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Significance

Logic treats sentences as either 
true or false, and Gödel’s proof 
that certain true sentences are 
unprovable in any consistent 
logic for elementary arithmetic 
has led some theorists to argue 
that verification is not 
computable. Our experimental 
results show that people use a 
richer set of truth values than the 
binary pair of logic, true and false, 
and that human verifications can 
rely both on matching a 
description with an observation 
and also on imagining what 
might have happened but did 
not. Our computer simulation of 
the theory delivered correct truth 
values. So, these verifications are 
computable, but no- one knows if 
awareness of their truth values, 
or of outcomes of other cognitive 
processes, is also computable.

Author affiliations: aDepartment of Psychology, 
Princeton University, Princeton, NJ 08544; bDepartment 
of Psychology, New York University, New York, NY 10003; 
cSchool of Psychology and Institute of Neuroscience, 
Trinity College Dublin, University of Dublin, Dublin 
2, Ireland; and dNavy Center for Applied Research in 
Artificial Intelligence, US Naval Research Laboratory, 
Washington, DC 20375

Author contributions: P.N.J.- L., R.M.J.B., and S.S.K. 
designed research; R.M.J.B. and S.S.K. performed 
research; R.M.J.B. and S.S.K. analyzed data; P.N.J.- L. 
wrote the programs; and P.N.J.- L., R.M.J.B., and S.S.K. 
wrote the paper.

Reviewers: M.B.- H., The Hebrew University of Jerusalem; 
and P.K., Oxford University.

The authors declare no competing interest.

Copyright © 2023 the Author(s). Published by PNAS. 
This article is distributed under Creative Commons 
Attribution- NonCommercial- NoDerivatives License 4.0 
(CC BY- NC- ND).
1To whom correspondence may be addressed. Email: 
phil@princeton.edu.

Published September 25, 2023.

PSYCHOLOGICAL AND COGNITIVE SCIENCES

Human verifications: Computable with truth values outside logic
Philip N. Johnson- Lairda,b,1 , Ruth M. J. Byrnec , and Sangeet S. Khemlanid

Contributed by Philip N. Johnson- Laird; received June 21, 2023; accepted August 23, 2023; reviewed by Maya Bar- Hillel and Philipp Koralus

Cognitive scientists treat verification as a computation in which descriptions that 
match the relevant situation are true, but otherwise false. The claim is controversial: 
The logician Gödel and the physicist Penrose have argued that human verifications 
are not computable. In contrast, the theory of mental models treats verification as 
computable, but the two truth values of standard logics, true and false, as insufficient. 
Three online experiments (n = 208) examined participants’ verifications of disjunc-
tive assertions about a location of an individual or a journey, such as: ‘You arrived 
at Exeter or Perth’. The results showed that their verifications depended on obser-
vation of a match with one of the locations but also on the status of other locations 
(Experiment 1). Likewise, when they reached one destination and the alternative one 
was impossible, their use of the truth value: could be true and could be false increased 
(Experiment 2). And, when they reached one destination and the only alternative one 
was possible, they used the truth value, true and it couldn’t have been false, and when 
the alternative one was impossible, they used the truth value: true but it could have 
been false (Experiment 3). These truth values and those for falsity embody counterfac-
tuals. We implemented a computer program that constructs models of disjunctions, 
represents possible destinations, and verifies the disjunctions using the truth values 
in our experiments. Whether an awareness of a verification’s outcome is computable 
remains an open question.

computability | counterfactuals | mental models | logic | truth

In 1972, the late Sydney Brenner gave a talk at the Princeton Institute for Advanced 
Study in which he argued that biological processes are algorithmic (1). Afterward, 
the logician Kurt Gödel announced that the talk showed what he had long believed: 
‘Vitalism is correct’. The remark seemed like a grotesque misunderstanding; Brenner 
did not reply. Yet, the status of human verification is a repercussion of Gödel’s 
famous incompleteness proof. It shows that a self- referential sentence asserting its 
own unprovability is indeed unprovable in any consistent formal system equivalent 
to an algorithm for elementary arithmetic (2). Some humans can grasp the truth of 
the self- referential sentence and even why it is true. So their ability to verify asser-
tions seems to go beyond what algorithms, even biological ones, can do. That’s why 
Gödel argued for vitalism. Others have drawn analogous conclusions, notably Roger 
Penrose, who argued from a similar basis that awareness of the results of verifications 
is not computable and calls for a new physics (3). Of course, most verifications are 
straightforward as psychologists know from many experiments (4–8) even including 
studies of brain activity (9–11). The main surprise was that individuals are faster 
to determine that an affirmative assertion is true rather than false whereas they are 
faster to determine that a negative assertion is false rather than true (12). An expla-
nation of this interaction (5, 13–17) is that an affirmative assertion, ‘It is the case 
that the car arrived at Perth,’ is true in case the destination in the predicate matches 
the car’s destination, and false if it does not. A negative assertion, ‘It is not the case 
that the car arrived at Perth’ is false in case its predicate matches the car’s destination, 
but true if it does not. Since negative assertions are harder to understand than 
affirmative assertions, and mismatches are harder to process than matches, the 
observed interaction follows. All these studies are compatible with the treatment of 
verification in standard logics (see below). In what follows, we report results showing 
that humans verify assertions in ways outside these logics, but that are nonetheless 
algorithmic. So, too, could be their grasp of the truth of Gödel’s self- referential 
sentence.

Standard logics are the sentential calculus, which concerns idealized counterparts of 
not, and, or, and if (18), and all logics that include this calculus, e.g., a countable infinity 
of modal logics which concern possibilities (19), and the system that Gödel used for his 
proof, which includes axioms for arithmetic (2). They have only two truth values, true 
and false. For example, consider this assertion, which concerns a car journey along one of 
two divergent roads: D
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You arrived at Exeter or at Perth.
Granted you cannot have arrived at both cities, the disjunction is 
‘exclusive’: It is true if you arrived at one of the two cities; other-
wise it is false.

The theory of mental models—the model theory, for short—has 
had a long development (20–23) leading to an alternative account 
of truth values. When individuals understand an assertion, they 
have in their minds, not truth values, but mental models of the 
possibilities to which the assertion refers. The models have the 
same structure, insofar as they can, as the situations that they 
represent. Each model is of a possibility holding in default of 
information to the contrary, though at least one possibility must 
hold for the assertion to be true (24–26). Fig. 1 presents a simple 
exclusive disjunction, and illustrates the difference between models 
that intuition and more thoughtful deliberation yield. They are 
simulated in a computational version of a ‘dual system’ conjecture 
due to Wason (27–30). In the model theory, intuitions have no 
access to the results of intermediate computations, whereas delib-
erations have free access to a working memory for them (the Lisp 
source code of the program, mSentential, is at https://www.mod-
eltheory.org/models/). The effect of verifying one of the possibil-
ities of the Exeter or Perth disjunction is that it becomes a fact, 
and the alternative possibility becomes a counterfactual (Fig. 1), 
which if it is true refers to a situation that was once possible but 
that did not occur (25, 31–33).

In standard modal logics, the meanings of possibilities are 
almost always treated in terms of ‘possible worlds’. The assertion, 
‘you may have arrived at Perth,’ is true if ‘you arrived at Perth’ is 
true in at least one relevant possible world, otherwise the assertion 
is false (34). Each possible world determines the truth values of 
all assertions about worlds to which it is relevant (aka ‘accessible’), 
and so it is too vast for a human brain to contain (35, 36). In the 
model theory, the brain builds a small intuitive model of your 
arrival at Perth, and allows for an alternative model in which you 
do not arrive there. A disjunctive assertion is intuitively true if one 
of its models holds in (a model of ) the situation. You arrived at 
Perth, and so the disjunction is true. Deliberation can verify coun-
terfactual possibilities. It starts with a model of the facts of the 
journey, undoes the car at its destination, and simulates its coun-
terfactual journey down the other road. If the road is open, the 
car arrives at Exeter, and the counterfactual possibility is true. If 

the road is closed, the car cannot arrive there, and the counterfac-
tual possibility is false. Individuals might make imaginative sim-
ulations in which, say, someone removes a barrier blocking the 
road. But, according to the theory, the simulation of counterfac-
tuals makes no unnecessary changes in undoing the car at its 
destination (ref. 31; see also ref. 37).

In sum, when one clause of a disjunction is true and the other 
refers to a counterfactual possibility that is true, the disjunction 
is certain to be true; likewise, if both clauses are false, it is certain 
to be false. But, when one clause is true and the other clause is 
false, certainty about the disjunction’s truth value should decrease. 
How this uncertainty manifests itself depends on the verification 
procedure. Our studies examined three procedures, which intro-
duced truth values outside standard logic.

Results

Experiment 1. This experiment (n = 48) established the impact 
of facts and their counterfactual alternatives on the verification of 
rival pairs of disjunctions, e.g.:

John says: Bill is in Dublin or London.
Mary says: No, Bill is in Belfast or Paris.
 In fact, Bill is in Dublin, but otherwise he would have been in 
Paris.
 Who is right? 1) Mary. 2) John. 3) Both of them. 4) Neither of 
them.

As the model theory predicts, when the fact verified a clause in a 
disjunction, participants judged its speaker to be right, i.e., John 
in the example above. But, the counterfactual in the description 
of the outcome—‘otherwise he would have been in Paris’ in the 
example—also affected their verifications. In all and only those 
cases in which the counterfactual predicted a different judgment 
from the fact, it led to a small but reliable number of judgments 
that the speaker who referred to this counterfactual possibility was 
right (Fig. 2). In all 14 problems, the fact predicted the most 
frequent judgment (Binomial test, prior probability of 0.25, P < 
0.2514). Yet, 92% of judgments matched the fact when the coun-
terfactual predicted the same judgment, whereas only 77% of 
judgments matched the fact when the counterfactual predicted a 
different judgment (Wilcoxon test, z = 3.3, P < 0.0005, r = 0.48). 
The only unpredicted responses were judgments that neither 
speaker was right when the counterfactuals matched no clauses in 
their disjunctions.

Experiment 2. In both the present experiment (n = 78) and the 
next one, the participants on each trial saw a picture of the end 
of one of four sorts of journey (Fig. 3 A–D). Their car had taken 
one of two diverging roads to arrive either at a city, or else at a 
barrier that had prevented it from getting there, and the road to 
the alternative city was likewise open or else a barrier blocked it. 
Their task was to verify a single disjunctive assertion, such as: You 
arrived at Exeter or at Perth, in relation to the picture. They chose 
whichever of three truth values was appropriate: false, possibly true 
and possibly false, and true. The intermediate truth value is outside 
standard logic, and we assigned a rank order of truthfulness scores 
from falsity to truth of: 0, 0.5, and 1. The distributions of the 
participants’ choices (Fig. 4) showed a highly reliable trend in 
their truthfulness scores over the four sorts of journey (Page’s 
trend test, z = 11.71, P < 0.17), e.g., the percentages of True 
evaluations over the four sorts of journey (A, B, C, D) were 
79%, 70%, 10%, and 0%, and the trend for False, was opposite, 
though not wholly independent: 8%, 14%, 72%, and 99%. The 
overall trend corroborated the prediction that when the fact and 
the counterfactual yield opposite truth values for a disjunction, 
a small but reliable number of evaluations switched from the 

Fig. 1. Intuitive (red) and deliberative (blue) mental models of an exclusive 
disjunction. Each set of models represents a conjunction of possibilities, which 
each hold in default of knowledge to the contrary. Intuitive models, which 
are constructed rapidly without working memory for results of intermediate 
computations, represent only those clauses in the disjunction that are true in a 
possibility. Deliberative models, which can access working memory, represent 
in addition what is false, using negation (symbolized as ‘¬’) to do so. The effect 
of the observation of a possibility is to change it into a fact, and to change the 
other possibility into a counterfactual possibility: One asserted to have been 
once possible but that did not happen (25).
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fact’s truth value to either the intermediate truth value or to the 
opposite truth value. As Fig. 4 also shows, the percentages for the 
intermediate truth value tended to be larger when the fact and 
the counterfactual had different truth values (17%) than when 
they had the same truth values (7%; Wilcoxon test, z = 3.25, 
P < 0.0006, Cliff’s δ = 0.13). Experiment 2 therefore showed 
that counterfactuals biased evaluations of truth values even when 

nothing cued them—not even the set of truth values from which 
participants chose their options. We infer that the participants 
made a spontaneous verification of counterfactuals.

Experiment 3. Experiment 3 (n = 82) used the same setup 
as the previous experiment, but a set of four truth values using 
counterfactuals. We assigned truthfulness scores from falsity to 
truth as follows:

0   False and it couldn’t have been true.
1   False but it could have been true.
2   True but it could have been false.
3   True and it couldn’t have been false.

These truth values are outside standard logics, because counter-
factuality is built into their meanings. The distributions of the 
participants’ verifications (Fig. 5) showed a highly reliable trend 
in truthfulness scores (Page’s trend test, z = 13.4, P < 0.17), e.g., 
the percentages of True and it couldn’t have been false evaluations 
over the four sorts of journey (a through d in Fig. 3) were 77%, 
35%, 10%, and 0%, and the trend for False and it couldn’t have 
been true, was opposite, though not wholly independent: 1%, 
10%, 18%, and 95%.

Computer Programs for Verification. Robots equipped with per-
ceptual, motor, and linguistic organs could carry out verifications 
(38). A computer program without access to such organs can for-
mulate its own descriptions for a domain that it simulates, and carry 
out an algorithm that determines whether each description is true 
or false for any member of the domain. If the domain has a coun-
terpart in the real world, then its output can be helpful to its human 
users provided that they can check that its algorithm is correct. We 
refer to such programs as carrying out a verification algorithm. 
Computer programs containing such algorithms exist. We imple-
mented a verification algorithm in a program simulating the model 
theory of how individuals reason, which verifies various sorts of 
assertion. Here is a simple example using the disjunction: 
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Fig. 2. Experiment 1 (n = 48) in which each problem had an outcome describing a fact and a counterfactual possibility, such as: ‘In fact, Bill is in Dublin, 
but otherwise he would have been in Paris’. Two speakers asserted rival disjunctions, and the figure presents the percentages of three sorts of participants’ 
evaluations of which speaker was right in asserting one of the rival disjunctions: 1) Evaluations that the speaker whose disjunction referred to the actual location 
of a person was right (blue bars), 2) Evaluations that the speaker whose disjunction referred to the counterfactual location of a person was right (red bars), and 
3) Unpredicted errors that neither speaker was right when the counterfactuals matched no clauses in their disjunctions. In the control trials, the fact and the 
counterfactual led to the same choice, and in experimental cases they led to different choices. Participants had two trials for each of eight pairs of disjunctions 
with one disjunct in common, and six pairs of disjunctions with no disjunct in common. Error bars are SEM.

A

B

C

D

Destination reached;
possible alternative.

Destination reached;
impossible alternative.

Destination unreached;
possible alternative.

Destination unreached;
impossible alternative.

Fig. 3. The pictures of four sorts of journey used in Experiments 2 and 3. The 
small red car arrived at a city, or else a barrier made its journey impossible, and 
the other city was a possible destination, or else a barrier made it impossible. 
The descriptions in color (not shown to the participants) summarize the four 
sorts of journey.
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You arrived at Preston or at Chester.
The verification algorithm constructs two intuitive models of your 
possible destinations according to the disjunction. Each model is 
shown here on a separate line, with the name of its possible 
destination:

Preston
Chester

The algorithm then builds a model of the town that you drove to, 
and any other destinations relevant to the disjunction. In our 
experiments, there is only one alternative destination, and so a 
typical model of the towns is akin to a map showing the end of 
your journey:

(You/ Preston) (/ Chester)
where the slashes denote barriers that prevent you reaching the 
destination and its alternative. So this model represents the jour-
ney in Fig. 3D above. You set out for Preston but could not reach 
it because of the barrier, and you could not have reached Chester 
either because of its barrier. The program compares the two sets 
of models—for the disjunction and for your journey—and yields 
the truth value: 

False and it couldn’t have been true.
The program copes with a wider variety of verifications than 
occurred in Experiment 3: it deals with those in Experiment 2, 
and with verifications concerning possible destinations out of a 
larger set, yielding truth values, such as it could be true and those 

referring to the probability of truth. Its Lisp code is at https://
www.modeltheory.org/models/.

One of our earlier programs, mAbducer, creates its own algo-
rithms for making combinatorial rearrangements of the order of 
items, i.e., cars in a train (39), e.g., to reverse their order, to carry 
out a Faro shuffle of their order, and so on, regardless of the number 
of cars. The user gives it two input–output examples of a target 
rearrangement of different lengths of trains, and it infers the recur-
sive loops of actions required for their algorithms. It constructs them 
in Lisp, which it then translates into simple English. To ensure that 
a program is correct, the program verifies it for trains of any tractable 
length. Fig. 6 illustrates the program with an example of its verifi-
cation algorithm that checks its program to reverse the order of the 
cars in a train of any length. It also illustrates the parallel between 
this verification algorithm and one for Gödel’s theorem (2).

Discussion

Standard logics, which we defined at the outset, are a product of 
human thinking (21, 40). They have only two truth values, true 
and false, which occur in a ‘metalanguage’ to formulate the seman-
tics of the main language for proofs (18). No such segregation 
occurs in natural languages, and so assertions can have inconsistent 
meanings, such as the well- known ‘liar’ paradox: 

This sentence is false. 
If this self- referential sentence is true then it follows from the 
sentence itself that it is false, and vice versa. Such inconsistencies 
in a standard logic are catastrophic: any conclusion whatsoever 
follows validly from them. Hence, the logician Tarski argued that 
natural languages should not be used for science (41). We define 
three main sorts of truth value that they contain: the elementary 
values of standard logics, ‘true’ and ‘false’; modal values, such as 
‘possibly true and possibly false’; and counterfactual values, such 
as ‘true and it could not have been false’. All three sorts can occur 
in probabilistic assertions, such as ‘probably true and could not 
have been false’. They can have explicit numerical values in numer-
ate cultures (refs. 42 and 43). Our participants coped well with 
instances of all three sorts of truth value, including those that are 
not in standard logics. They based their verifications on observable 
facts, but they evaluated counterfactuals (Experiment 1), and they 
did so even when nothing cued their use (Experiment 2). Many 
counterfactuals cannot be verified, e.g., ‘If the Viennese were 
three- legged they would march in waltz time’. The model theory 
postulates that those that are verifiable elicit a mental simulation 
in three steps:

 Step 1 starts with a model of the facts—you arrived at Exeter 
(Fig. 3A).
 Step 2 modifies this model to accommodate the counterfactual 
possibility—it removes you from your destination at Exeter.
 Step 3 tries to simulate the counterfactual—you journey to the 
alternative destination of Perth. If it is possible, the counterfac-
tual is true; if it is impossible the counterfactual is false. So, the 
truth or falsity of a counterfactual can enter into the truth value 
of assertions.

When an inference flouts standard logics, one defense of them 
appeals to pragmatics, such as the conventions of discourse (refs. 
44–46, cf. ref. 47). But pragmatics can hardly introduce a new 
sort of truth value into a logic, because it would call for additions 
to its grammar and semantics. Likewise, one of the counterfactual 
truth values in Experiment 3 referred to truths that are neces-
sary—they could not be false (see also ref. 32) contrary to an 
influential view (48) that they are justified only if they depend on 
logic, as in the tautology: ‘Either she arrived at Exeter or she did 
not’. Of course nonstandard logics may contain nonstandard truth 

Fig.  4. The distributions of the disjunctions’ mean ranks of truthfulness 
scores in Experiment 2 (n = 78) for four sorts of journey summarized on the 
y axis where ‘alt’ abbreviates ‘alternative destination’ (see Fig. 3 A–D for these 
journeys). The participants selected one of three truth values for each journey 
shown here with the truthfulness scores, which the participants did not see: 
0 False; 0.5 Possibly true and possibly false; and 1 True. The curves plot the 
numbers of participants at each mean score both as areas under a curve, 
and as vertical bars representing participants according to their mean scores 
on the x axis (with a small random perturbation to prevent superpositions 
in the graphs).

Fig.  5. The distributions of the disjunctions’ mean ranks of truthfulness 
scores in Experiment 3 (n = 78) for four sorts of journey summarized on the 
y axis where ‘alt’ abbreviates ‘alternative destination’ (see Fig. 3 A–D for these 
journeys). The participants selected one of four truth values for each journey 
shown here with the truthfulness scores, which the participants did not see: 
0 False and it couldn’t have been true; 1 False but it could have been true; 2 True 
but it could have been false; and 3 True and it couldn’t have been false. The 
curves plot the numbers of participants at each mean score both as areas 
under a curve, and as vertical bars representing participants on the x axis 
according to their mean scores (with a small random perturbation to prevent 
superpositions in the graphs).D
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values, cf. intuitionistic logics, specialized modal logics, paracon-
sistent logics. The chatbot Bard uses the modal truth value, ‘pos-
sible’. We have searched and not found as yet any system that uses 
counterfactual truth values. In any case, our first conclusion is 
that standard logics cannot underlie everyday discourse, which 
makes free use of complex truth values that are outside them.

Not all humans can verify assertions; and not all assertions can 
be verified. And no finite observations, such as our participants’ and 
programs’ performances, can establish that all human verifications 
are computable. The immediate crux, however, is the computability 
of human verifications of the truth of Gödel’s self- referential 
 sentence. It is akin to the liar paradox though not paradoxical: 

This sentence is unprovable.
And it is unprovable in a system of formal proofs for the elemen-
tary arithmetic of natural numbers—a system that has independ-
ent proofs of its consistency. Readers of this article are likely to 
judge it to be true, though the formal system for proofs cannot 
make this evaluation. Four factors may make the judgment of its 
truth appear uncomputable. First, it cannot occur in a formal 
system. But, as we have illustrated, verification algorithms can be 
computable, and in principle they can use perceptible inputs. 
Even a great mathematician has distinguished between ‘official’ 
formal proofs and informal ones that rely on meanings (49). 
Second, the circularity of self- reference may seem uncomputable. 
In fact, many forms of self- reference are virtuous, not least the 
definition in a computer program of a function that calls itself. 
Third, the incompleteness proof is so complex that many people 
are unable to understand it, and so it may be beyond the power 

of a theorem- proving program. This factor is irrelevant. You can 
verify ‘Clicking this icon stops the computation’ without under-
standing why it does so. Likewise, you can verify Gödel’s sentence 
without understanding its proof. Fourth, Gödel’s self- referential 
sentence is encoded in a vast natural number, and you cannot 
carry out the computation to decode its meaning. Tractability 
aside, a computer program can make this computation. But, 
again, it is irrelevant. You verify the meaning of the sentence, not 
its ‘official’ translation. A verification algorithm should be able 
to do so too (Fig. 6). Our second conclusion is therefore that the 
human ability to verify Gödel’s self- referential sentence may not 
depend on vitalism or on a process that is not algorithmic. Are 
computers aware of what they have accomplished in verifying a 
description? No. This qualification applies to any of their pro-
grams—from calculating a payroll to simulating gravitational 
waves. Awareness relies at least on access to a model of oneself 
(21, 50), but whether other of its components are computable 
remains an open question.

The main sources of factual truths—observations and witnesses—
are fallible, as are inferences from the information they provide. So, 
too, are AI systems such as GPT- 4, which do not verify their asser-
tions. If our thesis is correct, their devisers cannot ignore this task 
on the grounds that no algorithm can make verifications. Human 
observations concern external physical and social situations, and 
internal matters such as bodily feelings and mental states. Yet, as we 
have shown, verification can consider counterfactual possibilities. 
Truth can therefore depend on something that did not happen and 
cannot be observed—the viability of the road not taken.

Fig. 6. Two programs with verification algorithms. (i) The initial state of the railway, an illustrative target rearrangement, and the three legal moves. (ii) The 
algorithm that the mAbducer program creates to rearrange the cars in trains, which it translates into simple English. (iii) The effects of the rearrangement 
program on the order of the cars, and its verification as true, on which both the left end of the track and the siding function as stack- like working memories 
(iv) The structure of the algorithm for verifying algorithms that the rearrangement program creates (39). (v) The structure of a verification algorithm for Gödel’s 
first incompleteness theorem (2).
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Materials and Methods

The experiments received prior approval from the ethics committee of Trinity 
College Dublin and the Naval Research Laboratory. The participants carried out 
the experiments on- line, they gave their consent to take part in the experiment, 
and the instructions made clear that they could withdraw at any point. The 
materials and raw data for all three experiments are accessible at https://osf.
io/2wtc6/. The preregistration for the experiments, the analysis scripts, materi-
als, and experimental code are also accessible there. We used SPSS and the R 
statistical analysis software to compute all the (nonparametric) statistical tests.

Experiment 1. The participants carried out verifications of 14 pairs of dis-
junctions. Eight pairs had a clause in common, and six pairs did not have a 
clause in common (Fig. 2). Each outcome described a fact and a counterfactual 
possibility, referring to both disjunctions, to one disjunction, or to neither 
disjunction. For half the problems, the counterfactual possibility led to the 
same conclusion as the fact (control problems); for the other half, the coun-
terfactual led to a different conclusion from the fact (experimental problems). 
The initial 51 participants were recruited from the general public on the Prolific 
website and paid 2 pounds sterling for their participation in the experiment, 
and their ages ranged from 18 to 67 y. Their number was in accordance with 
a prior analysis of the power needed to detect a significant effect. We omitted 
the data of three of them from statistical analysis, because they had failed 
one or both online attention checks. The materials were exclusive disjunctions 
using well- known names of cities, which were assigned at random to the 14 
pairs of disjunctions. The trials were presented in a different random order to 
each participant.

Experiment 2. Each trial started with a schematic picture of a destination of a 
journey (Fig.  3). The participants verified a disjunction such as: You arrived at 

Exeter or Perth, in relation to the picture. The experiment manipulated whether 
a picture showed that the car had arrived at a city or not, and whether the road to 
the alternative destination was open or not. The participants were told to judge 
the disjunctive description by choosing the best evaluation from three options: 
false, possibly true and possibly false, and true. The 95 participants were recruited 
on the Cloud Research platform and paid $2.50 USD for their participation in the 
experiment, and their ages ranged from 24 to 72 y. Their number was in accord-
ance with a prior analysis of the power needed to detect a significant effect. We 
omitted 17 participants’ data from statistical analysis, because they had failed an 
online attention check. But the predicted trend was also significant over the entire 
sample. Each participant was tested with the four problems in a different random 
order. An algorithm categorized participants on the three- point truthfulness scale  
(0, 0.5, 1), and introduced a small random perturbation to prevent overlaps in Fig. 4.

Experiment 3. The design and procedure were the same as those for the pre-
vious experiment except that there were four different truth values concerning 
counterfactual possibilities. The Cloud Research platform recruited 95 members 
of the general public, ranging in age from 22 to 69 y. We omitted 13 participants’ 
data from statistical analysis, because they failed an online attention check, but 
the predicted trend was also significant over the entire sample.

Data, Materials, and Software Availability. Experimental results data have 
been deposited in OSF (https://osf.io/2wtc6/) (51).
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