24 40 48
Parity sort 24 28 26 54
The children spoke their descriptions aloud, move by move. When
they had finished their description of a program for six cars, the
experimenter added two cars to the train on the left track, and
said:

Now, we make this train longer. It is the same train as before,
just longer; it has eight cars. And the cars have to be
rearranged in the same way as before. Can you make a short
rule to rearrange the train? A rule that could rearrange the
train even if it was longer than eight cars, a train with any
number of cars in it.
We video-recorded the experimental sessions, and two in-

ependent judges coded the recordings to make explicit each
nstruction in the program that a child described. The judges
dentified correct and incorrect instructions. For a more refined
ssessment of the accuracy of a program, they also scored the
umber of correct R moves prior to the first erroneous R move.
eaders will recall that an R move—to the right of the track—
annot be undone. Hence, this number provides a finer-grained
easure of accuracy than whether or not a program is correct:
ven erroneous programs can have some correct R moves. The
umber of correct R moves, however, depends on the number of
ars in a train, because a longer train can call for programs to
ake more R moves than those for a shorter train. We therefore
onverted the number of correct R moves into percentages, where
correct program has a 100% correct R moves, and a program
ith an erroneous first R move has a 0% correct R moves. In
ase an informal program exploits a loop, it can contain the
ame number of instructions for both six cars and eight cars. If
participant made a redundant adjacent pair of moves, such as
3 R1, instead of a single R4 move, they were still counted as four
orrect R moves.
The judges also noted the occurrence of any loops of moves,

oth explicit loops and implicit loops in repetitions of two or
ore moves, and distinguished three sorts of explicit loops:

• While-loops specified the termination condition in advance,
e.g., ‘‘and so on until no cars are left on the siding’’.

• For-loops specified the number of iterations in advance,
though they often did so by using a quantifier such as ‘‘all’’
to refer to the unknown number of cars on a particular part
of the track, e.g.: ‘‘one by one take all the cars and lead them
back [to the left track] and then to the goal’’.

• Proto-loops specify neither the termination condition nor
the number of iterations, but indicate that the same move
will be repeated, e.g., ‘‘and so on’’, ‘‘and we go always like
that’’, and ‘‘we move the car from the side to the left then
to the goal, and also the last one’’.

able A.2 in Appendix A presents typical protocols of children’s
escriptions of programs.

.2. Results and discussion

The results of three of the 28 participants were dropped from
he analysis, because two of these children failed to formulate
5

any program for at least one rearrangement, and one child’s
descriptions were too confused for definite transcription. For the
remaining 25 participants, the two judges agreed in their coding
of the programs on 98% of trials (Cohen’s κ =.96, p < .0001). They
also agreed on 99% of trials about the occurrence of no loops,
proto-loops, for-loops and while-loops in the programs (Cohen’s
κ = .97, p < .0001). They resolved the discrepancies prior to the
statistical analyses.

3.2.1. K-complexity predicts the difficulty of programs
Table 1 presents the percentages of accurate programs. K-

complexity predicts the trend in accuracy of the participants’
pairs of programs over the five sorts of rearrangement (Page’s
L = 1195, z = 2.80, p < 0.01), a result that corroborates the model
theory’s account of complexity. The children differed in their
ability to abduce programs (Friedman non-parametric analysis of
variance, χ2 (9) = 35.65, p < .0001). The most accurate children
abduced nine out of ten correct programs, but one child abduced
no correct programs.

Boys tend to encounter computer programming more often
than girls. To determine if this explained any gender differences
in our data, we compared the performance between them. The
boys created 43% correct programs, and the girls created 45%
correct programs, and the difference was not reliable (Mann–
Whitney test, z = .08, p = .93). So, the two sexes appear to be
equally good in understanding programs (for a review, see Du &
Wimmer, 2019).

As the model theory predicts, children used more loops for
their programs for trains of eight cars (28% of trials) than for
their programs for trains of six cars (20% of trials), whether the
programs were right or wrong (Wilcoxon test, z = 2.14, p <
.04, Cliff’s δ = .17). This finding may merely reflect the special
instruction to find a short rule given to the participants just
before they tackled the eight-car rearrangements. It is possible
that if the instruction had been given from the outset for the six-
car trains, the difference would have disappeared. The difference
in accuracy between programs for eight cars (42% accurate) and
those for six cars (46% accurate) was not reliable (Wilcoxon test,
z = 0.99, p = .32).

3.2.2. The use of loops correlates with the number of correct r moves
Children often used loops in their descriptions, whether the

program was correct or not. The most frequent sort were for-
loops (92% of loops), but 59% of them were formulated with
an explicit number of repetitions based on the length of the
train, e.g., ‘‘keep repeating these moves for the remaining two
couples of cars’’, and the remaining 41% depended on an explicit
quantifier, e.g., ‘‘keep repeating until all the trains have moved
from the siding’’—a description that is akin to a while-loop. But,
the children hardly ever couched the explicit conditions for a
while-loop (only 3% of loops), and their descriptions included only
a small proportion of proto-loops (5%).

Table 2 presents percentages of correct R moves prior to the
first erroneous one (see above) depending on whether or not the
children’s programs used an explicit loop of any sort. As the Table
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Table 2
The percentages of correct R moves in the Experiment (N = 25) as a function of the children’s use of explicit loops in their programs for six-car
and eight-car trains over the five rearrangements.
Sorts of rearrangement Percentages of correct R moves

for six-car rearrangements
Percentages of correct R moves
for eight-car rearrangements

Overall % of correct R
moves

No use of loop Use of loop No use of loop Use of loop

Swap adjacent pairs 65 83 61 88 75
Reversal 38 73 45 91 58
Make palindrome 62 100 49 50 56
Two-loops palindrome 78 83 57 88 69
Parity sort 55 61 53 63 55
Overall % correct R moves 61 78 52 85 62
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Table 3
The distribution of errors over the children’s programs in the Experiment
(N = 25) as percentages of the main places in programs where the errors
ccurred, and the balance of error-free programs. Rows in bold highlight the
ost common location of the different sorts of error.
Junctures Location &/or sort of error Percentages

Pre-loop In first instruction 3
In second instruction 8
In subsequent instructions 15

Loop About same car 3
About different car 12

Post-loop Perseveration 2
Stopping too soon 2
Other 11

No errors 44

shows, for all ten rearrangements the use of a loop occurred with
a higher percentage of correct R moves (Binomial test, p = 1/210).
The advantage of using loops was reliable for the participants’
programs for both six-car (Wilcoxon test, z = 2.17, p < .04, Cliff’s δ

= .33) and eight-car rearrangements (Wilcoxon test, z = 2.84, p <
025, Cliff’s δ = .01); and it did not differ reliably between them
Wilcoxon test, z = .74, p > .4).

.2.3. Systematic errors in children’s programs
Table 3 presents the percentages of the different sorts of errors

t different places in the children’s programs (see Appendix B for
xamples of each sort of error at these places). Its broad picture
ore out the theory’s predictions. Errors in the first instruction
3%) were fewer than those in second instructions (8%; Wilcoxon
est, z = 2.05, p < .05, Cliff’s δ = 0.21). The numbers of oppor-
unities for error differ in loops or repetitions of moves and in
ost-loop sequences. Nevertheless, as predicted, such errors were
ess likely when they concerned the same cars (3%) than when
hey concerned different cars (12%), but the difference was not
eliable (Wilcoxon test, z = 1.41, p > .15). In post-loop sequences,
s predicted, perseveration occurred for make palindromes (13%)
ore often than for the other two relevant rearrangements (0%;
ilcoxon test, z = 2.27, p = .023, Cliff’s δ = 0.29). Likewise,
remature stops occurred more often for parity sorts (a mean of
4%) than for make palindromes and two-loops palindromes (0%),
ut the difference was marginal (Wilcoxon test, z = 1.63, p =.051,
liff’s δ = 0.16).
 t

6

. General discussion

The model theory postulates that individuals abducing an
nformal program rely on a kinematic model that simulates the
oves needed for the rearrangement. The present study con-
erned the likely causes of errors in the process for ten-year-old
hildren. The difficulty of a mere solution to a rearrangement of
particular train depends on its number of moves and the total
umber of cars to be moved. Hence, reversals are the hardest
earrangements to solve of the five in the present study, because
hey call for more moves of cars (Khemlani et al., 2013). But, the
ifficulty of abducing a program for a reversal is very different:
ts abduction depends on the complexity of the program. And so,
s Table 1 shows, reversals are among the easiest of programs
o abduce. As we explained earlier, the Kolmogorov complexity
K-complexity) of mAbducer’s informal programs—the number
f words that they contained—is a sensible way to predict the
hildren’s difficulty in abducing programs. And it made a reliable
ank-order prediction of their difficulty (see Table 1). Because the
hildren dealt with each eight-car program immediately after a
ix-car program of the same sort, the difference in the number of
ars in programs had negligible effects on performance, and as a
esult this difference did not interact reliably with other factors,
uch as accuracy over the five sorts of program.
The percentage of correct R moves in a program is a more

ensitive measure of accuracy than whether or not the program
s correct: an R move cannot be undone, but even erroneous pro-
rams are likely to include some correct R moves. This measure
howed that programs containing loops yielded a reliably higher
ercentage of correct R moves than programs containing no loops
see Table 2). It is tempting to construe this relation as causal: the
se of a loop in the creation of a program, which is a significant
tep in computational thinking, leads to greater accuracy in the
rogram. But, of course, the correlation between the two does not
stablish causation. It is conceivable that some other factor, such
s expertise in computational thinking, underlies both the use of
oops and accuracy in programming. An experiment of the sort
eeded to establish a causal relation may not be feasible. It would
all for children to use loops in one condition, but not in another,
nd some way to ensure that they never thought of loops in the
econd condition.
The errors in children’s programs tended to occur at pre-

ictable places (see Table 3). Most errors occurred at the start
f programs, but others did occur in loops and post-loops. The
ature of the errors tended to follow a predictable pattern, but

heir small numbers led to the predicted differences not always
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being reliable. We can have some confidence, however, that er-
rors are not haphazard, but tend to reflect the structure of the
programs that the children are trying to abduce. The same error
was often made by more than one of the children (see Tables S1 in
the Supplementary Materials). At most places in a program, there
are three possible sorts of move, which each can concern one or
more cars. Hence, a particular error with a chance probability of,
say, 1 in 5, is not haphazard when, as often happened, more than
two children make it.

The development of an informal program depends on ab-
uction. Individuals have to discover the concept of a loop of
nstructions, which can be of various sorts, and such loops go
eyond the mere repetition of a set of moves. They call for an
xplicit description of what controls the repetition of the loop. So,
aive individuals cannot create a program solely from deduction
r inductive generalization. The process depends on an analysis
f the sequence of moves that a kinematic solution yields, and
he creation of a way to describe the sequence that in an ideal
ase works for trains of any length—a requirement that often ne-
essitates the use of a loop of instructions. There are exceptional
earrangements that do not call for a loop, e.g., switching round
he first and last cars in a train can be done without a loop:
hese six instructions work for a train of any length: S(N − 1),
1, L(N − 2), R(N − 2), L1, R1, where N equals the number of
ars in a train. Deduction plays a role in programming—prudent
ndividuals test a program by deducing its consequences. So,
deduction from the preceding program applied to the train
BCDEF yields the following sequence: A[BCDEF]–, –[BCDEF]A,
CDE[F]A, –[F]BCDEA, F[–]BCDEA, –[–]FBCDEA. Naive individuals,
owever, cannot devise a program from deduction alone.
In conclusion, ten-year-old children are able to develop infor-

al programs to compute rearrangements in the order of cars in
rains. They simulate solutions to the rearrangements, and often
iscern the underlying structure of a program that could carry
ut the same rearrangement on trains of different lengths. What
auses them difficulty is, not the number of moves needed in
he rearrangement, but the complexity of the program, which
epends on its structure—in the case of rearrangements, whether
t calls for a pre-loop set of instructions, a loop of more than one
nstruction, and a set of post-loop instructions. The use of a loop
f instructions is crucial for certain programs, e.g., to reverse the
rder of cars in trains of any length. The required structure of a
rogram also yields important junctures in its creation, and they
end to give rise to predictable errors in its description. Children
ho are not allowed to move the cars as they try to develop a
rogram often make revealing gestures—they point to cars that
re to be moved, and their gestures often indicate the start and
nd points of moves (Bucciarelli et al., 2016). And, these gestures
ay support strategies in computational thinking (Ianì, 2019).
Psychologists, as we noted earlier, have rarely investigated

he comprehension and formulation of informal programs. But,
mong the exceptions is a study of the ways that non-programmer
en-year-olds and adults, formulated solutions to problems rep-
esentative of common programming tasks (Pane et al., 2001).
he results showed that children described looping constructions
n a few cases. Their loops used until to specify a terminating
ondition—a while-loop, and otherwise they were proto-loops in
hrases such as and so on or etc. The experimental procedure
iffered from ours, because the experimenter outlined to the par-
icipants essential programming techniques and concepts, such
s the use of variables, prior to the experiment. Nevertheless,
ts results corroborated the importance of the structure of the
equired programs. The investigators pointed out that informal
rograms differ in style from the then contemporary program-
ing languages. They also suggested that natural languages differ
rom programming languages, and so informal programmers tend t

7

o think in a different way about programs than formal pro-
rammers do (see Biermann et al., 1983). Their results, they
uggested, could guide designers of future programming lan-
uages to make them more natural, and to match the strategies
hat naive individuals bring to the programming task (Bruckman
Edwards, 1999; Soloway et al., 1989). Likewise, their partic-

pants’ methods could inform intelligent tutoring systems for
eaching programming and for scaffolding its acquisition (Lane
VanLehn, 2005).
In the light of recent developments in machine learning and

utomatic programming, the need for human programmers is
ikely to wane (see, e.g., Sharma et al., 2020; but cf. O’Neill &
pector, 2020). A fundamental constraint, however, is that no
utomatic method can guarantee to find out whether or not a
iven program goes into an infinite loop (see, e.g., Johnson-
aird et al., 2021). Other recent innovations include the machine
ranslation of informal programs in a natural language into formal
rogramming languages (see, e.g., Sridhar & Sanagavarapu, 2020;
nd the Codex system, as illustrated at: openaicodexlivedemo).
o, although most current programming depends on two inter-
wined skills: creating a program and formulating it in a given
rogramming language, the crucial task is to devise the algorithm
hat a program implements. Algorithms existed long before the
nvention of programmable computers. Their creation depends
n an understanding of a set of elementary instructions, and
he ability to combine them, especially in loops of operations.
oth these skills can be inculcated and tested using the railway
omputer, which allows individuals to envisage and to master
hem. Natural languages differ from programming languages, not
n computational power (see Johnson-Laird et al., 2021), but
hiefly in ambiguity, which in English and most Indo-European
anguages can be both syntactic and lexical. One consequence is
hat no program exists for recovering a logical analysis of serious
rguments in natural language—a lack that the logician Bar-Hillel
escribed half a century ago as ‘‘a scandal of human existence’’
Bar-Hillel, 1969, p. 256). Yet, the concepts embodied in high-
evel programming languages, such as self-referential processes
r object-oriented procedures, can all be expressed in everyday
nglish. For skilled programmers, such expressions are messy
nd often harder to understand than their counterparts in Lisp
r Python, but these drawbacks do not affect the potential for
atural language as a programming language.
One aspect of programming that our studies of rearrange-

ents have neglected is arithmetic, and the programming of
rithmetical functions. Yet, simple modifications to the railway
nvironment provide it in principle with the power of a universal
uring machine that, as far as anyone knows, can compute any
omputable function. The essential modification is to allow new
ars to be inserted into a train, existing cars to be removed from
train, and additions to the track to accommodate longer trains.

.1. The pedagogy of programming

The present study and its precursors showed that individ-
als differ in their ability to create informal programs. These
ifferences are likely to reflect interactions among motivation,
ntrinsic ability, and pertinent experience. History shows that
deal learners are autodidacts with access to expert help. The rest
f us, however, need explicit teaching. This requirement raises
wo problems: how can teaching institutions assess the likely
ompetence of naive individuals as programmers? And how can

he teaching of programming be improved?

https://www.youtube.com/watch?v=SGUCcjHTmGY


M. Bucciarelli, R. Mackiewicz, S.S. Khemlani et al. International Journal of Child-Computer Interaction 31 (2022) 100443

o
l
p
s
a
a
t
u
c
2
T
e
T
(
p
l

T
i
p
o
m
T
a
s

v
k
t
r
s
T
a
b
t

u
t
d
c
p
t
a
a
o
t
e
k
a
s

Existing tests of computational ability focus on high school
r university students in the context of learning a programming
anguage, and on middle school children in the context of visual
rogramming languages, e.g., Blockly or Scratch (for a review,
ee Romàn-Gonzàlez et al., 2018). All these tests presuppose that
ptitude is a summation of abilities, and so different test items
ddress different components of programming. For example, a
est item may concern a problem whose solution depends on the
se of a loop, and the participants have to decide which is the
orrect option among a choice of several (e.g., Romàn-Gonzàlez,
015). Other methods of assessment include the Computational
hinking Test aimed at students between 10 and 16 years old (see
.g., Romàn-Gonzàlez et al., 2018), the Beginners Computational
hinking Test (BCTt) in its adaption aimed at younger students
Zapata Cáceres et al., 2021), and assessments based on Bebras
roblems (Lockwood & Mooney, 2018). A typical problem of this
atter sort is (see Dagiene & Stupuriene, 2016):

Beaver is working the crane operator. There are two boxes in
the parking place—A and B. At first box A is standing on the
1st podium, box B is on the 2nd podium. There are six
commands to operate this crane: ‘Down’, ‘Up’, ‘Right’, ‘Left’,
‘Catch’, and ‘Release’. They are selected by pressing a
command button. Help beaver to switch boxes: box A must be
on the 2nd podium, and box B on the 1st.

he scenario is presented with a picture of the objects in their
nitial spatial arrangement and the six command buttons. The
articipants have to devise a program for carrying out the swap
f boxes A and B. These tests have in common a lack of a valid
easure of the theoretical difficulty of different sorts of problem.
he railway environment provides such a measure, K-complexity,
nd it provides a potential test of computational thinking prior to
tudents having learned to code.
For students who are already interested in programming, a

ariety of systems exist for learning its elements. Computational
its exist for young children, which use blocks or puzzle-pieces
o represent code for controlling robots or virtual entities (for a
eview, see (Yu & Roque, 2019). They allow children to try out
equences of instructions, conditional branches, and even loops.
hey have an advantage over board games, which also exist as
way to acquire rudiments of programming. Games can be fun,
ut they tend not to allow for loops of instructions, or for testing
he correctness of a program (Scirea & Valente, 2020).

The desirable features of an interactive system that enables
sers to learn how to develop programs are almost self-evident:
hey should be fun to use, they should present a large and
iverting set of problems that can be ordered in increasing diffi-
ulty, and they should help learners to understand how to create
rograms from combinations of primitive actions, and how to test
heir adequacy. The railway environment seems feasible as such
system, and for learners with access to computers, mAbducer
nd its implementation for on-line experiments could be devel-
ped into an interactive pedagogical device. Intrinsic motivation
o learn is essential, even in computer programming, and self-
fficacy matters too (see, e.g., Bjerre & Dohn, 2018). No-one
nows what attracts some children to learn to program (or to
ny other intellectual activity), but girls and boys do differ in the
ocial factors that affect them, e.g., some girls dislike interacting
8

with a computer in the presence of other people (Cooper &
Weaver, 2003). Motivation also relates to learner’s implicit beliefs
that they can develop in ability, which in turn affect how they
regulate their actions as they learn (Cornoldi et al., 2003).

The important tasks for future research are twofold. First,
it needs to examine children’s ability to create informal pro-
grams to compute the values of arithmetical functions, such as
addition and multiplication: an extension of the railway environ-
ment can deal with such functions. These studies may illuminate
how children understand numbers and programs that compute
new functions from them. Second, future research needs to test
whether the railway environment can help budding programmers
to understand how to combine existing programs—our present
research has been limited to studies of single functions. A special
case concerns the mastery of recursive functions for combining
existing programs, at first in for-loops and while-loops, and then
in self-referential functions. Formal programming languages, as
we have intimated, may be obsolescent. Yet, there is still a need
to test the effectiveness of a transfer from informal programming
to full-fledged programming in formal languages.

Selection and Participation

The children in the experiment were attending two public pri-
mary schools in Turin, Italy. A researcher contacted the managers
of the schools and described the experiment, which the Ethical
Committee of the University of Turin had already approved. It
took the form of a game, and the school managers explained it
to the fifth-grade teachers, and invited them to explore the chil-
dren’s interest in taking part in ‘a game whose scope was to help a
university student to write a report on how children reason’. The
teachers gave an informed consent form to the children who were
interested, and asked them to give it to their parents to read, and
to sign if they approved their children’s participation in the study.
The form stressed that the parents could withdraw their consent
at any time, and that the children could likewise withdraw from
the study at any point. Only those children who returned the
signed form took part in an experiment. The experiments took
place at the schools during class hours, not breaks, in a designated
room solely for them. None of the children, in fact, ever withdrew
from the study. They enjoyed it.
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See Tables A.1 and A.2.
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Table A.1
mAbducer’s for-loops and while-loops and its English translations for the five rearrangements used in the present studies, and the K-complexities of the while-loops
the number of symbols, including words and parentheses, in the description) and their translations.
Programs with for-loops Programs with while-loops Translations of while-loops

1. Swap adjacent pairs K-complexity: 37 words K-complexity: 38 words

(Defun Swap(track)
(Let* ((len (Length (First track)))
(N-of-reps (+ (* 1/2 len) 0)))
(Loop For I from 1 to N-of-reps
do (setf track (S 1 track))
(setf track (R 1 track))
(setf track (L 1 track))
(setf track (R 1 track)))
track))

(Defun Swap (track)
(Let ((len (Length (First track))))
(Loop While (> (Length (First track)) 0)
do (setf track (S 1 track))
(setf track (R 1 track))
(setf track (L 1 track))
(setf track (R 1 track)))
track))

While there are more than zero cars on the left
track,
move one car to the siding,
move one car to the right track,
move one car to the left track,
move one car to the right track.

2. Reversal abcdef fedbca K-complexity: 41 K-complexity: 40 words

(Defun Reverse (track)
(Let* ((len (Length (First track)))
(N-of-reps (+ (* 1 len) −1)))
(setf track (S (+ (* 1 len) −1) track))
(setf track (R 1 track))
(Loop For I from 1 to N-of-reps
do (setf track (L 1 track))
(setf track (R 1 track)))
track))

(Defun Reverse (track)
(Let ((len (Length (First track))))
(setf track (S (+ (* 1 len) −1) track))
(setf track (R 1 track))
(Loop While (> (Length (Second track)) 0)
do (setf track (L 1 track))
(setf track (R 1 track)))
track))

Move one less than the cars to the siding.
Move one car to the right track.
While there are more than zero cars on the
siding,
move one car to the left track,
move one car to the right track.

3. Make palindrome AaBbCc ABCcba K-complexity: 45 words K-complexity: 44 words

(Defun Make-Pal (track)
(Let* ((Len (Length (First track)))
(N-of-reps (+ (* 1/2 Len) −1)))
(setf track (S (+ (* 1 Len) −2) track))
(Loop for I from 1 to N-of-reps
do (setf track (R 1 track))
(setf track (L 2 track)))
(setf track (R (+ (* 1/2 Len) 1) track))
track))

(Defun Make-Pal (track)
(Let ((Len (Length (First track))))
(setf track (S (+ (* 1 Len) −2) track))
(Loop While (> (Length (SECOND track)) 0)
do (setf track (R 1 track))
(setf track (L 2 track)))
(setf track (R (+ (* 1/2 Len) 1) track))
track))

Move two less than the cars to the siding.
While there are more than zero cars on the
siding,
move one car to the right track,
move two cars to the left track.
Move one more than half the cars to the right
track.

4. Two-loops palindrome K-complexity: 40 words K-complexity: 48 words

(defun two-loops (track)
(Let* ((len (Length (First track)))
(N-of-reps (* 1/2 len)))
(Loop for I from 1 to N-of-reps
do (setf track (S 1 track))
(setf track (R 1 track)))
(Loop for I from 1 to N-of-reps
do (setf track (L 1 track))
(setf track (R 1 track)))
track))

(Defun Two-loops (track)
(Loop While (> (Length (First track)) 1)
do (setf track (S 1 track))
(setf track (R 1 track)))
(Loop While (> (Length (SECOND track)) 0)
do (setf track (L 1 track))
(setf track (R 1 track)))
track)

While there are more than zero cars on the left
track,
move one car to the siding,
move one car to the right track.
While there are more than zero cars on the
siding,
move one car to the left track,
move one car to the right track.

5. Parity sort K-complexity: 50 K-complexity: 54 words

(Defun Parity (track)
(Let* ((Len (Length (First track)))
(N-of-reps (+ (* 1/2 Len) −1)))
(setf track (R 1 track))
(Loop for I from 1 to N-of-reps
do (setf track (S 1 track))
(setf track (R 1 track)))
(setf track (L (+ (* 1/2 Len) −1) track))
(setf track (R (+ (* 1/2 Len) 0) track))
track))

(Defun Parity (track)
(Let ((Len (Length (First track))))
(setf track (R 1 track))
(Loop While (> (Length (First track)) 1)
do (setf track (S 1 track))
(setf track (R 1 track)))
(setf track (L (+ (* 1/2 Len) −1) track))
(setf track (R (+ (* 1/2 Len) 0) track))
track))

Move one car to right track.
While there are more than one car on left track
move one car to siding,
move one car to right track.
Move one less than half the number of cars in
the train to left track.
Move half the number of cars in the train to right
track.
9
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Table A.2
Translation from the Italian of some children’s protocols containing loops of actions for correct solutions. The table presents what the children said,
and the corresponding moves that their remarks implied. It also identifies loops of moves.
Swap adjacent pairs (S3): HGFEDCBA has to be rearranged as GHEFCDAB
‘I move two cars from start to siding.’ HGFEDC[BA]–
‘I move a car from siding to arrival.’ HGFEDC[A]B
‘I move another car from siding to arrival.’ ’ HGFEDC[–]AB
‘And this rule repeats for all the cars.’ The assertion is a for-loop. –[–]GHEFCDAB

Reversal (S6): HGFEDCBA has to be rearranged as ABCDEFGH
‘I send seven cars from start to siding.’ H[GFEDCBA]–
‘Then I send one car from start to arrival.’ –[GFEDCBA]H
‘I move one car from siding to arrival.’ –[FEDCBA]GH
‘And this rule holds also for the other six cars.’ The assertion is a for-loop. –[–]ABCDEFGH

Make palindrome (S11): AABBCC has to be rearranged as ABCCBA
‘I move five cars from start to siding.’ A[ABBCC]–
‘I move one car from siding to arrival.’ A[BBCC]A
‘This move is repeated one time, that I move one car from siding to arrival.’ The assertion is a for-loop. A[BCC]BA
‘Then I move one car from siding to start.’ AB[CC]BA
‘I move two cars from siding to arrival.’ AB[–]CCBA
‘I move two cars from start to arrival.’ –[–]ABCCBA

Two-loops palindrome (S23): DDCCBBAA has to be rearranged as ABCDDCBA
‘One car goes from start to arrival.’ DDCCBBA[–]A
‘Then one car goes from start to siding.’ DDCCBB[A]A
‘Then one car goes from start to arrival.’ DDCCB[A]BA
‘And we repeat the same move for another couple.’ The assertion is a for-loop. DDCC[BA]BA

DDC[BA]CBA
‘Then we move two cars from start to arrival.’ DD[CBA]CBA
‘Then, we move one car from siding to arrival for three times’ . The assertion is a for-loop. –[CBA]DDCBA

–[–]ABCCBA

Parity sort (S26): HGFEDCBA has to be rearranged as HFDBGECA
‘I move one car from start to arrival.’ HGFEDCB[–]A
‘I move one car from start to siding.’ HGFEDC[B]A
‘Same thing for three times.’ The assertion is a for-loop. –[HFDB]GECA
Then I take the four cars from the siding and move them to the arrival.’ –[–]HFDBGECA
10
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See Table B.1.
Table B.1
Typical configurations and errors in correspondence of the three main junctures of the programs. Errors in loops are indicated by a continuous line.
The first move in programs

Example of error on the first move

(S17) Swap adjacent pairs: FEDCBA has to be rearranged as EFCDAB
‘I move one car to arrival.’ FEDCB[–]A

Example of error on the second move

(S16) Two-loops palindrome: CCBBAA has to be rearranged as ABCCBA
‘I move one car to arrival’ CCBBA[–]A
‘I move one car to arrival’ CCBB[–]AA

Repetitions in the loop

Example of error in same cars loop (L1 R1)

(S28) Reversal: FEDCBA has to be rearranged as ABCDEF
‘I move five cars to siding’ S5 F[EDCBA]–
‘I move one car from start to arrival’ R1 –[EDCBA]F
‘I move one car from siding to arrival’ L1 R1 –[DCBA]EF
‘I move five cars from siding to arrival’ L5 R5 (in place of L1 R1) -impossible-

Example of error in different cars loop (R1 S1)

(S17) Parity sort: FEDCBA has to be rearranged as FDBECA
‘I move one car from start to arrival. I move one car from start to siding’ . R1 S1 FEDC[B]A37
‘I move one car from start to arrival. I move one car from start to arrival’ . R1 R1 (in place of R1 S1) FE[B]DCA

The moves in post loop sequences

Example of perseveration error (when there are cars at start after the loop)

Make palindrome: AABBCCDD has to be rearranged as ABCDDCBA

(S4) ‘I move six cars from start to siding.’ S6 AA[BBCCDD]–
‘I move one car to arrival and one car to start’ R1 L1 AB[BCCDD]A
‘I move one car to arrival and one car to start’ R1 L1 AB[CCDD]BA
‘I move one car to arrival and one car to start’ R1 L1 (in place of L2) AC[CDD]BBA

Perseveration leads to errors

Two loops palindrome: DDCCBBAA has to be rearranged as ABCDDCBA

S(17) ‘I move one car from start to arrival. I move one car from start to siding R1 S1 DDCCBB[A]A
‘I move one car from start to siding. I move one car from start to arrival’ R1 S1 DDCC[BA]BA
‘I move one car from start to siding. I move one car from start to arrival’ R1 S1 DD[CBA]CBA
‘I move one car from start to siding. I move one car from start to arrival’ R1 S1 –[DCBA]DCBA

Perseveration leads just to redundant moves, not to error

Example of stop error (when there are no cars at start after the loop)

Parity sort: HGFEDCBA has to be rearranged as HFDBGECA

(S11) ‘I move one car from start to arrival. I move one car from start to siding’ . R1 S1 –[HFDB]GECA

‘These moves repeat for all the other cars.’ (end) R1 S1 3 times HGFEDC[B]A38
- not completed
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