Psychonomic Bulletin & Review
https://doi.org/10.3758/513423-021-01977-y

THEORETICAL REVIEW 1.)

Check for
updates

Recursion in programs, thought, and language

P. N. Johnson-Laird @ - Monica Bucciarelli**@® - Robert Mackiewicz® (» - Sangeet S. Khemlani®

Accepted: 25 June 2021
© The Psychonomic Society, Inc. 2021

Abstract

This article presents a theory of recursion in thinking and language. In the logic of computability, a function maps one or more
sets to another, and it can have a recursive definition that is semi-circular, i.e., referring in part to the function itself. Any function
that is computable — and many are not — can be computed in an infinite number of distinct programs. Some of these programs are
semi-circular too, but they needn’t be, because repeated loops of instructions can compute any recursive function. Our theory
aims to explain how naive individuals devise informal programs in natural language, and is itself implemented in a computer
program that creates programs. Participants in our experiments spontaneously simulate loops of instructions in kinematic mental
models. They rely on such loops to compute recursive functions for rearranging the order of cars in trains on a track with a siding.
Kolmogorov complexity predicts the relative difficulty of abducing such programs — for easy rearrangements, such as reversing
the order of the cars, to difficult ones, such as splitting a train in two and interleaving the two resulting halves (equivalent to a faro
shuffle). This rearrangement uses both the siding and part of the track as working memories, shuffling cars between them, and so
it relies on the power of a linear-bounded computer. Linguistic evidence implies that this power is more than necessary to

compose the meanings of sentences in natural language from those of their grammatical constituents.

Keywords Computational power - Recursion - Informal programs - Grammar - Mental models - Working memory

Public Significance Statement This article has three principal goals: To
describe recursive functions from the theory of computability, to explain
how naive individuals use kinematic mental models to create informal
programs to compute these functions, and to show that the computational
power they need is similar to the power needed for using natural
language.

P< P. N. Johnson-Laird
phil@princeton.edu

Department of Psychology, Princeton University,
Princeton, NJ 08544, USA

Department of Psychology, New York University, New York, NY,
USA

Department of Psychology, Universita di Torino, Turin, Italy

Centro di Logica, Linguaggio, e Cognizione, Universita di Torino,
Turin, Italy

Department of Psychology, SWPS University of Social Sciences and
Humanities, Warsaw, Poland

Navy Center for Applied Research in Artificial Intelligence, Naval
Research Lab, Washington, DC, USA

Published online: 15 December 2021

“General rules for programming have been discovered.
Most of them have been used in Kansas City freight
yards for some time” — Lehmer (1949, p.142)

The concept of recursion is important but often misunder-
stood. It can frighten the uninitiated, and the initiated some-
times increase its mystery. They write that recursion is a form
of computation that embeds elements, or structures, within
those of the same kind. That’s true, but only part of the truth,
because recursion can be simpler in many of its uses. And so
we aim to demystify the concept and get to its core.

An intimate relation exists between recursion and programs,
where a program is a finite set of instructions for carrying out a
computation that ends with an output. Formal programs are written
in a language that can be transformed into a set of instructions that
a computer can execute. Informal programs are in natural language
and commonplace — in recipes, knitting patterns, and instructions
for assembling kits. The competence to create and to comprehend
them underlies the ability to learn how to write computer pro-
grams. Our experiments tested naive individuals, where “naive”
means only that they knew nothing about programming, and the
tasks were to devise informal programs or to deduce their conse-
quences. They formulated them in natural language, and its basis is
said to be recursion (see, e.g., Berwick & Chomsky, 2016).

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.3758/s13423-021-01977-y&domain=pdf
https://orcid.org/0000-0003-4461-1324
https://orcid.org/0000-0002-5188-5561
https://orcid.org/0000-0002-2990-2337
https://orcid.org/0000-0002-1158-553X
mailto:phil@princeton.edu

Psychon Bull Rev

Recursion means different things in different disciplines. It
even means different things in the same discipline. Biologists
use the term to refer to self-referential formulas, for example,
for simulating the growth of plants (Prusinkiewicz &
Lindenmayer, 1990, p. 15). Psychologists use it to refer to
thinking about thinking, mental time travel, and children’s
theory of mind (Corballis, 2011). They use it to refer to self-
similar fractal shapes, which individuals can learn from just a
few examples (Lake & Piantadosi, 2020), and to intentional
acts, where part of such an act is the knowledge that it is
intentional (Johnson-Laird, 2006, Ch. 4; Vicari & Adenzato,
2014). To semanticists, recursion refers to certain concepts in
natural language. The concept of owning, for example, re-
quires a recursive definition: the transfer of ownership trans-
fers the right to transfer ownership (Miller & Johnson-Laird,
1976, p. 560). Likewise, the wholly circular definition of an
optimist as “anyone who believes that optimists exist” seems
plausible. Two of us believed George W. Bush when he said
on TV that he was an optimist, and so we’re optimists. Now,
you believe that optimists exist, and so you’re an optimist too.
Soon, everyone is an optimist — even avowed pessimists — and
so the definition goes too far (Johnson-Laird, 2006, Ch. 11). It
can be hard to grasp the consequences of recursion — a point to
which we return below in the context of reasoning.

Linguists use “recursion” to refer to grammatical rules,
such as: noun-phrase — noun-phrase and noun-phrase. The
arrow specifies that a noun-phrase can consist of a con-
junction of two noun-phrases formed with “and,” so a
grammatical constituent contains embedded within it con-
stituents of the same sort (Pinker & Jackendoff, 2005).
Linguists have also argued that recursion is the central
component of natural language in which an operation of
merge constructs complex structures out of concepts (e.g.,
Berwick & Chomsky, 2016; Hauser et al., 2002). One re-
cent study showed that adults and 3- to 5-year-old children
can generate self-embedded sequences of symbols more
often than chance, and after additional exposure to exam-
ples, monkeys can too (Ferrigno et al., 2020). Computer
programmers often use “recursive” to refer to a program
for computing a function that contains at least one clause
that is circular and one that is not. We refer to such pro-
grams as semi-circular: complete circles are vicious be-
cause as in our definition of “optimist” they go on and on
forever, but semi-circular programs can be virtuous if they
contain at least one other clause that ensures that they halt.

What, if anything, do all these different uses of “recur-
sion” have in common? The answer is that they derive
from the theory of recursive functions (aka the theory of
computability, see Rogers, 1967). It is the branch of logic
that presaged the invention of the programmable digital
computer. This basis, as we illustrate, is not just self-em-
bedding. Our article accordingly aims to answer three main
questions:

@ Springer

1. What is recursion?

2. How could naive individuals create informal programs in
natural language to compute recursive functions?

3. How much computational power does informal program-
ming need, and how does it relate to the power needed for
natural language?

Previous studies have addressed these questions in part, but
they have not led to a general psychological theory of recur-
sive thinking. And questions about recursion in natural lan-
guage have led to controversy. The present article aims to
answer the three questions and to yield a corroborated theory
of recursive thinking and the computational power of the hu-
man brain on which it depends.

The article begins with an unusual computer that is simple
enough for our studies of informal programming, whose par-
ticipants include children, but that is powerful enough to illus-
trate the computation of recursive functions. This computer
consists of a railway with one train, a straight track from left to
right, and a siding. It serves as a computer that participants
control. The article then uses this computer to illustrate the
recursive definitions of functions, programs to compute their
values, and the power that computers need to carry out these
programs. Next, it presents a theory of informal programming
based on kinematic mental models that simulate sequences of
events, such as the movements of cars on the railway. This
theory is implemented in a computer program, mAbducer, that
can create its own programs for the railway computer, both
formal and informal. The program is written in Common Lisp,
and its source code is at: https://www.modeltheory.org/
models/. To corroborate the theory, the article reviews
evidence from studies of naive adults and children. It also
considers linguistic evidence for the computational power
needed to understand natural language. Finally, it assesses
potential shortcomings in our studies and draws
psychological conclusions about recursive thinking.

The railway computer

An informal program is a description in natural language of
how to carry out a particular computation. We devised a sim-
ple computer to study whether our participants could create
informal programs. As the epigraph to this paper intimates, it
is a railway, but it can be transformed into the most powerful
computer, a universal Turing machine (see, e.g., Davis, 1958).
Figure 1 shows how the railway appears on a computer screen.
On its left track is a train of six cars, which can each move in
either direction, and which push any cars in front of them. A
human user controls the computer, and can command, say,
that car b in Fig. 1 moves to the siding — it pushes car a onto
the siding too. Figure 2 shows an actual toy railway of the
same sort, which children used in our studies of their informal

https://www.modeltheory.org/models/
https://www.modeltheory.org/models/

Psychon Bull Rev

KN I 1 3 Y e

Left track

Right track

Siding

Fig. 1 The railway track as a computer in an initial state: A train, whose
cars are labeled with the letters f~a is on left track. Each car can move,
pushing any cars in front of it, from left track to the siding, from left track

programming. The railway is similar to one that Knuth (1997,
p- 240) described, but ours can compute functions that his
railway cannot.

The tasks we investigated concern rearrangements of the
order of the cars in a train. At the start, the train is on the left
track (as in Figs. 1 and 2) and the goal is to rearrange its cars
into a new order on the right track. Only three sorts of move
are allowed:

R: move one or more cars from left track to Right track.
S: move one or more cars from left track to Siding,
L: move one or more cars from siding back to Left track.

Once cars get to right track they must remain there,
because no move allows them to return to left track.
Likewise, cars can move from the siding only to left track,
because no single move takes a car from the siding to
right track. A move of two cars to the siding is described
as: S2, where “S” denotes a move to siding and “2” de-
notes the number of cars in the move. In rearrangements,
the three sorts of move make no reference to the labels
on cars, which are there only to help individuals to
remember the locations of cars.

Our empirical studies concern rearrangements that are sim-
ple enough for children to understand. They are permutations
of'the order of cars in a train (Bona, 2012, p. 1), which depend
solely on the positions of cars in the train. They apply to any
finite number of cars. Some, however, may be constrained,
say, to any odd number of cars, such as those concerning
palindromes with a central car. The mathematical properties
of rearrangements applying to any number of items (cars)
have seldom been studied (Miklés Boéna, personal

to right track, and from the siding back to left track. Hence, the siding can
be used as an intermediate place to store cars to rearrange their order as
they arrive on right track

communication, 2 May 2016; cf. Bona, 2019). There are infi-
nitely many different rearrangements — just as there are infi-
nitely many sentences in natural language — and they differ in
how much power a computer needs to carry them out, and
power, as we explain, concerns the nature of the computer’s
memory for the intermediate results of computations. The rail-
way computer has enough power to cope with any
rearrangement.

The fundamentals of computation
Functions

We can now explain recursion, and we begin with a funda-
mental concept. A function at its simplest is a mapping from
one set to another, and for any member of the input set, the
independent variable, there is at most one member of the out-
put set, the dependent variable. Some functions are more gen-
eral and have an input of several independent variables from
different sets, for example, the function that determines how
much income tax you should pay. Indeed, the members of
sets, and therefore functions of them, can refer to entities of
any sort: numbers, words, cars, trains, railways, and even
functions themselves. A relation such as equals refers to mem-
bers of two sets, and it can be treated as a function from the
two sets to an output of true or false, depending on whether or
not it holds between its two inputs. One of the railway’s basic
functions is L: it takes as input the number of cars to be moved
and the current state of the railway, and its output is the
resulting state of the railway. This function seems easy to
understand. But, what happens, say, if L has an input of one

Fig.2 A toy railway in its initial state, with a train of six cars, f~a, and a picture above the doll’s head of a required rearrangement of the cars, used in the

experiments with children

@ Springer

Psychon Bull Rev

car and the railway that has no cars on the siding? Functions
can be partial and have no output value for certain inputs, for
example, division by zero. But, for the railway, it is conve-
nient for L in this case to map to an output of an unchanged
railway. We reiterate that the main constraint on functions is to
deliver at most a single output for a given input, and that
despite having inputs and outputs, functions are descriptions
of a mapping: they don’t do anything.

A rearrangement is a function too. It maps a train of cars in
a particular order on left track to a new order on right track.
Here are instances of the same rearrangement for two trains of
different lengths, i.e., numbers of cars, and readers might try to
understand what it does. The arrows show the mappings from
input to output, and we have used a bold font for the cars in the
first half of the train to help readers to see what is going on:

abcdef = adbecf

abcdefgh = aebfecgdh

In fact, the function interleaves the cars in the second half
of'the train within those in the first half of the train. If you have
spent any time in casinos, you may know that the same inter-
leaving of a deck of cars is known as a faro shuffle (or riffle
shuffle), with its origin in the eponymous card game. It is a
rearrangement with some striking mathematical properties
that relate, for example, to Fourier analysis (see Diaconis
et al., 1983). Later, we show that it also occurs in the interpre-
tation of English and in the grammars of other languages.

When you infer the description of a rearrangement from a
couple of examples of its mappings, as above, you assume that
the same rearrangement applies to longer trains, such as ones
containing 10 or 100 cars. Your assumption is an inductive
inference. And like all inductions, it has no justification: it
could be that once a train is longer than eight cars, the function
has a different sort of output, for example, it reverses the order
of cars. Even though it lacks any justification, induction is not
just a philosophical puzzle, but also a useful and habitual way
of thinking (Ramsey, 1990/1926, p. 91). Y our assumption that
a function holds over longer trains than those in its
examples is one that is built into our program,
mAbducer, which creates formal and informal programs
according to our theory of the process.

Functions are descriptions that don’t do anything, and
some functions cannot be computed. Most important is the
one that Godel (1967/1931) proved to be not computable. Its
description is simple: for any arithmetical assertion, determine
whether or not it can be proved in a consistent formalization of
arithmetic. Hence, there are true assertions in arithmetic that
cannot be proved. It is thus crucial not to confuse a function
with a program that computes its values. Indeed, most func-
tions cannot be computed, and for any function that is com-
putable, there are infinitely many distinct programs that can
compute it (Rogers, 1967). Quantum computers, if they can be

@ Springer

made to work, will carry out computations much faster than
current computers, and thereby make certain procedures trac-
table, such as those underlying cryptographic systems. But,
they will not transform the uncomputable into the computable
(Nielsen & Chuang, 2000).

Recursive functions

A set of basic functions can be used to define all others. So,
what are these basic functions? A standard answer, which
goes back to Godel and others (Adams, 2011), relies on the
fact that any function whatsoever, such as the reversal func-
tion for a railway train, can be treated as an arithmetical one.
You can assign anything — an entity such as a railway car, a
function, even a program — a unique number. And, in the
railway domain, the prime factors of a judicious choice of
such a number refer to a basic function, the number of its
operands, and an encoding of the current state of the track.
This fact about numbers is at the heart of what makes compu-
tation possible: it can all be done with numbers. Otherwise,
the set of basic functions would depend on the particular do-
main. And we would need a different sort of computer for
each domain that was not numerical. In the standard theory
of recursive functions, there are three sorts of basic function
that suffice to define any other function (see, e.g., Davis, 1958,
Ch. 3): the constant function that takes any single positive
integer as its input but always outputs 0; the successor func-
tion that adds 1 to any positive integer; and a set of identity
functions each of which output one particular input from a set
of several, for example, given three separate inputs of integers,
one such function outputs the first of them, another outputs the
second of them, and another outputs the third of them. The set
of basic functions is not so important as how they can be
combined to define a new function. Indeed, in an alternative
account there is only one basic function, which takes three
inputs, and suffices for the definition of any computable func-
tion (Melzak, 1961). So, what matters are the different
ways in which the basic functions are put together to
define new functions. And it is among these different
ways that recursion first appears.

The theory of recursive functions uses three ways to assem-
ble existing functions to define new functions. The first way is
the composition of functions. For instance, we can define a
function that maps the railway with at least one car on its
siding into a railway with at least one car on right track and
one less car on the siding. We define this function as a move of
one car to right track (R) applied to a move of one car to left
track (L): R is composed with L. We could encode the rail-
way, cars, and its three basic functions, in arithmetical terms,
but for simplicity we forego this exercise. The second way to
assemble existing functions is primitive recursion. It uses at
least two clauses to define a function: one states the value of
the function for an input of zero, and the other states its value

Psychon Bull Rev

for an input of (n + 1) in terms of its value for n. For instance, a
primitive recursive definition of the railway’s reversal func-
tion is as follows, where n refers to the number of cars in a
train:

For a train with zero cars, output a train with zero cars, and
for a train of (n + 1) cars, put the n+lth car in front of the
reversal of n cars.

Mathematicians frame such functions for the purpose of
proofs. We show how this definition works in a moment when
we describe the computation of the function.

Most computable functions have primitive recursive
definitions, and in the early 1900s mathematicians supposed
that all of them had. But, Ackermann (1967/1928) discovered
a computable function that cannot be defined using primitive
recursion. It maps two integers into a new integer. Yet, with
only small increases in the magnitudes of the two input inte-
gers, the new integer increases in magnitude at a rate faster
than exponential. The definition of this function, and others of
the same sort, calls for the third way to assemble existing
functions into a new function: minimization, which is the most
powerful form of recursion. It plays no part in rearrangements,
and so we relegate its explanation to Appendix 1.

Programs

Programs describe the instructions for computing the
values of functions. They need a computer to execute
them. Programmers sometimes treat the word “function”
as referring both to a function and to the program for
computing its values. The confusion increases with their
similar use of the word “recursion,” which has contrib-
uted to the mystery associated with the word. Primitive
recursion, as we remarked, is a way to define functions,
but programmers refer to a “recursive function” as a
program for computing such a function: it has a de-
scription that is circular in part, referring to itself — it
is semi-circular. Some programming languages, such as
early versions of Basic, do not allow programs to be
described in this semi-circular way. These languages
allow other ways to describe the computation. The in-
structions are numbered in a list, and to create a loop
an instruction refers back to the number of an earlier
instruction to elicit its execution (see also the programs
for Turing machines, in Appendix 2).

Any recursive function can be computed using the rep-
etition of a loop of instructions, and there are two sorts of
loop (Rogers, 1967). In one sort, the loop is repeated for a
stated number of times, i.c., it is a for-loop. But, this sort
of loop won’t work for functions that can be defined only
in terms of minimization. Their computation calls for a
loop that is repeated while a given condition holds, i.e.,
a while-loop. While-loops also work for programs to

compute primitive recursive functions. We give examples
of these two sorts of loop below. Meanwhile, a difference
between them is telling. When a for-loop is entered, it
states the number of times the loop of instructions repeats.
When a while-loop is entered, there may be no way to
compute how many times it will repeat before it outputs
a result. Indeed, it may never yield an output: it may not
be computable. When programmers write a while-loop
that never ends, they have to interrupt its execution
manually.

To illustrate the different ways of computing functions, we
introduce simple diagrams to represent states of the railway
computer. The following diagram, for instance:

-[bcla
shows that there are no cars on left track, cars b and ¢
are on the siding, which the square brackets demarcate,
and car a is on right track. Cars enter the siding from
left track and exit it to left track. We now illustrate the
difference between semi-circular, while-loop, and for-
loop programs.

Each of the three sorts of program is informal and reverses
the order of cars in a train, and we adopt the convention of
naming the program in the first line of its definition and stating
its input variables in parentheses. The semi-circular program is
as follows:

Reverse (track)
If left track is empty and the siding is empty output track,
otherwise if there is more than one car on left track,
move all but one car to the siding,
move one car to right track, and reverse track.
otherwise move one car to left track and then to right track,

and reverse track.
We have italicized the self-referential calls that elicit the pro-
gram itself. Given a train of three cars, abc, on left track:
abc[-]-, the program acts as follows:

1. First, it calls its second instruction, which calls the func-
tion itself again to the updated track: [bc] a

2. This time the program calls its third instruction, which
calls the function itself to the updated track: —[c] ba

3. This time the program calls its third instruction again,
which calls the function itself to the updated track:
-[-] cba

4. This time the program calls its first instruction, which
yields the output of its preceding step (3), which is the
output of its preceding step (2), which is the output of its
first step (1), and so the final output is: = [-] cba

@ Springer

Psychon Bull Rev

The program reverses the order of a train of any length.

A while-loop program depends on the conditions that
must hold for the loop to repeat. The following while-loop
program for reversal is the one that the mAbducer program
creates in Lisp and then translates into informal English (to
which we have inserted parenthetical phrases for clarity):

Reverse-while-loop (track)

Move one less than (the number of) the cars (in the train) to the
siding.

Move one car to the right track.

While there are more than zero cars on the siding,
move one car to the left track,
move one car to the right track.

Output the track.

Unlike the preceding semi-circular program, each step in this

one yields an immediate output. From the initial state of the
track: abc[-] -, the first two instructions yield:

albc] -[bc]la

The computation now enters the loop and carries out its two
instructions:

blcla -[clba
It repeats the loop again:
cl-la -[-1cba

It now halts because there are no cars on the siding, and
outputs the final state of the track a program using a for-
loop for a reversal repeats the loop for a stated number of
times, which depends on the number of cars in the train.
The mAbducer program creates such a program in Lisp
(see Appendix 3), and we have translated it into informal
English:

Reverse-for-loop (track)

Move all but one car to the siding.

Move one car to right track.

For one less than the number of cars in the train, repeat the loop:

Move one car to left track.

Move one car to right track.

Output the track.
The effect of carrying out this program is identical to that of
the while-loop above.

All three sorts of program can compute the same values for
any primitive recursive function. They work in different ways,
but otherwise are equivalent. In fact, no limit exists on the
number of different ways to write a program to compute any
computable function (Rogers, 1967). If any of our participants
had devised a semi-circular program, we would have
suspected that they must have had some experience in pro-
gramming. But, none of them ever formulated a semi-circular
program.

@ Springer

In summary, a function is a mapping that tells you what has
to be computed if possible. A program (aka an algorithm or
effective procedure) tells you sow to compute a function: in-
finitely many different programs can compute the same func-
tion. And a computer is what carries out the program. A way
to distinguish them is to remember, first, that many functions
cannot have a program that computes them; and, second, that
a program is a description geared to a particular sort of com-
puter, human or machine, and so nothing happens until a
computer executes the program for computing the function.
Functions, programs, and computers, are therefore the core of
computation. Marr (1982) made them familiar to cognitive
scientists in his analysis of theories of vision at the computa-
tional level (function), at the algorithmic level (program), and
at the implementation level (brain as computer). One conse-
quence for cognitive science is that theories existing only at
the “computational level” leave much to be explained, for
example, the Gestalt, Piagetian, and Vygotskian theories of
thinking (see Johnson-Laird, 1983, Ch. 1). They are equiva-
lent to descriptions of functions, and so they may not be com-
putable. As a psychologist once asked one of us, isn’t there a
simple way to tell whether a theory is computable? Of course
you can infer that certain theories are computable, but there
can be no general method to tell you — computability is a
function (mapping any theory to a binary value of whether it
is computable or not), and it is not computable. As Marr also
warned cognitive scientists, accounts that exist only at the
algorithmic level may lack a clear theory at the computational
level. He had in mind accounts of stereopsis, but his worry
anticipates the difficulty of understanding what function deep
neural networks learn to compute.

Computers, their power, and the Chomsky hierarchy

A program is a description written in a language that, directly
or indirectly, controls a computer. But, the computer must
have sufficient power to carry out the computation. Your com-
puter has more power than ours if yours can execute all the
programs that ours can, plus some additional programs. What
constrains computational power is memory — in particular, the
nature of the computer’s “working” memory for intermediate
results. It is therefore sensible to ask how much power do
humans need for thinking and for using natural language.
The standard analysis of computational power is known as
the Chomsky hierarchy, because its origin is in his analysis
of grammars (Chomsky, 1959). At the lowest level of power
are computers that can cope with only a finite number of
input-output pairs, for exmple, a vending machine. They need
no working memory for intermediate results. One level up in
the hierarchy are finite-state computers. They have no work-
ing memory, but instead enter into only a finite number of
different states. Yet, they can produce infinitely many differ-
ent outputs. Certain rearrangements can be carried out using

Psychon Bull Rev

the railway as a finite-state computer, such as a program that
swaps around the orders of adjacent pairs of cars in a train. It
rearranges abcedef into badcfe (see Appendix 3). It can cope
with trains of any length, and so it has a countable infinity of
different outputs. As it swaps the orders of adjacent pairs of
cars, it yields this sort of sequence:

abcd[-] abc[d] ab[d]c abd[-]c ab[-]dc albldc -[b]Jadc b[-]ladc -[-]badc

Only a single car ever has to be moved onto and off the siding
during the execution of the program. So, no matter how long a
train is, human users of the railway computer have only to
remember where they are in the sequence of moves: S1 R1
L1 R1, which they repeat until left track is empty.

When a computation calls for more than a fixed number
of states, it needs a working memory, and such a memory
can take the form of a stack. It works like the siding on the
railway except that programmers tend to think of a stack as
vertical. Access to the stack, like the siding, is at one end
only, and in principle it has to accommodate a train of any
length. Once an item is removed from a stack, it goes at
once to the output. So, for the siding to behave as a stack,
when cars leave the siding for left track, they must then go
at once to right track. When the siding is used in this way,
the railway computer is up one level in the hierarchy of
power: it is a push-down computer — it has this name,
because when an item is put on top of a vertical stack, it
pushes down the items beneath it. This sort of computer
can carry out the computations for a reversal of the order of
cars in a train of any length — a computation beyond the
power of a finite-state computer. For a reversal, the siding
needs to accommodate one less than the number of cars in
a train. The computation treats the siding as a stack, be-
cause as soon as it removes a car from the siding, it moves
the car via left track to right track.

A push-down computer can match parentheses in algebraic
expressions — a task to which we return in the section on
language, and it can parse sentences using other context-free
grammars (for a proof, see Chomsky, 1959). A grammar is a
function, and its rules are context-free provided that they spec-
ify the constituents of a phrase without regard to the grammat-
ical context in which the phrase occurs. Context-free gram-
mars can handle both most of the structure of programming
languages (Aho & Ullman, 1972, p. 138) and the fragment of
natural language used in the informal programs that
mAbducer creates.

A computer with a stack accommodating an unbounded
number of items cannot compute certain programs. For in-
stance, it cannot carry out a faro shuffle, which we described
earlier. The proof is simple, and it is shown in the moves of the
cars on and off the siding during a solution to a faro shuffle
using a minimal number of moves. (We explain presently how
we know the sequence is minimal.) Suppose that the initial
track is: hgfedcba[-]. The following sequence uses the

minimal number of moves to carry out the faro shuffle, where
we have shown in bold those cars you should pay attention to:

-hgfedeb[-]a hgfeldebla hgfldeb]ea hgfdeb[-]ea hgfdc[-]bea hgf[de]bea
hgldc] fbea hgdec[-]fbea hgd[-]cfbea hg[d]cfbea h[d]gcfbea hd[-]gcfbea-
[-]hdgcfbea

If you check the movements of d, you will see that it enters the
siding on the second move above along with ¢ and b, exits
with them two moves later, but like ¢ it does not go at once to
the output on right track. Instead, it later moves back onto the
siding, off again, and so on, before exiting after its third visit.
Such movements are impossible in a push-down computer,
because as soon as an item leaves its stack, it goes to the
output. A subtlety of the railway is therefore that its left track
can act as a stack too: left track and siding shuffle cars to and
fro in order to carry out a faro rearrangement. However, the
number of cars that they have to hold is a linear function of the
length of the train and, in particular, a proportion of its length.
Because a rearrangement has no effect on the number of cars
in a train, if each of the three parts of the track can accommo-
date the train, no need ever occurs to lengthen the track. This
use of the railway therefore has the power of a linear-bounded
computer, i.e., it needs access to a working memory that is a
linear function of the length of the input. Such a computer can
cope with parsing context-sensitive grammars with rules that
can take into account the grammatical context of a constituent.
For example, an auxiliary verb, such as /ave, in a verb phrase
should be singular for a grammatical subject that is a singular,
and a grammar can handle this dependency using a context-
sensitive rule (e.g., Chomsky, 1957, p. 39).

A computer with two unbounded stacks has the power of a
universal Turing machine. (Hopcroft & Ullman, 1979, Sec.
6.6). No sort of computer, as far as anyone knows, has any
greater power. Likewise, an unbounded version of the railway
is also at the top of the Chomsky hierarchy: its conversion into
a Turing machine is straightforward (see Appendix 2).

In summary, minimization is the most powerful sort of
recursion, but it is beyond the ability of naive individuals to
compute except for tiny inputs (see Appendix 1). Primitive
recursion defines a computable function in a semi-circular
referential way. Semi-circular programs and while-loops can
compute minimizations and primitive recursions. For-loops
can compute primitive recursions. A linear-bounded computer
can carry out programs that compute any primitive recursive
rearrangement, including those for a faro shuffle, a reversal,
and a swap of adjacent cars. To determine whether naive in-
dividuals can create informal programs for these primitive
recursive functions, we have identified the power required
for the corresponding mental processes. Because informal
programs are described in natural language, we need to iden-
tify the power that its use calls for. The topic is highly contro-
versial. Just about every level in the Chomsky hierarchy —
from finite-state computers up to universal Turing machines

@ Springer

Psychon Bull Rev

— has had its defenders, and finer subdivisions exist within the
hierarchy (e.g., Jiger & Rogers, 2012). We return to this con-
troversy after we shown how naive individuals are able to
create informal programs to compute primitive recursive
functions.

A theory of how naive individuals create informal
programs

An open question at the start of our research was whether
naive individuals could create programs for any primitive re-
cursive functions. Nevertheless, we formulated a theory of
how in principle they should be able to do so. This section
presents that theory. It postulates that individuals carry out
three main mental processes in order to program a rearrange-
ment of trains of any length. These processes should:

1. Solve examples of the required rearrangement on the rail-
way in order to understand what the program is supposed
to do.

2. Abduce a program to compute the rearrangement.

3. Deduce the consequences of the program to test whether it

is correct.

The mental processes underlying these tasks differ,
and we implemented all three of them in mAbducer,
which automatically creates programs in Lisp for solv-
ing rearrangements and translates those based on while-
loops into informal English. We now describe how it
carries out each of the three tasks, and we interject an
account of the complexity of programs, which should
predict the difficulty both of abducing them and of
making deductions from them.

Problem solving: The discovery of solutions to
rearrangements

The first step in the development of a program is to solve
examples of the rearrangement, that is, to discover the re-
quired sequence of moves — the fewer, the better. These moves
should get the train on left track to the goal of its rearrange-
ment on right track. The search for a solution can be carried
out on the railway itself, but the present theory allows that
individuals can also simulate moves using a kinematic mental
model. Models are iconic in that they correspond insofar as
possible to the structure of what they represent, and so kine-
matic models unfold in time in order to represent movements
in the environment. We therefore refer to the present account
as the “model” theory.

The problem-solving component of the theory explains
how people find solutions to rearrangements. It postulates
that they start by using trial and error, but, as previous
studies of reverse engineering and of other sorts of prob-
lem solving have shown, they soon acquire both local and

@ Springer

global constraints. These constraints reduce the number of
alternatives in a depth-first search for a solution, which
human solvers almost always adopt (Lee et al., 2008; Lee
& Johnson-Laird, 2013a, 2013b). The theory therefore
postulates a search in which if the constraints allow more
than one move, an arbitrary choice is made from them. The
search uses a variant of the “means-ends” analysis often
invoked as a general method for solving problems (e.g.,
Newell, 1990). We refer to this variant as a partial mean-
ends analysis. The standard analysis is to envisage the re-
quired goal and to work backwards from it, invoking ac-
tions relevant to reducing the difference between the goal
and the current state of the solution. In the case of rear-
rangements, individuals do not need to envisage the goal in
its entirety, but merely each of its successive parts.

Consider this example of a “parity sort,” which is the con-
verse of a faro shuffle:

abcdef[-]1- = -[-]acebdf

The rearrangement moves all the cars in odd-numbered posi-
tions in front of all the cars in even-numbered positions. The
match between the position of f in the initial arrangement and
in the target rearrangement, elicits an obvious move:

R1l: abcde[-1f

There are only three sorts of move (R, S, L), but trial and
error soon leads to an explosion of possibilities. Even if we
discount the number of cars in a move, there are several thou-
sand possible sequences of 8 moves. But, constraints reduce
the number, for example, L is pointless without a preceding S.
And human reasoners soon learn the tactic of moving cars
onto the siding to enable cars behind them to move to right
track. Hence, in the present example, the next part of the goal
is to get d to right track, but car e is in the way, so it must move
to the siding, and then d can move to the right:

S1: abcd[e]f Rl: abcleldf

In general, the theory postulates that in an ideal perfor-
mance people proceed according to the following constraints:

While the rearrangement still has a part to be solved,
they consider, first, whether more cars on left track can
be moved to right track to satisfy part of the goal than
cars on the siding can be moved via left track to do so.
They make the appropriate move. In case neither of the
preceding sorts of move can be made, if a car or cars on
left track satisfy part of the goal but are blocked from
moving, they move the blocking cars to the siding, and
then make the move to right track.

Otherwise, they move as many cars from siding to left
track that can satisfy part of the goal, and then move the
largest subset of them to right track.

Psychon Bull Rev

In this way, reasoners can solve the rearrangement by
decomposing it into moves of one or more cars into their
correct positions. To solve the parity sort of six cars above,
the procedure yields this sequence of moves:

R1 S1 R1 S1 R1 L2 R3
For a parity sort of eight cars, it yields this solution:

R1 S1 R1 S1 R1 S1 R1 L3 R4

Given the aim that programs should yield solutions calling
for a minimal number of moves, it is reasonable to wonder
whether there might be more parsimonious solutions. The
mAbducer program as an exercise in artificial intelligence also
finds solutions that make minimal numbers of moves. It con-
structs all possible sequences of moves breadth first to solve a
rearrangement. It finds all feasible continuations for each cur-
rent sequence of moves, and adds them to create a set of new
sequences. When a sequence can go no further or solves the
rearrangement, it is removed from the list, and the final output
is the set of successful sequences. Some rearrangements have
more than one minimal solution. This Al method is computa-
tionally intractable, but it yields minimal solutions for each of
the rearrangements in our experimental studies (see Appendix
3). And it is how we knew that the sequence in the earlier
section for a faro shuffle was minimal.

The model theory predicts that the main difficulty in solv-
ing a rearrangement depends on the number of moves in a
minimal solution. It also predicts that perseveration is likely
to lead to solutions of more than a minimal number of moves.
For example, in searching for a solution to the parity sort, if
individuals find the correct penultimate move of all the cars on
the siding to left track, they should have a tendency to persev-
erate and to move them on to right track. It is not a mistake,
but it leaves behind one car on left track, which was already
there, and which then has to be moved by itself to right track.
A parsimonious solution is instead to move all the cars on left
track to right track, not only those that have just been moved
from the siding.

Programming: The abduction of programs

To create an informal program calls for individuals to describe
how to solve a rearrangement in a sequence of instructions.
The description is in a natural language so that a user can carry
it out on the railway computer. Programming is easy to con-
fuse with the preceding task of problem solving, but the dif-
ference between them becomes clear if the program has to
carry out a rearrangement for trains of any length, i.e., of
any number of cars. It is one thing to find a sequence of moves
that solves a parity sort of abcdef, but quite another to create
an informal program for a parity sort of trains of any length.
The program cannot be deduced either from a description of
the function such as: all the cars in odd-numbered positions

are put in front of all the cars in even-numbered positions, or
from examples of its mappings. And it cannot be an inductive
generalization from them, either. Its construction is akin to the
creation of explanation or plan of how to get from one ar-
rangement to another. It depends on a process of abduction.

A common view of abduction is that a reasoner seeks a
hypothesis from which an observation follows, so that the
hypothesis implies the observation (Peirce, 1955; for a survey,
see, e.g., Douven, 2017). In our theory, abduction is an induc-
tion that introduces at least one new concept that is not part of
the observations from which it starts, and that it uses in part to
explain these observations, i.e., it implies them. Reasoners can
observe the sequence of moves that solve a particular rear-
rangement, but to create a program that applies to trains of
any length, they are forced to introduce an idea that is not
explicit in these observations — the idea of a for-loop or of a
while-loop. The creation of a program is therefore an exem-
plary case of abduction, because it introduces a novel idea, a
loop, and it formulates a program from which the initial solu-
tions follow. We now describe the model theory’s account of
the process.

The abduction starts with the moves in the solution to the
rearrangement. The solutions above of the two instances of the
parity sort are:

abcdef = acebdf: R1 S1 R1 S1 R1 L2 R3

abcdefgh = acegbdfh: R1 S1 R1 S1 R1 S1 R1 L3 R4
The first step is to search in these simulations for a loop of
more than one instruction: a loop of a single instruction merely
increases the number of its operands, for example, R1 be-
comes R4. The sequences above have two equivalent loop
structures: either the loop starts at once with repeats of R1
S1, and later calls for a single R1 prior to the two final moves,
or else after an initial R1, the loop repeats S1 R1 prior to the
two final moves. Granted, say, the latter loop structure, indi-
viduals can start their description of an informal program with:

Move one car from left to right track.

The simulations show that the pair of moves in the loop, S1
R1, for six cars has two repetitions, and for eight cars has three
repetitions. Individuals can then infer a for-loop:

For a number of times equal to half the length of the train minus one,
repeat:

move one car to the siding,

move one car from left to right track.

They can likewise infer the final two moves:

Move the number of cars equal to half the length of the train minus one tc
left track.
Move the number of cars equal to half the length of the train from left to
right track.

Human perception makes loops seem obvious. But, they
are not obvious for a program, and so mAbducer starts with

@ Springer

Psychon Bull Rev

the maximum possible repeated sequence of moves in a solu-
tion, which is half the length of the solution, and checks
whether it is repeated. If not, it looks for a repetition of one
move less in length, and so on down, until it looks for a pair of
repeated moves. Hence, in the parity sort it detects the repeti-
tion of S1 R1 after the initial move of R1. It also detects the
other loop structure. To determine the number of repetitions of
the for-loop, mAbducer solves two simultaneous linear equa-
tions of the following sort, where n is the number of cars in the
train, and a and b are the unknowns:
Number of repetitions of loop = (na) + b.
So, the equations for the parity sort above are:

2=6a+b
3=8a+b

and the solution is a = 1/2 and b = -1. Hence, the for-loop is
repeated for /on — 1 times. The same procedure also determines
the number of cars in any moves before or after the loop that
depend on the number of cars in the train. Those individuals who
formulate a correct for-loop carry out an equivalent procedure,
though they may be surprised to learn that in effect they are
solving two simultaneous linear equations.

An alternative way for people to program the parity sort is
with a while-loop. Individuals simulate solutions to two trains
of different lengths, and from the state of the track on entering
and on exiting the loop they infer the condition governing its
repetition, so that when this condition no longer holds, the
program exits from the loop. In their simulation of the solution
of a parity sort for a train with six cars, they observe that after
an initial move, the loop starts in this situation:

abcde[-1f

and continues while there is more than one car on left track
until this situation:

al[celbdf

Whereupon, it halts. The crux is that the loop continues while
there is more than one car on left track. Their program starts with
the initial move that precedes the loop. mAbducer simulates this
procedure to abduce the following program (see Appendix 3):

Move one car to right track.
While there is more than one car on left track
move one car to siding,

move one car to right track.
Naive individuals have a simple procedure for the two final
moves, which they could also use after the for-loop:

Move all the cars on the siding to left track.

Move all the cars on left track to right track.
The use of quantifiers, such as “all the cars,” calls for an
implementation of the predicate calculus (see, e.g., Khemlani

@ Springer

& Johnson-Laird, 2021), which is outside the scope of
mAbducer, and so it describes moves in terms of the length
of the train. Table 6 in Appendix 3 presents all mAbducer’s
programs for the rearrangements in our studies — those with a
for-loop, a while-loop, and its automatic translation of the
latter into informal English.

In programs calling for the power of linear-bounded
computers, the required loop is dynamic, i.e., the number
of cars in at least one move in the loop changes with each
repetition. For example, the faro shuffle has a loop of four
moves, R S R L, but the numbers of cars for S and L
depend on the initial length of the train and on how many
repetitions of the loop have already occurred. The loop to
shuffle eight cars is repeated three times and followed by
a single R2 move:

R1 S3 R1 L3

R1 S2 R1 L2

R1 S1 R1 L1

R2
The loop is dynamic because S and L move three cars in the
first iteration, two cars in the second iteration, and 1 car in the
third and final iteration. These values depend on the solution
of three simultaneous linear equations based on the total num-
ber of repetitions of the loop and the number of the current
repetition. The difficulty of solving a rearrangement depends
on its minimal number of moves. In contrast, the model theory
predicts that the difficulty of an abduction depends on the
complexity of the required program, and so we now consider
how best to assess this variable.

The complexity of programs

A potential criterion for the complexity of a program is
the computational power needed to execute it. So, for
instance, a program that swaps the order of the two cars
in each adjacent pair requires only a finite-state computer,
a program that does a reversal requires a push-down com-
puter, and a program that does a faro shuffle requires a
linear-bounded computer (see Appendix 3). Another as-
pect of power is tractability, that is, whether processing
time and demands on memory are a linear, a polynomial,
or a still greater function of the length of the input (see,
e.g., Garey & Johnson, 1979). However, both computa-
tional power and tractability are too crude as indices, be-
cause they cannot distinguish the difficulty of different
programs within their categories. And, if working memo-
ry can handle a kinematic model that shuffles cars be-
tween siding and left track at least up to a certain number,
then the difference between rearrangements calling for
this linear-bounded memory and those calling for only a
push-down memory may not be reflected in human
performance.

Psychon Bull Rev

All rearrangements are primitive recursive — the class
includes those that require only a finite-state computer —
and so a for-loop suffices for them, though human rea-
soners should prefer while-loops, because they do not call
for calculating the number of times a loop should repeat.
Hence, another pertinent factor is the number of loops in a
program. Working memory is needed for programs based
on one loop, but some rearrangements call for more than
one loop (see Appendix 3).

If a reversal is carried out on a train, and then carried
out on its result, the outcome is the train in its original
order. Reversals are “reversible” to use Piaget’s term for
an aspect of children’s operations on the world (Inhelder
& Piaget, 1958). However, as mAbducer shows, to return
to the original order of a train of 52 cars, a faro shuftle
has to be carried out eight times — a stratagem often used
by magicians and card sharps (Diaconis et al., 1983).
Different rearrangements take different numbers of repe-
titions to get back to the original order of items, and this
number might index the relative complexity of a program.
In fact, it doesn’t. Given a train of eight cars, for instance,
a palindrome rearrangement (see Appendix 3) takes four
repetitions to return the train to its original order whereas
the faro shuffle takes only three.

So far, our potential keys to the complexity of a pro-
gram are computational power, tractability, number of
loops, and number of repeated rearrangements needed to
return a train to its original order. We considered
weighting them in a single measure, but a more plausible
criterion seemed to be the number of instructions that a
minimal program contains. This factor changes from one
programming language to another. But, a single index that
might encapsulate the critical factor is Kolmogorov com-
plexity (e.g., Kolmogorov, 1965), which we refer to as K-
complexity. It is the number of symbols in a standard
language that are needed to describe the simplest possible
program for computing a given function. Beyond a certain
size, however, it is impossible to prove that a program is
minimal (Chaitin, 1998). Nonetheless, mAbducer finds
minimal solutions to rearrangements of a moderate size,
and the programs it develops — even if they are not min-
imal — are simple enough for K-complexity to be a feasi-
ble measure of their complexity. Table 1 presents, in rank
order of their intuitive complexity, the eight main pro-
grams in our experiments: it states their numbers of
moves before, during, and after loops, and the numbers
of their operands, i.e., cars. It also shows that the intuitive
complexity matches the rank-order of K-complexity as
shown in the number of words in mAbducer’s Lisp pro-
grams using while-loops and in its English translations of
them. The one discrepancy occurs with the palindrome
that calls for two separate loops of instructions (the two-
loop palindrome), which has a much smaller K-

complexity for the Lisp function than for its translation
into English. If human working memory is equivalent in
power to a linear-bounded computer, the factors in
Table 1 should also govern the difficulty of the abduction
of programs. K-complexity should then predict the diffi-
culty of abducing programs, and the difficulty of deduc-
ing their consequences.

Deducing the consequences of programs

The original model theory was developed to explain hu-
man deductions. One of its key principles is that models
are iconic insofar as possible, that is, their structure cor-
responds to the structure of what they represent
(Johnson-Laird, 1983, p. 419), and so kinematic models
unfold in time as do the events they represent whether
real or imaginary (ibid., p. 423). Some tokens in models
are symbolic rather than iconic, and they relate to proce-
dures that deal with abstract concepts, such as negation
(Khemlani et al., 2014). The theory also distinguishes
between implicit models that underlie intuitive inferences
and their explicit counterparts that underlie deliberate in-
ferences (e.g., Johnson-Laird, 1983. Ch. 6). Such a “dual
process” account of reasoning is due to the late Peter
Wason (Manktelow, 2021). Many others later developed
the idea (e.g., Evans, 2008; Kahneman, 2011). Intuitions
may play a role in thinking about programs, but deduc-
tions from them call for deliberations. Likewise, although
some deductions concern probabilities (e.g., Khemlani
et al., 2015), they do not appear to enter into inferences
testing deterministic programs (cf. Oaksford & Chater,
2020).

Deductions from programs call for a kinematic process
that simulates the effects of a sequence of moves. Hegarty
and her colleagues pioneered the empirical study of such
models of systems of pulleys and cogs, and discovered
that individuals could animate only one cog or pulley at
a time (e.g., Hegarty et al., 2013; Lowrie et al., 2019).
This constraint corresponds to simulations of the railway,
because each move affects only one or more adjacent cars
that move together. The deductive process identifies a
move from its description in the program, carries it out
on the current model of the railway to yield its next state,
and then moves to the next instruction in the program. If
the program is incorrect, the simulation may halt too
soon, deliver an erroneous rearrangement, or fail to halt.
But, the deductive consequences of a program can only
show that it is correct if it is tested with all possible
inputs. So, correctness for programs for rearrangements
calls for an inductive proof.

As an example of a deduction, consider the informal
program for a parity sort from the preceding section:

@ Springer

Psychon Bull Rev

Table 1 The rank order of the intuitive complexity of eight programs
for rearrangements based on their number of moves (and of their
operands, i.e., cars) prior to the loop (pre-loop), in the loop, and after

the loop (post-loop), where n is the number of cars in a train, and their
K-complexity (Kolmogorov complexity) as defined in the number of
words in mAbducer’s while-loops and in its English translations of them

Rearrangement Pre-loop number of moves
(and of number of cars in
them)

Loop number of moves
(and of number of cars in
them)

Post-loop number of moves
(and of number of cars in
them)

K-complexity: number of words in Lisp
while-programs (and their English
versions)

1. Swap 0 4(1)
adjacents
abcedef >
badcfe

2. Reversal
abcedef >
fedcba

3. Palindrome
abcdef >
afbecd

4. Center
palindrome
abcde >
aebdc

5. Make
palindrome
abcedef >
acefdb

6. Two loop 0
palindrome
abcedef >
cbafed

7. Parity sort
abcedef >
acebdf

8. Faro shuffle 0
abcedef >
adbecf

1(n-1)
1(1)

2 (1)
1 (%n-1) 1(1)
1) 12)

1 (Yan - 4)
1(1)

1 (1)
1)

1(n-2) 1(1)

1)

2 (1)inloop 1
2 (1) in loop 2

1(1) 2(D

2(1)
2(%n-1)

0 37(38)

0 41(40)

0 41(42)

0 41(42)

1(m+1)

45(44)

0 40(48)

1(/m-1)
1 (2n)

50(54)

1) 68(79)

Note: The programs for two-loop palindromes were hand-crafted, because mAbducer deals only with programs containing a single loop

Move one car to right track.
While there is more than one car on left track
move one car to siding,
move one car to right track.
Move all the cars on the siding to left track.
Move all the cars on left track to right track.
Individuals simulate the initial state of the railway, and
then the consequences of the first move:

abcdef[-]- abcdel[-]f

They now simulate the while-loop, which they repeat until
there is only one car on left track:

abcd[e] f abc[e]df

ablceldf alcelbdf
They then carry out the two final moves:

@ Springer

ace[-]bdf -[-]acebdf

So, the final rearrangement is a parity sort: acebdf, and the
program has survived its first test. As in abducing a program,
the theory predicts that the difficulty of deducing its conse-
quences should depend on its K-complexity.

Experimental evidence
Experiments on solutions to rearrangements

If individuals use a partial means-ends analysis to solve rear-
rangements, then two factors should affect the difficulty of the
task. The first factor is the number of moves in the solution,
and the second factor is the total number of cars that move.
The latter has a family resemblance to “relational complexi-
ty”, i.e., the number of arguments in a relation or function,
which also affects the difficulty of solving problems (Halford
et al., 2010). However, the number of cars in a move is dif-
ferent: it concerns whether a single input refers to one or more

Psychon Bull Rev

items. The two factors should both contribute to difficulty,
leading individuals to take longer to solve a rearrangement
and to make more than a minimal number of moves.

The first experiment to test these predictions for the solu-
tion of rearrangements allowed participants to move the cars
on a computer-presented railway as in Fig. 1 (Khemlani et al.,
2013, Experiment 1). These participants, as in all our studies,
were naive in that they knew nothing about computer pro-
gramming or its cognate disciplines. The participants had to
solve all 24 possible rearrangements of trains containing four
cars, and Table 2 collapses the results into 12 sorts. A rear-
rangement that requires only one move has a probability of
being solved by chance of 0.125, because there are eight pos-
sible initial moves for a train of four cars (S1, S2, S3, S4, R1,
R2, R3, R4) and only one of them solves the rearrangement.
The next sort of rearrangement in the study calls for four
moves, and it has a probability of being solved by chance of
0.0004 (1/8 x 1/8 x 1/6 x 1/6), taking into account only those
moves that are possible after each move is carried out, and the
chance probabilities are still smaller for the rearrangements
with a greater number of moves. As Table 2 shows, the mean
numbers of moves that the participants took to solve the rear-
rangements correlated with both the predicted number of
moves and with the predicted total number of cars in moves,
but participants often made unnecessary moves. The response
times showed the same effects. The participants carried out
two additional rearrangements in which they had to think
aloud as they tackled them. Their remarks showed that they
focused on the cars in the targetrearrangement, working back-
wards from the car at the front of this train. So, they were using
some sort of partial means-ends analysis.

Given the relative ease of solving rearrangements, a subse-
quent study examined 10-year-old children’s performance in
solving four rearrangements of six cars (Bucciarelli et al.,
2016, Experiment 1). Table 3 presents the results. The proba-
bility of solving these rearrangements by trial and error is
remote, for example, the parity sort has a solution that calls

Table 2 The mean numbers of moves from an experiment in which
participants (N = 20) solved the 24 possible rearrangements of four cars
(Experiment 1 in Khemlani et al., 2013). The means depended on the

for seven moves, and the probability of selecting this sequence
by chance is less then one in a million.

As Table 3 shows, the participants made very few errors,
but the rank order of their mean numbers of moves and times
to solution correlated reliably with the number of moves in
minimal solutions. The use of more complex rearrangements
made it impossible to examine the total number of cars in
moves independently from the number of moves. Like adults,
the children tended to make redundant moves: all but one of
the 20 children made at least one redundant move. The chil-
dren differed from one another only in the time it took them to
solve the rearrangements — a difference that correlated neither
with age nor gender.

It is not surprising that individuals’ solutions correlate with
the number of moves in minimal solutions, or that their main
shortcoming is to overlook parsimonious solutions. However,
their number of moves and the differences from one rear-
rangement to another make a striking contrast with the predic-
tions for the difficulty of the two other tasks in developing
programs for rearrangements.

Experiments on abductions of programs

Five experiments tested participants’ abductions of informal
programs, and Table 4 summarizes their results. The standard
procedure was for the participants to solve some preliminary
rearrangements in order to become familiar with the railway,
and then for them to formulate descriptions of programs for
solving various other rearrangements. During this latter phase,
they were not allowed to move the cars. To make a correct
abduction of a program by chance is akin to the proverbial
monkey typing a soliloquy from Hamlet: it calls for solving
the rearrangement of six cars, which itself has a probability of
about one in a million (see the previous section), for realizing
that a loop of moves is needed for trains of any length, and
then for discovering a correct loop. Hence, even the lowest
percentages of correct programs in the experiments we report

numbers in minimal solutions (means in right hand column) and on the
total numbers of cars to be moved in minimal solutions (means in bottom
TOW)

Number of moves in minimal solutions

Total number of cars moved in minimal solutions

Mean number of actual moves

4 6 10 12

1 1.00 1.00
4 433 4.68 4.55 448
5 5.50 5.20 5.43
6 6.51 6.63 6.56
7 7.90 7.90
8 8.28 8.48 8.55 8.41
Mean number of actual moves 1.00 4.92 6.51 6.90 8.55

@ Springer

Psychon Bull Rev

Table3 The number of moves in minimal solutions to four sorts of rearrangement of trains of six cars, and the percentages of correct solutions that 10-
year-old participants (N = 20) made, their mean numbers of moves and mean solution times (Experiment 1 in Bucciarelli et al., 2016)

Rearrangements Minimal numbers of moves Percentages of correct solutions ~ Mean numbers of actual moves Mean solution times (s)
Palindrome:

abccba = aabbce 6 100 8.2 42

Parity sort:

abcdef = acebdf 7 100 9.9 49

Faro shuffle:

acebdf = abcdef 9 100 11.6 55

Reversal

abcdef = fedcba 12 95 16.3 70

are better than those that would occur by chance. In
Experiment 2 of Khemlani et al. (2013), the participants had
a block of trials in which they had to formulate programs for
trains of eight cars, and a block of trials in which they had to
formulate programs for trains of any length. Two groups of
participants carried out the blocks in counterbalanced orders.
The percentages of accurate programs for trains of any length
are shown in Table 4 for these two groups (columns i and ii):
when they tackled trains of any length in the second block
they were more accurate than when they tackled them in the
first block (82% vs. 65%; Mann-Whitney test, z = 1.70; p<
0.05). So, a positive transfer appears to occur from a program
for a train of fixed length to a program for a train of any length.
In fact, both sorts of program tended to use loops—the latter
are bound to do so, and participants preferred to use while-
loops (82%) rather than for-loops (18%). Here is a typical
protocol for the palindrome rearrangement (abceba = aabbcc),
as a participant described it, but with the while-loop italicized:

Table 4 The percentages of accurate abductions of programs in nine
experimental groups. The K-complexity of the programs is shown in
terms of the number of words that the program mAbducer used in its

The cars on the left are letters A-Z and Z-A (sic) in
order. Move all cars right of the last available letter to
the side track. Move both copies of the last available
letter to the right track. Then move one car from the side
track back to the left track. Move the two rightmost cars
from the left track to the right track. Repeat this cycle
until all cars have been ‘paired’ and moved to the right
track.

Bucciarelli et al. (2016) carried out a similar experiment
with 10-year-old Italian children in which they had to describe
programs for rearrangements of trains with six cars. They
were able to do so (see column iii in Table 4), and they even
used simple precursors to loops, such as, “I move B from the
siding to the left track then to the right track, and the same with
C, D, E, and F” (translated from the Italian). The children
were not allowed to move the cars, but they made a striking
number of gestures — some pointed to individual cars, and

Lisp while-loops and in its translations of them into English, and the
minimal number of moves required to solve a re-arrangement for trains
of six cars

Percentages of accurate programs in nine groups

Rearrangements K-complexity Lisp (English) ~ Number of moves i ii il iv v vi vii viii ix
1. Swap adjacents 38 (37) 12 77 54
2. Reversal 40 (41) 12 89 91 81 84 78 91 83 71 11
3. Palindrome 42 (41) 6 44 27 90 78 66 83 83

4. Make palindrome 44 (45) 6 63

5.2 loop palindrome 48 (40) 12 54

6. Parity sort 54 (50) 7 56 9 43 38 31 83 83 63

7. Faro-in shuffle 79 (68) 9 14 59 34 75 75

Note: i) Khemlani et al. (2013), Experiment 2, trains of any length in second block of trials, ii) trains of any length in first block of trials; iii) Bucciarelli
et al. (2016), Experiment 2, iv) Experiment 3 with gestures allowed, v) Experiment 3 with no gestures allowed; vi) Mackiewicz (in preparation), with
letters on cars, vii) with numbers on cars; viii) Bucciarelli et al. (2018), Experiment 2, for trains of six cars, and ix) for trains of any length

@ Springer

Psychon Bull Rev

others mimicked moves. When they were prevented from ges-
turing in a subsequent study, their abduction of accurate pro-
grams fell by 13% in comparison with those in a group who
were allowed to gesture (see the differences between columns
ivand v in Table 4). Mackiewicz and his colleagues in a study
of eye-movements (in preparation) tested adults in two
groups, one with letters on the cars and one with numbers
on the cars. Their results also corroborated the predicted trend
(see columns vi and vii in Table 4). And Bucciarelli et al.
(2018) called for 10-year-olds to formulate programs for trains
of six cars and for trains of any length (see columns viii and ix
in Table 4).

Each of these experiments corroborated the K-complexity
trend of difficulty in abducing programs. Children’s gestures
bore out the theory’s claim that people rely on a kinematic
model of the track in order to formulate programs: the gestures
helped the children to maintain an accurate model of the ef-
fects of moves.

To assess the experiments overall, we examined the pro-
portions of differences within their means that matched the
predicted trend from K-complexity (using the P statistic
computed for tau in Kendall & Gibbons, 1990). Eight out of
the nine groups in Table 4 yielded more than half such
matches, and condition (vii) was a tie (Binomial test, p<
.0001). The size of the effect of K-complexity is evident in
its correlations with difficulty in these nine groups: Kendall’s
tau, which ranges from -1.0 to +1.0, varied from .33 to 1.0
with a mean of .66. As Table 4 also suggests, the number of
moves to solve a rearrangement for six cars did not correlate
reliably with the difficulty of abducing a program: tau varied
from -1.0 to +.33, with a mean of -0.39, and the difference
between the taus for K-complexity and for number of moves
was reliable (Mann-Whitney test, z = 3.49, p< .00025). In
sum, the complexity of programs rather than the number of
moves in the rearrangements tended to predict the difficulty in
abducing them.

Experiments on deductions from programs

Three experiments have examined the ability of participants to
deduce the consequences of programs. The first study tested
43 adult Polish participants with deductions from programs in
their native tongue for reversals, palindromes, parity sorts, and
faro shuffles. They were translated into Polish from
mAbducer’s English while-loops, but expanded to clarify
them and to ensure that all four descriptions had the same
number of words (Khemlani et al., 2013, Experiment 3). The
participants first watched a video that explained the railway
and rearrangements. After two simple practice rearrange-
ments, they carried out the experiment with access neither to
the railway nor to paper and pencil. They had to deduce the
consequences of the programs on a given train of six cars.
There are 720 possible rearrangements of six cars and only

one correct deduction, and so success by chance has p<
.0015). Table 5 shows the percentages of correct deductions.
K-complexity predicted the reliable trend in accuracy, and it
also predicted how long it took the participants to make the
deductions.

A second study tested 30 10-year-old Italian children, who
had to deduce the consequences for trains with five cars of two
versions of three sorts of program: reversals, center palin-
dromes, and parity sorts (Bucciarelli et al., 2018). One version
was with while-loops, and the other version was without a
loop and applied only to the five cars. The center palindrome
is a version of the program for a palindrome but adapted for an
odd number of cars in which there was a single central car, as
in abcba (see Appendix 3). It has the same K-complexity as
the palindrome. Table 5 shows the percentages of the chil-
dren’s correct deductions (solution by chance for five cars
has p< .009). Programs described without loops were easier
than those described with loops—Iloops impose a greater load
on working memory, because reasoners have to keep track of
the while-condition. The versions with loops had the trend in
difficulty that K-complexity predicts. The children differed in
ability: two children made only correct deductions, and three
children made no correct deductions. There was no reliable
difference in accuracy between the sexes.

A third study tested 23 Polish students at the University of
Social Sciences, Warsaw (Mackiewicz et al., 2016). They
made deductions for trains of three lengths (four, six, and eight
cars) from four programs: reversals, palindromes, parity sorts,
and faro shuffles. Table 5 presents their overall percentages of
correct deductions (chance successes have ps of less than .05,
.0015, .000025, respectively). Once again, K-complexity cor-
related reliably with the accuracy of the deductions over the
four sorts of rearrangement (mean tau = .75). In contrast, the
number of moves to make the rearrangement did not correlate
(mean tau = -.42) ; and the difference between the two sets of
taus was reliable, Mann-Whitney test, z =2.17, p< .025). The
participants differed in ability: the three most accurate partic-
ipants made only correct deductions, but one participant made
no correct deductions.

The cumulative results in Table 5 show that K-complexity
is a reasonable proxy for the complexity of programs contain-
ing loops in that it predicts the difficulty of deducing their
consequences quite well. These results make a striking con-
trast to those from solving rearrangements. In deductions, re-
versals were easiest, whereas they were the most difficult re-
arrangements to solve (see Table 3). So, what makes for dif-
ficulty in deducing the consequences of a program is, not the
number of moves that it calls for (see Table 5), but its com-
plexity, which includes such factors as the number of its in-
structions, both in loops and outside them (see Table 1). These
factors increase the difficulty of simulating the program in a
kinematic model of its effects, because they add to the load on
working memory. And this difficulty is predicted from the

@ Springer

Psychon Bull Rev

Table 5
deductions from them in three experiments

The K-complexity of five programs, the minimal number of moves to make each of their rearrangements, and the percentages of correct

K-complexity in Lisp (and in English)

Minimal number of moves

Percentages of correct deductions

Rearrangement i ii without loops iii with loops iv
1. Reversal 41(40) 12 41 80 52 52
2. Palindrome 41(42) 6 35 - - 48
3. Center palindrome 41(42) 8 - 36 32 -

4. Parity sort 50(54) 7 32 44 20 49
5. Faro shuffle 68(79) 9 23 - - 41

Note. i) Experiment 3 in Khemlani et al. (2013), ii) Experiment 1 in Bucciarelli et al. (2018) for programs described without loops, iii) for programs

described with loops, and iv) Mackiewicz et al. (2016) (n = 23)

number of words in Lisp programs with while-loops and in
their translations into English.

Recursion in natural language

Our participants described their programs for primitive recur-
sive functions in their native tongues of English, Italian, and
Polish. These natural languages suffice to describe informal
programs. An obvious connection between programs and lan-
guages concerns quantifiers. Our participants often used quan-
tified assertions to describe moves, for example, “move all the
cars on the left side of the track to the right track.” To imagine
the situations to which quantified assertions refer and to infer
their consequences also depend on loops. Suppose, for exam-
ple, that there are four people: Anne, Beth, Chuck, and Di,
about whom it is true that Anne loves Beth, and that they all
love anyone who loves someone. Most people can infer from
a model of these two premises that:

Everyone loves Anne.

But, the quantified assertion can be used to make a loop of
further updates to the model yielding the deductions: So, Beth
loves Chuck; so, Di loves Chuck; . . . so, everyone loves
Chuck; and so everyone loves everyone. In fact, individuals
are much more likely to make the first step in the loop than to
reach the final step (Cherubini & Johnson-Laird, 2004).
Another connection between programs and quantified asser-
tions is that if a program could determine whether any infer-
ence in the logic of quantifiers is valid or invalid, then a pro-
gram could also determine whether or not any while-loop halts
(see Boolos et al., 2007, Ch. 11).

Linguists have argued that recursion is the central compo-
nent of natural language (e.g., Hauser et al., 2002). Chomsky
(1957) first raised this question in relation to grammars. He
argued for the inadequacy of regular grammars that finite-

@ Springer

state computers could parse, that they need context-free rules
and even rules sensitive to the grammatical context in which
constituents occur — rules that demand linear-bounded com-
puters to parse them. But, other linguists discovered that push-
down computers sufficed to parse sentences and to compose
their meanings from those of their constituents — tasks that had
hitherto thought to demand linear-bounded computers (e.g.,
Gazdar et al., 1985). Indeed, grammars ought to yield syntac-
tic analyses that enable the meanings of sentences to be com-
posed in this way (e.g., Partee, 2014).

In English, sentences based on “respectively” introduce
dependencies that cannot be handled with a push-down com-
puter (Bar-Hillel & Shamir, 1960), for example:

Ann, Beth, and Cath love Ali, Ben, and Cam,
respectively.

The interpretation of this sentence — whether semantic or
pragmatic (Gazdar et al., 1985) — calls for the relation of love
to hold from the first to the second member of each of these
pairs:

Ann-Ali Beth-Ben Cath-Cam.

Readers should look again at the two sequences of proper
nouns. Their rearrangement from the first sequence to the
second sequence is an instance of our familiar friend, the faro
shuffle:

Ann Beth Cath Ali Ben Cam = Ann Ali Beth Ben Cath Cam

As we showed earlier, such rearrangements in general call for
a dynamic loop that moves items to and fro between two
stacks, i.e., the siding and the left track of the railway com-
puter. Its computation calls for the power of a linear-bounded
computer with a working memory that is a proportion of the
length of the input. Swiss-German, likewise, has grammatical
relations between analogous sequences of case markings on

Psychon Bull Rev

noun phrases and their respective verbs that cannot be handled
in a context-free grammar and a push-down computer
(Shieber, 1985).

In contrast, some theorists have argued against the hy-
pothesis that recursion occurs in language. One sort of
argument is: “Recursion is a mathematical self-calling
function, and clearly there is no such thing in language”
(Frath, 2014, p. 181). Which is akin to arguing that our
participants did not devise programs to compute primitive
recursive functions, because they didn’t use semi-circular
programs. Everett (2005) has claimed that Pirahd, a lan-
guage of an Amazonian people, has a grammar that does
not contain recursive rules, though the semantic processes
of its speakers can be recursive (Everett & Gibson, 2019).
The resulting controversy has been framed in terms or
whether or not embedded structures occur in the grammar
of Pirahd (see, e.g., Nevins et al., 2009; Sakel & Stapert,
2010). But, as we have shown, a function is primitive
recursive if its computation necessitates a for-loop of
two or more basic instructions. So, Everett is arguing, in
effect, that parsing the language does not need loops.

Skepticism is warranted in some cases. If a colleague
tells you that the song of a particular species of bird
depends on a context-free grammar, then beware. The
songs might be created from a regular grammar using at
most a finite-state computer. However, such a system
might also produce songs that the bird would never sing
— an absence that might be difficult to discover. Greater
computational power does not add new sorts of se-
quence to those that are well-formed, but rather prevents
the construction of certain other sequences. But, it can
construct more complex structures of the sort needed,
say, for a compositional semantics.

A grammar can define a primitive recursive function. For
example, the grammar to match left and right parentheses in
algebraic expressions has these rules:

S = ()

S = (S 9)

The arrow in the first rule specifies that a well-formed
string S can consist of a pair of matching parentheses.
The second rule, which is circular, allows that S can con-
sist of two instances of S within matching parentheses.
Hence, a string such as: ((()()) ()) is well-formed
because it can be parsed using just the two preceding
rules, and a push-down computer (see Chomsky, 1959).
One moral of our investigations, however, is that such a
program does not need to use the semi-circular grammar
above. It can compute the same function using this loop
instead:

While there is at least one parenthesis in the string:
if the first parenthesis in the string is ')’
then move it to the stack,
otherwise if it is ‘('
then delete it and the topmost item on the stack,
otherwise halt.
If and only if the string and stack have no items in them

then the original string is well-formed.

This parsing program exemplifies a general claim: gram-
mars that are primitive-recursive with semi-circular rules are
essential in the analysis of languages, but programs based on
loops can compute the functions they describe. Human
speakers are equipped with the equivalent of grammars for
their native languages. But, it does not follow that this knowl-
edge is represented in the brain in the form of a grammar: it
could be embodied in programs. Another possibility is that
rules universal to all languages are embodied in programs,
and all information specific to the language is in the lexicon
(Steedman, 2019).

A sensible psychological constraint on parsing natural lan-
guage is that the time taken to parse a sentence should be at
most proportional to some polynomial of the number of words
in the sentence rather than an exponential function of it (see
Johnson-Laird, 1983, Ch. 13, for a review of early efforts to
devise such methods). No such constraint is plausible for the
deliberations of our participants seeking to program a rear-
rangement — they may even fail the task. Likewise, the role
of permutations in language and in rearrangements also
differs. Steedman (2020) considers those permutations of a
sequence of grammatical categories, as exemplified in:
“These five young lads,” that are also grammatical. Of course,
not all 24 possible permutations of the four categories of these
words are grammatical. Both within languages and over dif-
ferent languages, as Steedman shows, the number of permu-
tations of a given number of categories that result in a gram-
matical order increases at much slower rate than the number of
their possible permutations. This constraint follows from the
assumptions built into his combinatory categorial grammar
(Steedman, e.g., 2019), and so it is an excellent candidate
for a linguistic universal. The constraint contrasts with the
universal permutations that we investigated in our experi-
ments: our participants, for example, solved with ease all re-
arrangements of trains containing four cars (see Table 2).

The various proposals about grammars (e.g., Stabler, 2004)
and experiments on the learning of artificial grammars
(Westphal-Fitch et al., 2018) have converged on similar re-
sults. Natural language has mildly context-sensitive rules of
the sort in various systems, including tree-adjoining grammars
(Joshi et al., 1975) and combinatory categorial grammars
(Steedman, 2019). They can be parsed in a time proportional
to a polynomial of the number of words in a sentence. In the

@ Springer

Psychon Bull Rev

light of a refined hierarchy of computational power (Jager &
Rogers, 2012), what language and thought have in common is
the need for a greater power than push-down computers and
context-free grammars. Mild context-sensitivity can be han-
dled with only slightly more power than a push-down com-
puter, and so the power it needs falls within the power needed
for thought. Speakers of a language understand its sentences
rapidly, whereas their efforts to program rearrangements take
much longer and may even fail.

Human working memory has a small finite capacity: it
cannot cope with long inputs (see Christiansen & Chater,
2016). And, as we have seen, even the implications of a quan-
tified assertion, such as: They all love anyone who loves
someone, can be too burdensome to grasp in full.
Deliberations about rearrangements call only for a memory
bounded by the length of a train, which is less power than
some linear-bounded computers. Other informal programs,
for example, could call for cars to be added to a train. One
sort might demand the copying of a train (the “copy” lan-
guage, see Jager & Rogers, 2012) as in:

abbccc = abbcccabbccc

Its computation calls for a linear-bounded computer with a
working memory twice the length of the input. Yet, naive
individuals should be able to devise a program for this func-
tion. With no restrictions on the principles for rewriting inputs
with additional symbols, they can need the power of a univer-
sal Turing machine (Post, 1946). Our conjecture is that the
rearrangements that humans can solve require only the power
of a linear-bounded computer. But, armed with a pencil and
paper, or some other aid to memory, humans can even under-
stand functions that they cannot compute or that cannot even
be computed. There remains the eternal riddle of the innate
roots of primitive recursion in languages (Berwick &
Chomsky, 2016; Everaert et al., 2017), in plans and explana-
tions (Johnson-Laird et al., 2004; Steedman, 2017), and in
abductions and deductions. The riddle is insoluble at present
because pertinent evidence is not at hand and may never be
(Lewontin, 1998).

Discussion

This section starts with arguments that skeptics might make
about the interpretation of our results, it then describes some
of their pedagogical implications, and it concludes with an-
swers to the three fundamental questions with which the arti-
cle began.

The most general skeptical position about our investiga-
tions is that symbolic mental representations, such as mental
models, do not exist (e.g., Ramsey, 2007), or that it is only the
environment that constrains, affords, or situates intelligent be-
havior (e.g., Thelen & Smith, 1994). Whether mental

@ Springer

representations play any causal role in thinking could be
dubbed “Peirce’s problem,” because he was the first to refer
to reasoning as akin to moving pictures in the mind (Peirce,
1931-1958, Vol. 4, paragraph 8). A more nuanced skepticism
allows that mental representations exist, but that they have the
form of grammatically structured strings of symbols in a lan-
guage of thought (e.g., Pylyshyn, 2003), and that mental pro-
grams are formulated in such a language (Piantadosi et al.,
2016). Mental models could therefore be epiphenomenal,
and, as Pylyshyn argued, play no causal role in thinking. No
cognitive scientists doubt that neuronal processes underlie
mental life, just as electronic processes underlie digital com-
puters executing programs. Indeed, phenomenologists have
argued — as the late Paolo Bozzi often did (see also Bozzi,
1989) — that nothing other than neuronal events has a causal
role, not even expressions in a language of thought. Our view,
however, is that just as programmers find it expedient to de-
vise high-level programming languages that can manipulate
symbolic arrays, the brain has evolved to do so too. High-level
representations play a causal role. Pertinent evidence includes
our finding that children’s gestures help them to abduce pro-
grams. Why don’t they just imagine gesturing if all that mat-
ters are neuronal processes? Hence, until a theory making no
use of kinematic models leads to alternative and corroborated
predictions about how individuals devise programs, the con-
troversy is not open to empirical resolution.

A more cogent criticism concerns Kolmogorov’s measure
of complexity, which depends on the number of words in
programs in a standard language for programming. The mea-
sure yields finer predictions of difficulty than, say, computa-
tional power (see Table 1). Its trend predictions were borne
out in our experiments on abducing programs (Table 4) and on
deducing their consequences (Table 5). But, these experi-
ments used only a handful of rearrangements, and so a legit-
imate criticism is that there could be others for which K-
complexity makes erroneous predictions. Nevertheless, what
remains secure is that naive individuals are able to program at
least some primitive recursive functions.

Could our participants have abduced programs without
themselves simulating loops of moves, and instead relied
on some — as yet unspecified — short cut? When the great
mathematician Gauss was a boy, he is said to have taken an
astonishing short cut to avoid a cumbersome for-loop. To
sum the numbers from 1 to 100, he took their mean of 50.5,
and multiplied it by 100 to calculate the correct total of
5,050 (see Anderson et al., 2011, for experimental studies
of a similar sort). No analogous short cut, however, yields
programs for rearrangements, because they have to use the
three basic instructions for moving cars to the siding (S), to
left track (L), or to right track (R). So, we see no feasible
alternative to participants having to simulate loops of in-
structions, which they then use in their programs for com-
puting rearrangements.

Psychon Bull Rev

Individual participants differed in ability, and not ev-
eryone was able to formulate a program for a rearrange-
ment. And not every rearrangement was easy. Only a
few exceptional individuals were able to abduce a cor-
rect program for a faro shuffle of trains, which splits a
train in half, and interleaves the cars from the two
halves (see columns vi and vii in Table 4). Yet, a com-
mon informal program that children in the West learn is
how to lay place settings at a table. Given a supply of
cutlery, they can make each setting of fork, knife,
spoon, etc. A corresponding program given sets of cut-
lery rearranges them in the appropriate order. Like the
faro shuffle, it calls for moving items between two
stacks.

The differences from one individual to another in in-
formal programming show that computer programming is
a skill. Aptitude is needed to devise self-referential semi--
circular programs (e.g., Rubio-Sanchez, 2017), and chil-
dren have difficulty in coping with them (e.g., Dicheva &
Close, 1996; Kurland & Pea, 1985). Yet, they do not have
so much difficulty in devising loops of instructions. Other
studies of novices devising programs both in formal pro-
gramming languages (e.g., Anderson et al., 1988;
Soloway & Spohrer, 2013) and in natural language (e.g.,
Good & Howland, 2017; Miller, 1981) inspired a search
for tests to measure potential ability in programming (e.g.,
Bornat et al., 2008). Computational thinking ought to be
taught in schools (Grover & Pea, 2013; Wing, 2008). But,
no consensus exists about its nature (see, e.g., Bundy,
2007; Cetin & Dubinsky, 2017; Denning, 2017; Zhong
et al., 2015). It should be independent of any particular
programming language, and our present investigations im-
ply that its roots lie in abducing programs for primitive
recursive functions using loops of repeated instructions.
The abduction of rearrangements may therefore reveal a
person’s potential as a computer programmer.

Conclusions

We began this article with three questions. We end it with our
answers to them.

What is recursion? In its fundamental sense, recursion con-
cerns the definitions of functions, and is of two sorts. Primitive
recursion defines a function’s value in a semi-circular way,
i.e., its value for an input of zero, and its value for (n + 1)
based on its self-referential value for n. Minimization is a more
powerful recursion, but no-one is likely to be able to envisage
it for more than tiny input values (see Appendix 1). From an
appropriate set of basic functions, their composition and use in
recursive definitions suffice — as far as anyone knows — to
define any computable function. Programs for computing

recursive functions can use the same sort of semi-circular for-
mulations, but they don’t need to. They can also be computed
using while-loops; and primitive recursive functions can even
be computed using for-loops. They include programs that re-
arrange the order of cars in trains using the railway computer
(see Figs. 1 and 2).

How could naive individuals create informal pro-
grams to compute (primitive) recursive functions?
According to the model theory and its implementation
in the mAbducer program, they can use kinematic men-
tal models to simulate the movements of cars on a rail-
way. They solve rearrangements of the order of cars
using partial means-ends analysis, which satisfies the
goal in successive parts rather than dealing with it as
a whole (cf. Newell, 1990). As the theory predicts, the
greater the number of moves needed to solve a rear-
rangement, the more difficult its solution is to discover
(see Tables 2 and 3). For instance, it is harder to re-
verse the order of cars in a train than to move all the
cars in odd-numbered positions in the train in front of
all the cars in its even-numbered positions (a parity
sort). Given solutions to a primitive recursive rearrange-
ment, individuals can in some cases abduce a program
to solve it for trains of any length: they find a loop in
its solutions. They never use semi-circular programs, but
infer the conditions that must hold for the repetition of
a while-loop or the required number of repetitions need-
ed for a for-loop based on the length of the train. The
difficulty of abductions depends, not on the number of
moves they call for, but on their complexity of the
required program (Table 1) for which Kolmogorov com-
plexity — the number of words required in a program —
seems to be a predictive metric (see Table 4). Ten-year-
old children cope with a reversal of the order of the
cars in a train, which calls for a working memory akin
to a stack — a siding that accommodates no more than
the number of cars in a train. More demanding is the
faro shuffle that calls for two stacks — the siding and
left track. Naive individuals can also deduce the conse-
quences of rearrangement programs by simulating each
instruction in a kinematic mental model, and again the
difficulty of the task depends on the complexity of the
program (see Table 5).

How does the computational power needed for infor-
mal programming relate to the power needed for natu-
ral language? Rearrangements are primitive recursive, but
their programs differ in the power of the computer needed to
carry them out — a matter that depends on the nature of the
computer’s working memory. The programs that our partici-
pants devised included those that swap the order of adjacent
cars in a train and that use the siding only to store single cars (a
finite-state computer), those that reverse the order of the cars
and that use the siding as a stack-like memory (a push-down

@ Springer

Psychon Bull Rev

computer), and those that make a faro shuffle of the cars and
that use both the siding and left track as stack-like memories (a
linear-bounded computer). None of these rearrangements or
any others call for an unlimited length of track needed to
compute a minimization: no cars are added or removed from
a train in a rearrangement, and so working memory never has
to exceed the length of a train.

Human beings appear to have a single working mem-
ory, albeit one with several components (e.g., Baddeley
et al., 2019; Malmberg et al., 2019). It may have spe-
cialized linguistic components, but language and thought
appear to share working memory. People can talk while
they drive, but they are liable to shut up during difficult
maneuvers. And, when people speak spontancously,
they are more likely to err in a concurrent tracking task
akin to driving, when they produce a relative clause that
is more demanding on working memory (Power, 1986).
This interference supports the idea of a working mem-
ory in common. Many natural languages have mildly
context-sensitive grammars that call for more power
than a push-down computer, and some languages have
grammars that demand rearrangements equivalent to a
faro shuffle. The burden of our research is therefore that
the working memory for thought is more than enough
for language. And if long-term memory, writing, and
other external devices, can aid working memory, indi-
viduals can even think about problems that call for
maximal computational power.

Appendix 1. Minimization, the Ackermann
function, and while-loops

Minimization is a more powerful way than primitive recursion
to combine given functions. We can illustrate how it works
with a function that outputs the largest whole number not
larger than half a given integer, for example, 7 to an output
of 3. Minimization in general maps to an output equal to the
minimal value of an input to a given function for yielding an
output of zero. So, this function is the minimization of y in the
formula: x — 2y — 1, where x is the input value. While-loops
can be used to compute any minimizations, and so this func-
tion can be computed in the following way:

Define no-more-than-half (x)
Set vy =0

While (x - 2y = 1) > 0, set y = (y + 1)

Output vy.
If the input value of x equals 7, the program increases the

@ Springer

value of y while the formula yields a value greater than 0:

y = 0, the formula yields 6
y = 1, the formula yields 4

y = 2,the formula yields 2
y = 3, the formula yields 0

So, now the program outputs 3, which is the highest integer
not larger than half of 7. The definition above shows the
existing arithmetical functions that are combined in the com-
putation of this particular minimization.

In fact, not-more-than-half is primitive recursive — it
doesn’t require a minimization. But, other functions depend
on lit, because primitive recursion cannot define them. The
best known is the Ackermann function (Ackermann, 1967/
1928). It maps two input integers to an output integer, and
these examples show that its output grows at a faster rate than
exponential:

Ackermann (1, 1) = 3
Ackermann (0, 4) =5
Ackermann (3, 0) = 5
Ackermann (2, 2) =7
Ackermann (3, 3) = 61

Ackermann (4, 1) = 65533

Ackermann (4, 2) = 265536 _ 3

The final output here is an astronomical number. The defini-
tion of the function depends in part on double semi-circles, for
example:

Ackermann (1, 1) =

Ackermann (0, Ackermann (1, 0)) =

Ackermann (0, Ackermann (0, 1)) =

2) =3

Because its computations apply to decreasing values of its two
inputs, it always has an output.

But, because of the doubly recursive calls when both inputs are
greater than zero, it calls for great computational power equiv-
alent to unlimited working memory (as in a Universal Turing
machine). Minimization is arcane, but it can be computed using
while-loops, in which a sequence of instructions is repeated
while a particular condition holds. Hence, a program for com-
puting the Ackermann function can be based on while-loops
(Grossman & Zeitman, 1988). Minimization is hardly likely to
play any role in using natural languages, and it is an open
question whether the brain — even of calculating prodigies —
ever computes functions that only minimization can define.

Ackermann (O,

Psychon Bull Rev

Appendix 2: The transformation
of the railway into a universal Turing machine

The railway, as we have defined it in the text, cannot
be used to compute addition, multiplication, subtraction,
or division. However, granted a few modifications, the
user can carry out programs for these arithmetical func-
tions. There need to be two sorts of cars (labeled 1 or
0), and if need be, additional cars can be added to an
existing train: so, the railway should never run out of
cars, or of track for accommodating them. The rest is
up to the user. She has to be able to carry out three
actions:

1. To identify the car at a particular fixed location on left
track as 1 or 0.

2. To remove a car or to add a new car at this location,
where the conjunction of both these actions replaces
one sort of car with the other sort,

3. To move the whole train one car to the left of this
location or one car to the right of it— a move that
may call for a lengthening of the track.

She also has to keep in mind the values of two other numbers,
which are needed for programs. These numbers denote an
abstract state of the railway prior to executing an instruction
and after executing it. There are only finitely many states.
Each instruction in the program consists of four numbers,
which represent:

 the identity of the car at the particular location as 1 or 0.

» the number of the present state that the user is in.

* the number of the basic action for the user to carry out
from the three described above.

» the number of the next state that the user is in after carry-
ing out the instruction.

Any program consists of a set of these quadruples.
The program to add any two positive integers, such as 2 +
1, has the following instructions:

Present state Symbol on car Action carried out Next state
1 1 Change car to 0 1
1 0 Move train one car to right 2
2 1 Move train one car to right 2
2 0 Change car to 1 3
3 1 Move train one car to left 3
3 0 Move train one car to right 4

Given a train for 2 + 1, i.e.: 01011, the effect of the program is
as follows, where the arrow denotes the car that is scanned:

| Current state

01011 1
01010 1
01010 2
01010 2
01110 3
01110 3
01110 3
01110 4

At this point, the computation halts, because there are no
instructions for state 4. The representation of numbers uses
numerals such as 111 to denote 3. The numbers denoting
states allow loops to occur when a state is revisited after a
loop of other states.

These modifications use a train to replace the tape of a
Turing machine (see Davis, 1958). Turing’s great insight
was that a particular program, such as the one above, for
computing a certain function can itself be encoded as the se-
quence of digits representing each of its quadruples, and so a
universal machine fed in a tape with this numeral and data can
carry out the computations of the particular machine on the
data. That is the origin of the programmable digital computer.

This modification to the railway puts it at the top of the
Chomsky hierarchy. It can compute minimizations, such as
the Ackermann function (see Appendix 1), though the exten-
sions to the train and track would soon exhaust the world’s
supply of rolling stock and railways, and the demands on the
user would soon become intractable.

@ Springer

Psychon Bull Rev

Appendix 3: The eight programs in our

studies

Table 6 The eight programs in our empirical investigations, the
computational power needed to execute them (finite-state, push-down,

or linear-bounded computers), mAbducer’s for-loops and while-loops

(in Lisp notation) and its English translations of while-loops, and the K-
complexities of the while-loops and of their translations

Programs with for-loops

Programs with while-loops

Translations of while-loops

1. Swap adjacents
abcdef = badcfe
Power: finite-state computer
(defun swap(track)
(let* ((len (length (first track)))
(n-of-reps (+ (* 1/2 len) 0)))
(loop for i from 1 to n-of-reps
do (setf track (S 1 track))
(setf track (R 1 track))
(setf track (L 1 track))
(setf track (R 1 track)))
track))
2. Reversal abcdef = fedbca
Power: push-down computers
(defun reverse (track)
(let* ((len (length (first track)))
(n-of-reps (+ (* 1 len) -1)))
(setf track (S (+ (* 1 len) -1) track))
(setftrack (R 1 track))
(loop for i from 1 to n-of-reps
do (setf track (L 1 track))
(setf track (R 1 track)))
track))
3. Palindrome
abcdef = afbecd
Power: push-down computer
(defun palind (track)
(let* ((len (length (first track)))
(n-of-reps (+ (* 1/2 len) -1)))
(setf track (S (+ (* 1/2 len) -1) track))
(setf track (R 2 track))
(loop for i from 1 to n-of-reps
do (setf track (L 1 track))
(setf track (R 2 track)))
track))
4. Center palindrome
abcde = acbdc
Power: push-down computer
(defun center-palind (track)
(let* ((len (length (first track)))
(n-of-reps (+ (* 1/2 len) -1/2)))
(setftrack (S (+ (* 1/2 len) -1/2) track))
(setf track (R 1 track))
(loop for I from 1 to n-of-reps
do (setf track (L 1 track))
(setf track (R 2 track)))
track))
5. Make palindrome
abcdef = acefdb
Power: push-down computer
(defun make-pal (track)
(let* ((len (length (first track)))
(n-of-reps (+ (* 1/2 len) -1)))
(setftrack (S (+ (* 1 Len) -2) track))
(loop for i from 1 to n-of-reps

@ Springer

K-complexity: 37 words

(defun swap (track)

(let ((len (length (first track))))

(loop while (> (length (first track)) 0)
do (setf track (S 1 track))

(setf track (R 1 track))

(setf track (L 1 track))

(setf track (R 1 track)))

track))

K-complexity: 41

(defun reverse (track)

(let ((len (length (first track))))
(setf track (S (+ (* 1 len) -1) track))
(setf track (R 1 track))

(loop while (> (length (second track)) 0)

do (setf track (L 1 track))
(setf track (R 1 track)))
track))

K-complexity: 41

(defun palind (track)

(let ((len (length (first track))))

(setf track (S (+ (* 1/2 len) -1) track))
(setf track (R 2 track))

(loop while (> (length (first track)) 0)
do (setf track (L 1 track))

(setf track (R 2 track)))

track))

K-complexity: 41

(defun center-palind (track)
(let ((len (length (first track))))

(setf track (S (+ (* 1/2 len) -1/2) track))

(setf track (R 1 track))

(loop while (> (length (first track)) 0)
do (setf track (L 1 track))

(setf track (R 2 track)))

track))

K-complexity: 45 words
(defun make-pal (track)

(let ((len (length (first track))))
(setf track (S (+ (* 1 len) -2) track))

(loop while (> (Length (Second track)) 0)

do (setf track (R 1 track))

K-complexity: 38 words

While there are more than zero cars on the left track,
move one car to the siding,

move one car to the right track,

move one car to the left track,

move one car to the right track.

K-complexity: 40 words

Move one less than the cars to the siding.

Move one car to the right track.

While there are more than zero cars on the siding,
move one car to the left track,

move one car to the right track.

K-complexity: 42 words

Move one less than half the cars to the siding.

Move two cars to the right track.

While there are more than zero cars on the left track,
move one car to the left track,

move two cars to the right track.

K-complexity: 42 words

Move half less than half the cars to the siding.
Move one car to the right track.

While there are more than zero cars on the left track,
move one car to the left track,

move two cars to the right track.

K-complexity: 44 words

Move two less than the cars to the siding.

While there are more than zero cars on the siding,
move one car to the right track,

move two cars to the left track.

Move one more than half the cars to the right track.

Psychon Bull Rev

Table 6 (continued)

Programs with for-loops Programs with while-loops Translations of while-loops
do (setf track (R 1 track)) (setf track (L 2 track)))
(setf track (L 2 track))) (setf track (R (+ (* 1/2 len) 1) track))
(setftrack (R (+ (* 1/2 len) 1) track)) track))
track))
6. Two loop palindrome K-complexity: 40 words K-complexity: 48 words
abcdef = cbafed
Power: push-down computer
(defun two-loops (track) (defun two-loops (track) While there are more than zero cars on the left track,
(let* ((len (length (first track))) (loop while (> (length (first track)) 1) move one car to the siding,
(n-of-reps (¥ 1/2 len))) do (setf track (S 1 track)) move one car to the right track.
(loop for i from 1 to n-of-reps (setf track (R 1 track))) While there are more than zero cars on the siding,
do (setf track (S 1 track)) (loop while (> (length (second track)) 0) move one car to the left track,
(setf track (R 1 track))) do (setf track (L 1 track)) move one car to the right track.
(loop for i from 1 to n-of-reps (setf track (R 1 track)))
do (setf track (L 1 track)) track)
(setf track (R 1 track)))
track))
7. Parity sort K-complexity: 50 K-complexity: 54 words
abcdef = acebdf
Power: push-down computer
(defun parity (track) (defun parity (track) Move one car to right track.
(let* ((len (length (first track))) (let ((len (length (first track)))) While there is more than one car on left track
(n-of-reps (+ (* 1/2 len) -1))) (setf track (R 1 track)) move one car to siding,
(setf track (R 1 track)) (loop while (> (length (first track)) 1) move one car to right track.
(loop for i from 1 to n-of-reps do (setf track (S 1 track)) Move one less than half the number of cars in the train to left track.
do (setf track (S 1 track)) (setf track (R 1 track))) Move half the number of cars in the train to right track.
(setf track (R 1 track))) (setf track (L (+ (* 1/2 len) -1) track))

(setf track (L (+ (* 1/2 len) -1) track)) (setf track (R (+ (* 1/2 len) 0) track))

(setftrack (R (+ (* 1/2 len) 0) track)) track))

track))

8. Faro-in K-complexity: 68 words K-complexity: 79 words
abcdef = adbecf

Power: linear-bounded computer

(defun faro-in (track) (defun faro-in (track) Set n-of-s, to one less than half the cars.
(let* ((len (length (first track))) (let* ((len (length (first track))) Set decrement-s to one.
(n-of-reps (+ (* 1/2 len) -1))) (n-of-S (+ (* 1/2 len) -1)) Set n-of-1, to one less than half the cars.
(loop for i from 1 to n-of-reps (decrement-S 1) Set decrement-1 to one.
do (setf track (R 1 track)) (n-of-L (+ (* 1/2 len) -1)) While there are more than two cars on the left track,
(setf track (S (+ (* 1 n-of-reps) (decrement-L 1)) move one car to the right track,
(*1-1) 1) track)) (loop while (> (length (first track)) 2) move n-of-s cars to the siding,
(setf track (R 1 track)) do (setf track (R 1 track)) move one car to the right track,
(setf track (L (+ (* i N-of-reps) (setf track (S n-of-S track)) move n-of-1 cars to the left track,
(*1-1) 1) track))) (setf track (R 1 track)) take decrement-s from n-of-s,
(setf track (R 2 track)) (setf track (L n-of-L track)) take decrement-1 from n-of-1.
track)) (setf n-of-S (- n-of-S decrement-S)) Move two cars to the right track.

(setf n-of-L (- n-of-L decrement-L)))
(setf track (R 2 track))
track))

Acknowledgements For their help and advice, we thank Geoff Goodwin, References
Philipp Koralus, David Lobina, Salvador Mascarenhas, Adam Moore,
Marco Ragni, Mark Steedman, and Greg Trafton. We also thank Gary
Lupyan, Mark Steedman, and three anonymous referees for their helpful
criticisms of an earlier draft. The second author thanks Compagnia di San
Paolo for support Grant “Smaile — simple methods for artificial intelli-
gence learning and education.” The third author thanks the Polish
National Science Centre for support in Grant 2014/14/M/HS6/00916.
We have no known conflicts of interest to disclose.

Ackermann, W. (1967/1928). On Hilbert’s construction of the real num-
bers. In van Heijenoort, J. (Ed.) From Frege to Godel: A source
book in mathematical logic, 1879-1931 (pp. 495-507.) Harvard
University Press. (Originally published in 1928.)

Adams, R. (2011). An early history of recursive functions and comput-
ability: from Godel to Turing. Docent Press. (An edited version of
his 1983 Ph.D. thesis.)

@ Springer

Psychon Bull Rev

Aho, A. V., & Ullman, J. D. (1972). The Theory of Parsing, Translation,
and Compiling, Vol. 1: Parsing. Prentice-Hall.

Anderson, J. R., Pirolli, P., & Farrell, R. (1988). Learning to program
recursive functions. In: Chi, M., Glaser, R., & Farr, M. (Eds.), The
nature of expertise (pp. 153-183). Erlbaum.

Anderson, J. R., Betts, S., Ferris, J. L., & Fincham, J. M. (2011).
Cognitive and metacognitive activity in mathematical problem solv-
ing: prefrontal and parietal patterns. Cognitive, Affective, &
Behavioral Neuroscience, 11, 52-67.

Baddeley, A. D., Hitch, G.J., & Allen, R. J. (2019). From short-term store
to multicomponent working memory: The role of the modal model.
Memory & Cognition, 47, 575-588.

Bar-Hillel, Y., & Shamir, E. (1960). Finite-state languages: formal repre-
sentation and adequacy problems. The Bulletin of the Research
Council of Israel, 8f(3), 155-166.

Berwick, R. C., & Chomsky, N. (2016). Why only us: Language and
evolution. MIT Press.

Bona, M. (2012). Combinatorics of permutations. (2nd Ed.). Chapman &
Hall.

Bona, M. (2019). A survey of stack sortable permutations. Ch. 4 in 50
years of Combinatorics, Graph Theory, and Computing. Chung, F.
et al. (Eds.) (Pp. 55 in ebook). Chapman & Hall.

Boolos, G.S., Burgess, J.P., & Jeffrey, R.C. (2007). Computability and
logic. (5th Ed.). Cambridge University Press.

Bornat, R., Dehnadi, S., & Simon (2008). Mental models, consistency
and programming aptitude. Proceedings of the Tenth Australasian
Computing Education Conference (ACE 2008), 78, 53-61.

Bozzi, P. (1989). Fenomenologia sperimentale. 11 Mulino.

Bucciarelli, M., Mackiewicz, R., Khemlani, S. S., & Johnson-Laird, P. N.
(2016). Children’s creation of algorithms: simulations and gestures.
Journal of Cognitive Psychology, 28, 297-318.

Bucciarelli, M., Mackiewicz, R., Khemlani, S. S., & Johnson-Laird, P. N.
(2018). Simulation in children’s conscious recursive reasoning.
Memory & Cognition, 46, 1302-1314.

Bundy, A. (2007). Computational thinking is pervasive. Journal of
Scientific and Practical Computing, 1, 67-69.

Cetin, 1., & Dubinsky, E. (2017). Reflective abstraction in computational
thinking. Journal of Mathematical Behavior, 47, 70-80.

Chaitin, G.J. (1998). The limits of mathematics. Springer.

Cherubini, P., & Johnson-Laird, P. N. (2004). Does everyone love every-
one? The psychology of iterative reasoning. Thinking & Reasoning,
10, 31-53.

Chomsky, N. (1957). Syntactic structures. Mouton.

Chomsky, N. (1959). On certain formal properties of grammars.
Information and Control, 2, 137-167.

Christiansen, M. H., & Chater, N. (2016). The now-or-never bottleneck:
A fundamental constraint on language. Behavioral and brain
sciences, 39, 1-19.

Corballis, M. (2011). The recursive mind: The origins of human lan-
guage, thought, and civilization. Princeton University Press.

Davis, M. (1958). Computability and unsolvability. McGraw-Hill.

Denning, P. J. (2017). Remaining trouble spots with computational think-
ing. Addressing unresolved questions concerning computational
thinking. Communications of the Association for Computing
Machinery, 60, 33-39.

Diaconis, P., Graham, R. L., & Kantor, W. M. (1983). The mathematics
of perfect shuffles. Advances in Applied Mathematics, 4, 175-196.

Dicheva, D., & Close, J. (1996). Mental models of recursion. Journal of
Educational Computing Research, 14, 1-23.

Douven, 1. (2017). Abduction. In: The Stanford Encyclopedia of
Philosophy (Summer 2017), Zalta, E. N. (Ed.) https://plato.
stanford.edu/archives/sum2017/entries/abduction/

Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment,
and social cognition. Annual Review of Psychology, 59, 255-278.

Everaert, M. B., Huybregts, M. A., Berwick, R. C., Chomsky, N.,
Tattersall, 1., Moro, A., & Bolhuis, J. J. (2017). What is language

@ Springer

and how could it have evolved? Trends in Cognitive Sciences, 21,
569-571.

Everett, D. L. (2005). Cultural constraints on grammar and cognition in
Piraha. Current Anthropology, 46, 621-646.

Everett, D. L., & Gibson, E. (2019). Recursion across domains ed. by
Luiz Amaral et al. Language, 95, 777-790.

Ferrigno, S., Cheyette, S. J., Piantadosi, S. T., & Cantlon, J. F. (2020).
Recursive sequence generation in monkeys, children, US adults, and
native Amazonians. Science Advances, 6, eaaz1002.

Frath P. (2014) There is no recursion in language. In: Lowenthal F., &
Lefebvre L. (eds), Language and Recursion. (Pp. 181-191).
Springer.

Garey, M., & Johnson, D. (1979). Computers and Intractability: A Guide
to the Theory of NP-completeness. Freeman.

Gazdar, G., Klein, E., Pullum, G. K., & Sag, 1. A. (1985). Generalized
phrase structure grammar. Harvard University Press.

Godel, K. (1967/1931). On formally undecidable propositions of
Principia Mathematica and related systems. In van Heijenoort, J.
(Ed.), From Frege to Godel: A source book in mathematical logic,
1879-1931 (pp. 596-616). Harvard University Press. (Originally
published in 1931.)

Good, J., & Howland, K. (2017). Programming language, natural lan-
guage? Supporting the diverse computational activities of novice
programmers. Journal of Visual Languages & Computing, 39, 78-
92.

Grossman, J. W., & Zeitman, R. S. (1988). An inherently iterative com-
putation of Ackermann 's function. Theoretical Computer Science,
57,327-330.

Grover, S., & Pea, R. (2013). Computational thinking in k12: A review of
the state of the field. Educational Researcher, 42, 38-43.

Halford, G. S., Wilson, W. H., & Phillips, S. (2010). Relational knowl-
edge: the foundation of higher cognition. Trends in Cognitive
Sciences, 14, 497-505.

Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of
language: what is it, who has it, and how did it evolve? Science,
298, 1569-1579.

Hegarty, M., Stieff, M., & Dixon, B. L. (2013). Cognitive change in
mental models with experience in the domain of organic chemistry.
Journal of Cognitive Psychology, 25, 220-228.

Hopcroft, J.E., & Ullman, J.D. (1979). Introduction to automata theory,
languages, and computation. Addison-Wesley.

Inhelder, B., and Piaget, J. (1958). The Growth of Logical Thinking from
Childhood to Adolescence. Routledge & Kegan Paul.

Jager, G., & Rogers, J. (2012). Formal language theory: refining the
Chomsky hierarchy. Philosophical Transactions of the Royal
Society (London), Series B, 367, 1956-1970.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science
of language, inference, and consciousness. Harvard University
Press.

Johnson-Laird, P. N. (2006). How we reason. Oxford University Press.

Johnson-Laird, P. N., Girotto, V., & Legrenzi, P. (2004). Reasoning from
inconsistency to consistency. Psychological Review, 111, 640-661.

Joshi, A. K., Levy, L. S., & Takahashi, M. (1975). Tree adjunct gram-
mars. Journal of Computer and System Sciences, 10, 136-163.

Kahneman, D. (2011). Thinking fast and slow. Farrar, Strauss, Giroux.

Kendall, M., & Gibbons, J.D. (1990). Rank Correlation Methods. 5th Ed.
Oxford University Press.

Khemlani, S., & Johnson-Laird, P. N. (2021). Reasoning about proper-
ties: A computational theory. Psychological Review, in press.
Khemlani, S., Mackiewicz, R., Bucciarelli, M., & Johnson-Laird, P.N.
(2013). Kinematic mental simulations in abduction and deduction.
Proceedings of the National Academy of Sciences of the United

States of America, 110, 16766-16771.

Khemlani, S., Orenes, 1., & Johnson-Laird, P. N. (2014). The negations of
conjunctions, conditionals, and disjunctions. Acta Psychologica,
151, 1-7.

https://plato.stanford.edu/archives/sum2017/entries/abduction/
https://plato.stanford.edu/archives/sum2017/entries/abduction/

Psychon Bull Rev

Khemlani, S., Lotstein, M., & Johnson-Laird, P. N. (2015). Naive prob-
ability: Model-based estimates of unique events. Cognitive Science,
39, 1216-1258.

Knuth, D. (1997). The art of computing. Vol. 1: Fundamental algorithms.
(3rd Ed.). Addison-Wesley.

Kolmogorov, A. (1965). Three approaches to the quantitative definition
of information. Problems of Information and Transmission, 1, 1-7.

Kurland, D.M., & Pea, R.D. (1985). Children’s mental models of recur-
sive Logo programs. Journal of Educational Computing Research,
1,235-243.

Lake, B. M., & Piantadosi, S. T. (2020). People infer recursive visual
concepts from just a few examples. Computational Brain &
Behavior, 3, 54-65.

Lee, N. Y. L., & Johnson-Laird, P. N. (2013a). Strategic changes in
problem solving. Journal of Cognitive Psychology, 25, 165-173.

Lee, N. Y. L., & Johnson-Laird, P. N. (2013b). A theory of reverse
engineering and its application to Boolean systems. Journal of
Cognitive Psychology, 25, 365-389.

Lee, N. Y. L., Goodwin, G. P., & Johnson-Laird, P. N. (2008). The
psychological problem of Sudoku. Thinking & Reasoning, 14,
342-364.

Lehmer, D. H. (1949). Methods in large-scale units. Proceedings of a
second symposium on large-scale digital calculating machinery
(pp. 141-146). Harvard University Press.

Lewontin, R. (1998). The evolution of cognition: Questions we will never
answer. In Osherson, D. N., Scarborough, D., & Sternberg, S. (Eds).
An invitation to cognitive science, Vol. 4: Methods, models, and
conceptual issues. (Pp. 107-132). MIT Press.

Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial
visualization training on students’ spatial reasoning and mathemat-
ics performance. Journal of Cognition and Development, 20, 729-
751.

Mackiewicz, R., Johnson-Laird, P., Khemlani, S., & Bucciarelli, M.
(2016). Deductions from algorithms as mental simulations. Osf.io/
bke3m.

Malmberg, K. J., Raaijmakers, J. G., & Shiffrin, R. M. (2019). 50 years of
research sparked by Atkinson and Shiffrin (1968). Memory &
Cognition, 47, 561-574.

Manktelow, K. (2021). Beyond Reasoning: The Life, Times and Work of
Peter Wason, Pioneering Psychologist. Routledge.

Marr, D. (1982). Vision. Freeman.

Melzak, Z. A. (1961). An informal arithmetical approach to computabil-
ity and computation. Canadian Mathematical Bulletin, 4, 279-293.

Miller, L. (1981). Natural language programming: Styles, strategies, and
contrasts. /BM Systems Journal, 20, 184-215.

Miller, G. A., & Johnson-Laird, P. N. (1976). Language and perception.
Belknap, Harvard University Press.

Nevins, A., Pesetsky, D., & Rodrigues, C. (2009). Piraha exceptionality:
A reassessment. Language, 85, 355-404.

Newell, A. (1990). Unified theories of cognition. Harvard University
Press.

Nielsen, M., & Chuang, 1. (2000). Quantum computation and quantum
information. Cambridge University Press.

Oaksford, M., & Chater, N. (2020). New paradigms in the psychology of
reasoning. Annual Review of Psychology, 71, 12.1-12.26.

Partee, B. H. (2014). A brief history of the syntax-semantics interface in
western formal linguistics. Semantics-Syntax Interface, 1, 1-20.
Peirce, C. S. (1931-1958). Collected papers of Charles Sanders Peirce.
(Vols. 1-8). Hartshorne, C., Weiss, P., & Burks, A. (Eds.). Harvard

University Press.

Peirce, C. S. (1955). Philosophical writings of Peirce, Buchler, J. (Ed.).
Dover.

Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2016). The
logical primitives of thought: Empirical foundations for composi-
tional cognitive models. Psychological Review, 123, 392.

Pinker, S., & Jackendoff, R. (2005). The faculty of language: what’s
special about it? Cognition, 95, 201-236.

Post, E. (1946). A variant of a recursively unsolvable problem. Bulletin of
the American Mathematical Society, 52, 264-268.

Power, M. J. (1986). A technique for measuring processes load during
speech production. Journal of Psycholinguistic Research, 15, 371-
382.

Prusinkiewicz, P., & Lindenmayer, A. (1990). The algorithmic beauty of
plants. Springer-Verlag.

Pylyshyn, Z. (2003). Return of the mental image: Are there really pictures
in the brain? Trends in Cognitive Sciences, 7, 113—118.

Ramsey, F. P. (1990/1926). Truth and probability. In: Philosophical pa-
pers. (Ed. Mellor, D. H.). Cambridge University Press. (Originally
published 1926.)

Ramsey, W. M. (2007). Representation reconsidered. MIT Press.

Rogers, H. (1967). Theory of recursive functions and effective
computability. McGraw-Hill.

Rubio-Sanchez, M. (2017). Introduction to recursive programming. CRC
Press.

Sakel, J., & Stapert, E. (2010). Piraha — in need of recursive syntax?. In
Hulst, H. V. D. (Ed.), Recursion and human language (Pp. 3-16).
De Gruyter.

Shieber, S. (1985). Evidence against the context-freeness of natural lan-
guage. Linguistics and Philosophy, 8, 333-343.

Soloway, E., & Spohrer, J. C. (Eds.). (2013). Studying the novice
programmer. Psychology Press.

Stabler, E. P. (2004). Varieties of crossing dependencies: structure depen-
dence and mild context sensitivity. Cognitive Science, 28, 699-720.

Steedman, M. (2017). The emergence of language. Mind & Language,
32, 579-590.

Steedman, M. (2019). Combinatory categorial grammar. In Kertész, A.,
Raékosi, E.M., & Rékosi, C. (Eds.) Current Approaches to Syntax: A
Comparative Handbook. (Pp. 389-420). De Gruyter Mouton.

Steedman, M. (2020). A formal universal of natural language grammar.
Language, 96, 618-660.

Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the
development of cognition and action. MIT Press.

Vicari, G., & Adenzato, M. (2014). Is recursion language-specific?
Evidence of recursive mechanisms in the structure of intentional
action. Consciousness and Cognition, 26, 169-188.

Westphal-Fitch, G., Giustolisi, B., Cecchetto, C., Martin, J. S., & Fitch,
W. (2018). Artificial grammar learning capabilities in an abstract
visual task match requirements for linguistic syntax. Frontiers in
Psychology, 9, 1210.

Wing, J. M. (2008). Computational thinking and thinking about comput-
ing. Philosophical Transactions of the Royal Society, 366, 3717-
3725.

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2015). An exploration of three-
dimensional integrated assessment for computational thinking.
Journal of Educational Computing Research, 53, 562-590.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

@ Springer

	Recursion in programs, thought, and language
	Abstract
	The railway computer
	The fundamentals of computation
	Functions
	Recursive functions
	Programs
	Computers, their power, and the Chomsky hierarchy

	A theory of how naive individuals create informal programs
	Problem solving: The discovery of solutions to rearrangements
	Programming: The abduction of programs
	The complexity of programs
	Deducing the consequences of programs

	Experimental evidence
	Experiments on solutions to rearrangements
	Experiments on abductions of programs
	Experiments on deductions from programs

	Recursion in natural language
	Discussion
	Conclusions
	Appendix 1. Minimization, the Ackermann function, and while-loops
	Appendix 2: The transformation of the railway into a universal Turing machine
	Appendix 3: The eight programs in our studies
	References

