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Abstract 

 People who have no experience with programming can create 
informal programs to rearrange the order of cars in trains. To 
find out whether they rely on kinematic mental simulations, the 
current studies examined participants’ eye movements in two 
experiments in which participants performed various moves 
and rearrangements on a railway consisting of a main track 
running from left to right and a siding entered from and exited 
to the left track.  In Experiment 1, they had to imagine different 
sorts of single moves of cars on the railway. The sequences of 
their fixations resembled iconic gestures: they tended to look 
at the starting location of the imagined move, and then at its 
final location. In Experiment 2, the task was to create 
descriptions of how to solve four sorts of rearrangements that 
differ in their Kolmogorov complexity.  It predicted the time to 
find the correct solution and the relative number and duration 
of fixations recorded during the description of each move for 
rearrangements of different complexity. Participants were 
more likely to fixate on the symbols on the cars than anything 
else, and they fixated longer when the rearrangement was more 
difficult. They also tended to fixate regions of the tracks where 
a car’s movement began or ended, as if they were imagining a 
car moving along the tracks. The results suggest that humans 
rely on a kinematic mental simulation when creating informal 
algorithms. 

Keywords: abduction, eye movements, informal programming, 
kinematic mental models, simulations. 

Introduction 
An algorithm is a finite set of instructions whose execution 
can lead from a starting situation to an output (Knuth, 1997). 
When an algorithm is in a code that a computer can convert 
into commands to be executed, it is a computer program. 
Naive individuals who know nothing about programming can 
understand informal algorithms expressed in natural 
language, and even create them. Researchers have studied 
how programmers understand algorithms written in computer 
code (Aschwanden & Crosby, 2006) and what strategies they 
use in creating their own code (Davis & Zhu, 2022), but they 
have rarely studied how people with no experience in 
programming either understand or create informal 
algorithms. This neglect is surprising because these abilities 
help to identify the origins of recursive thinking, which is at 
the root of mathematics. The fundamental puzzle is: what 

mental processes and representations do people rely on to 
devise these informal algorithms or to deduce their 
consequences? In what follows, we describe a solution to this 
puzzle that relies on the kinematic simulation that reflects the 
temporal sequence of steps that an algorithm calls for. 

When people describe a kinematic process, they often 
move their hands as if they were performing an imaginary 
action (Hadar & Krauss, 1999). They also imitate the 
dynamic properties of an object such as its rotation (Chu & 
Kita, 2011). Many gestures are spatial in nature, in that they 
connect inner thought with the outside world. The same is 
true for eye movements (Keogh & Pearson, 2011). When 
people describe a nearby object, they fixate it (Grant & 
Spivey, 2003). And when they imagine different 
transformations of the object, they tend to continue fixating 
it. For example, when they need to infer the answer to a 
question about a system of pulleys, they imagine animating 
one pulley at a time and fixate each one in its causal sequence 
(Hegarty, 1992). Eye movements may therefore play a 
similar role to gestures. The tendency to look at an object that 
one is thinking about is analogous to a deictic (pointing) 
gesture that picks out a particular referent (Shimojima & 
Katagiri, 2013). The tendency to follow visible or imaginary 
movements is similar to iconic gestures (Tversky, 2019).  

Previous studies have examined how adults (Khemlani et 
al., 2013) and children (Bucciarelli et al., 2016; 2018; 2022) 
devised informal algorithms, and gestures played an 
important part in the process. Ten-year-old children made 
both deictic and iconic gestures when they described how to 
rearrange cars in a toy train that they were not allowed to 
touch or move. Adults do not seem to gesture as often as 
children, so the current study investigates eye movements 
instead. Thus, the aim of the present study is to test the 
predictions that eye movements and fixations should reflect a 
specific measure of the complexity of the algorithms (K-
complexity) as well as the kinematic mental simulation that 
humans rely on to create the algorithms. 

Eye-tracking provides valuable information about what 
individuals are aware of in the world, but it can be difficult to 



disentangle this relation in detail (Hyona, 2010). One way to 
do so is to combine eye-tracking with retrospective thoughts 
about how individuals tackled a problem (see e.g. Jarodzka et 
al., 2010). Another approach is to combine eye-tracking data 
with concurrent ‘think aloud’ protocols (Van Gog, Paas, & 
Van Merrienboer, 2005). Below, the article describes an 
environment that allows the simultaneous recording of verbal 
protocols and eye movements. 

Previous studies with children (Bucciarelli at al., 2016; 
2018; 2022) used a toy railway track that runs from left to 
right and has one siding entered from, and exited to, the left 
side of the track. In the current studies in a different 
laboratory, adult participants saw a similar railway 
environment on their computer screens (see Figure 1). The 
siding and the left track can both serve as temporary storage 
for cars.  Each problem begins with a row of cars on the left 
track, and participants have to explain how to make a 
particular sort of rearrangement so that the cars arrive at the 

right track in the required order. Their description should 
apply to trains containing any number of cars. Only three 
basic moves are allowed in rearrangements: 

S: move one or more cars from left track to the Siding, 
L: move one or more cars from the siding to Left track, 
R: move one or more cars from left track to Right track. 

Once a car reaches the right track, it must stay there, because 
no move allows it to return to the left track. The participants 
in the experiments understood that cars cannot jump over 
each other, and that a car on the siding cannot go directly to 
the right track. There is an infinite number of potential 
rearrangements in the railway environment. Figure 1 presents 
the task of rearranging cars named with letters fedcba into the 
order fdbeca. This rearrangement is a parity sort as it groups 
cars from even number positions and odd number positions 
on the left track into the first and second half of the train on 
the right track.  

 

 
 

Figure 1: The computer display of the railway track in the initial situation presented to the participants in Experiment 
2: tracks, the starting order, instructions and final order as indicated above the tracks (participants in Experiment 1 
saw only the tracks). Numbered dots represent fixations recorded during a participant’s description of the first two 
moves for the parity sort rearrangement in Experiment 2. Numbers refer to the order of fixations. 

 
The sequence of required moves can be found by partial 
means-ends analysis, that is working backward from the 
required goal and adjusting the system to reduce the 
difference between the goal and the current state (see Newell, 
1990). The process is a ‘partial’ means-ends analysis, 
because in the railway environment individuals envisage the 
moves for each of the positions in the target one at a time. As 
the first car at the head of the target order in parity sort is a, 
the first step is to get car a to the right track. The following 
diagram illustrates this move, which is also depicted in Panel 
A in Figure 1: 

R1: fedcba [-] -   ⇒   fedcb [-] a 

In this notation, ‘R1’ denotes a move of one car to the right 
track. The square brackets represent the siding, the letters to 
the left of the brackets represent the contents of the left track, 
and the letters to the right of the brackets represent the 

contents of the right track, and so the hyphen represents zero 
cars. The next step is to move car b to the siding as the next 
car to enter the right track is c. The following diagrams 
represent these two steps, first of which is depicted in Panel 
B in Figure 1: 

S1: fedcb [-] a  ⇒  fedc [b] a   R1: fedc [b] a  ⇒  fed [b] ca 

Some people may discover at this point that the further step 
is to repeat the same sequence S1R1 and then all cars from 
the siding have to be moved to the left track and then all cars 
from left have to be moved to the right track.  

If people use partial means-ends analysis, then the 
difficulty of different rearrangements will depend on the 
difficulty in foreseeing the next move. This should be easier 
if someone grasps the general algorithm for a rearrangement. 
Such an algorithm for the parity sort can be expressed in 



computer code or in everyday language, for example in the 
following way: 

1 Move one car to right track.  
2 While there is more than one car on left track, move one 
car to siding, and move one car to right track.  
3 Move one less than half the number of cars in the train to 
left track.  
4 Move half the number of cars in the train to right track. 

The algorithm for parity sort contains a loop S1R1 (line 2) 
and this loop is harder to discover than the loop (line 3 below) 
in the algorithm that reverses the order of cars: 

1 Move one less than the cars to the siding.  
2 Move one car to the right track.  
3 While there are more than zero cars on the siding, move 
one car to the left track, move one car to the right track. 

A simple measure of algorithm’s difficulty is the 
Kolmogorov complexity (K-complexity for short; see Li & 
Vitányi, 1997). This is the length of the minimal program in 
a standard language for computing the output from a given 
input. A reasonable proxy that makes quite accurate 
predictions is the length of its description in English (see 
Johnson-Laird et al., 2022). The description above for parity 
sort contains 55 words whereas the description for reversal 
contains 40 words.  

How do individuals discover general algorithms for 
rearrangement problems? The answer comes from the theory 
of mental models—the ‘model’ theory, for short. The main 
tenet of the theory is that people construct iconic mental 
models in their minds whose structure corresponds insofar as 
possible to the structure of what they represent. They 
represent relations, but not unnecessary details. In the case of 
the railway environment, models represent the positions of 
the cars on the tracks, but not the appearance of the cars. And 
they are kinematic, that is, they unfold in time to represent a 
temporal sequence of events. To figure out what steps are 
necessary to rearrange the order of a set of cars, individuals 
represent the initial arrangement, and they simulate each 
successive action.  

Partial means-ends analysis, which underlies the creation 
of algorithms, implies that people simulate the moves of cars 
on the tracks move by move. Sometimes it is easier to foresee 
two or three moves in advance (as with reversal) and 
sometimes it is more difficult (as with parity sort). And it 
depends on the K-complexity. Eye fixations and movements 
should help people keep track of where the cars are at a given 
moment of mental simulation. This leads to the hypothesis 
that the description of moves for more complex algorithms 
should be accompanied by a larger number of fixations 
(Hypothesis 1). In addition, more complex rearrangements 
should require more attention, so that the mean duration of a 
single fixation should be longer (Hypothesis 2). Studies with 
children have shown that the deictic gestures used to point to 
a car and the iconic gestures used to show the movement of 
the car also reflect mental simulation. To pursue the parallel 
between gestures and eye movements, a plausible hypothesis 
is that individuals look at the cars whose moves they describe 

and follow their imagined moves with a sequence of fixations 
(Hypothesis 3).  

The first experiment examined whether the railway 
environment is a suitable testbed for studying the relation 
between kinematic simulation and eye movements. 
Experiment 2 investigated how individuals deal with the 
discovery of an algorithm, and it tested the prediction that eye 
movements reveal kinematic mental simulations in the 
creation of informal algorithms. 

Experiment 1 

Method 

Participants The experiment tested 22 students at SWPS 
University in Warsaw, Poland (8 men, 14 women, aged 19-
23) in exchange for a course credit. Participants gave their 
informed consent before taking part in the experiment. This 
experiment and the following one were approved by the 
appropriate Ethical Committee. 

 
Design and materials Participants acted as their own 
controls. They saw a computer monitor with a picture of the 
empty track, and their task was to imagine a car standing in 
one of the three main regions of the track and then making 
one of four moves from its initial location: S: from the left 
track to the Siding, L: from the siding to the Left track, R: 
from left track to the Right track, and a fourth move, which 
is not part of the standard set for rearrangements, i.e., from 
the right track to the left track. Participants had to imagine 
four instances of each sort of move, and each participant 
carried out the 16 trials in a different random order. 

 
Procedure The experiment was conducted in the 
department’s eye-movement laboratory. Each participant sat 
at a desk with a 26-inch computer monitor, with their eyes 
about 24 inches away from the monitor. Participants were 
asked to place their hands flat on the table and not to make 
any movements with their hands, head or shoulders, and were 
informed that their eye movements would be recorded by a 
device attached to the screen. They were informed about what 
moves are possible along the tracks and that their task is to 
imagine different sorts of moves. On each experimental trial, 
the participants heard a recorded description of the location 
of a car and then, after a short pause, a description of a move, 
which they had to imagine. They said, ‘End’, when they had 
done so. Here is an illustrative example: 

Imagine a car standing on the left track and look at its 
possible location. (2 s silence followed). Imagine that this 
car is moving to the siding. 

When the participants said ‘End’, the experimenter pressed 
the button and the next trial began. Participants’ eye 
movements were recorded using the SMI RED eye-tracking 
system at a sampling rate of 120 Hz. 



Results 
The eye tracker recorded the x- and y-coordinates of each 
fixation. These coordinates were classified into three regions: 
left track, right track, and siding. Following the 
recommendations of Holmqvist et al. (2011), each region had 
boundaries that were 1° viewing angle above and below the 
horizontal track and to the right or left of the diagonal part of 
the siding. All other fixations were classified as being outside 
the tracks. The results of four participants were excluded 
from statistical analysis, because the eye-tracking system was 
mis-calibrated for them. 

Two time intervals were used to analyze the fixations. The 
first window was for fixations during the 2-second interval 
after the participants heard the description of a car’s initial 
location. Participants made an overall mean of 5.18 fixations 
during this interval. They fixated the initial location of the car 
(M = 4.26 fixations) more often than any other area (M = 0.92: 
Wilcoxon test: z = 3.39, p < .001). Because they had been told 
to look at the part of the track where a move began, this result 
serves as an attention check. The second window was from 
the end of the verbal description of a move to the point at 
which the participants said ‘End’ to signal that they had 
finished imagining the move. The mean duration of this 
interval was 1.31s and the eye tracking system recorded 4.36 
fixations. Participants fixated the correct destination of a 
move (M = 3.26) more often than any other area (M = 1.10: 
Wilcoxon test: z = 2.94, p = .002).  

Discussion 
The results suggest that eye fixations, like gestures, could be 
used to determine whether individuals use kinematic mental 
simulations when formulating rearrangement algorithms.  If 
participants’ eyes reflected imaginary moves, then they 
should fixate the correct start region and then the correct 
destination. This sequence occurred more often than not. 
Participants were instructed to look at the start regions, and 
therefore their fixations of destinations are more decisive. 

Experiment 2 

Method 

Participants Twenty-six students form the same population 
as in Experiment 1 took part in the study on a voluntary basis 
(13 men, 13 women, aged 19-23). They gave their informed 
consent before participating in the experiment. They were 
told that the five who created the highest number of correct 
algorithms would receive a small financial reward (about 
$12). 
 
Design and materials Participants acted as their own 
controls and carried out two instances of each of the four 
rearrangements: reversal, palindrome, parity sort, and faro 
shuffle. These rearrangements differ in K-complexity, as 
indicated by the length of their informal descriptions (number 
in brackets): 

reversal (40) < palindrome (42) < parity sort (55) < faro 
shuffle (65) 

Examples of reversal and parity sort have already been given 
in the Introduction. The palindrome algorithm changes the 
palindromic order abccba into pairs, as in aabbcc: 

1 Move one less than half the cars to the siding.  
2 Move two cars to the right track.  
3 While there are more than zero cars on the left track, move 
one car to the left track, move two cars to the right track. 

Faro shuffle interleaves cars from the second half into the first 
half, so that fedcba becomes fcebda:  

1 Set the number of cars to be dynamically moved, n-of-s, 
to one less than half the cars.  
2 Set decrement to one.  
3 While n-of-s is more than zero, move one car to the right 
track, move n-of-s cars to the siding, move one car to the 
right track, move n-of-s cars to the left track, take 
decrement from n-of-s.  
4 Move two cars to the right track. 

Faro shuffle is the most complicated of the four algorithms; 
it uses a dynamic loop that changes the number of cars each 
time a loop is repeated, as shown by the length of the 
pseudocode above. 

Each rearrangement was presented once with letters and 
once with numbers as labels on the cars, and the eight 
problems were presented to each participant in a different 
random order. The initial orders on the left track were fedcba 
for the letter trials and 654321 for the number trials (except 
for the palindrome, which had starting orders: abccba and 
123321 to help participants grasp the structure of the 
rearrangement). The target order was displayed above the 
tracks (see Figure 1).  

Procedure The procedure was the same as in Experiment 1, 
except that participants were told that their task was to 
describe as accurately as possible the sequence of moves 
required to move the cars from the left to the right track in a 
given arrangement, and that their voices were recorded using 
a dictaphone they held in their hands, a procedure that 
naturally prevented them from touching the screen and 
moving their hands. At the beginning of each trial, the 
participants read the target order aloud and soon after 
described the moves.  

Results 
The data from 3 of the 26 participants were excluded from 
the statistical analysis, as one participant discontinued the 
experiment, and two participants worked with a mis-
calibrated eye-tracking system. So, the present results are for 
the remaining 23 participants. Two independent judges coded 
the recordings to make explicit the sequence of moves for 
each rearrangement and their accuracy. The judges agreed in 
their coding of accuracy on 94% of the trials (Cohen’s κ = 
.93, p < .001). Discrepancies between them were resolved in 
discussion prior to the statistical analyses.  

 



Behavioral data  
There was no reliable difference between the accuracies of 
the descriptions of rearrangements for the two sorts of labels 
on the cars (77% correct descriptions for letters and 72% 
correct descriptions for numbers, Wilcoxon test, z = 0.27 , p 
> .75) nor for the times for formulating correct descriptions 
(61.2 s for letters and 55.5 s for numbers; Wilcoxon test: z = 
1.27, p > .2), and so the data from the two sorts of labeled 
cars were pooled for further analyses. Mean times for correct 
solutions were:  

Reversals:  45.2s  Palindromes:  45.9s 
Parity sorts:  71.7s Faro shuffle:  70.5s  

The participants’ individual trends in these data corroborated 
the K-complexity prediction of difficulty (Page’s L = 444.0, 
z = 3.81. p < .001). There were no reliable differences in 
accuracy for the four sorts of rearrangement (Page’s L = 542, 
z = 0.59. p > .5).  

Eye-tracking data  
We analyzed the eye-tracking data for the correct 
descriptions of rearrangements for those participants who 
were correct at least once in each sort of algorithm. To ensure 
that the same amount of data was available from each 
participant, if someone was correct on two versions of the 
same algorithm (i.e., with letters and numbers), we randomly 
selected the solution to be analyzed. As a result, we had four 
verbal descriptions recorded from 16 participants. We 
matched these descriptions with the recording of the eye 
movements. We used the Audacity program to locate the 
beginning and end of each description of a move and matched 
these two points with the eye-tracking data. Table 1 shows 
the mean number of fixations recorded during the description 
of a single move and the mean duration of single fixations for 
each sort of rearrangement. 

 
Table 1: Mean number of fixations and the mean duration 
of a single fixation (in milliseconds) recorded during the 

description of single moves in Experiment 2. 
 

Rearrangement Mean number 
of fixations 

Mean fixation 
duration (in ms) 

Reversal 7.7 228 
Palindrome 8.6 228 
Parity sort 9.8 239 
Faro shuffle 10.5 238 

 
The number of fixations during the description of a move in 
correct algorithms confirmed Hypothesis 1 about K-
complexity (Page’s L = 428, p = .015). Likewise, the mean 
duration of fixations during the descriptions of each sort of 
rearrangement corroborated Hypothesis 2 (Page’s L = 420, p 
< .05). 

Participants described a total of 693 moves, and we 
matched each move with a scan path, i.e., the accompanying 
series of fixations. Each fixation within a move description 
was categorized into one of five regions: left track, right 
track, siding, target order, and the instruction (see Figure 1), 
as in Experiment 1. There were 12 move descriptions where 

all fixations fell outside the three regions of the tracks. For 
the remaining 681 matches of move descriptions and 
fixations, participants looked at the left track, the right track 
or the siding at least once. In Experiment 1, we showed that 
participants looked at the tracks in the order predicted by the 
sort of move: first the origin of the move and then the 
destination. We used the same criterion here, except that we 
treated fixations as evidence for kinematic simulations if they 
followed the predicted order at each phase of the move 
description. We illustrate our approach with two sets of 
fixations, shown in Figure 1, in relation to the first two moves 
of parity sort. Panel A shows the description of the right 
move, but all fixations are on the left track. This type of scan 
path does not confirm that the eyes followed an imaginary 
move. The fixations in Panel B were recorded during the 
description of the siding move. The participant first fixated 
the left track and then moved his eyes to the siding. This 
sequence of fixations can be taken as evidence of a mental 
simulation, as it corresponds to a siding move. The scan paths 
corresponding to a move were recorded in 36% of the 
descriptions of right moves, 24% of the descriptions of siding 
moves and 20% of the descriptions of left moves. There were 
only 3 out of the 16 participants whose eye movements 
followed imaginary moves for half of the descriptions or 
more. This result is not surprising as in 56% of all matchings, 
participants only looked at the area with the squares 
representing cars: the left track and the final order above the 
tracks. In the remaining 44% of matchings, however, the 
participants looked on the right track or siding at least once. 
These glances were directed according to the sort of move. 
When describing moves to the right track, participants looked 
at the right track in 49% of moves descriptions, while they 
looked at the siding significantly less often (25% of moves; 
Wilcoxon test, z = 2.56, p = .01). Likewise, there were more 
descriptions of moves to or from the siding accompanied by 
fixation on the siding than fixation on the right track (23% vs 
5%, Wilcoxon test; z = 3.47, p < .001). 

Discussion 
Experiment 2 showed that there was an increasing trend in 
the participants’ numbers of fixations per move over the 
increasing complexity of four sorts of algorithm (Hypothesis 
1). Likewise, there was an increasing trend in mean duration 
of a fixation with increasing complexity of the four sorts of 
algorithm (Hypothesis 2). Detailed examination of the 
sequence of fixations recorded during the description of a 
single move did not fully confirm the prediction that the eyes 
follow imaginary moves along the tracks (Hypothesis 3). In 
more than half of the descriptions of the moves, participants 
looked only at the left track and the final order. Consistent 
with the hypothesis that when moving  their eyes along the 
tracks, participants should do so in a similar way to iconic 
gestures, they moved their eyes to the areas relevant to the 
described move.  



General Discussion 
The participants in our study described how they could 
rearrange the order of the cars of a train on a railway track 
using the siding, which can be used as a temporary storage. 
But they did not move any actual cars. The railway 
environment was displayed on a computer screen, and the 
system recorded the participants’ descriptions of their 
solutions and their eye movements.  

The aim of Experiment 1 was to test whether the railway 
environment is a suitable testbed for investigating the 
relationship between eye movements and mental simulations. 
When participants were asked to imagine single moves from 
one part of the railway to another, they tended to fixate the 
starting point and then the end point of the move. This result 
is consistent with the model theory and replicates the finding 
that when people imagine a scene, they move their eyes as if 
they were looking at the scene in reality (Johansson et al., 
2012). 

In Experiment 2, participants described the steps that lead 
to four sorts of rearrangements. The time they took to list the 
correct steps depended on the difficulty of the rearrangement 
algorithm. The new discovery was that this held also for how 
they moved their eyes during each single step: the 
Kolmogorov complexity (K-complexity) of an algorithm 
predicted the number of fixations they made during their 
description of the rearrangement (Hypothesis 1). K-
complexity also predicted the mean duration of a single 
fixation (Hypothesis 2), which is typically considered an 
indicator of attentional demand (Rosch & Vogel-Walcutt, 
2013). During the descriptions of the rearrangements, 
participants had a very strong tendency to keep their eyes on 
the letters or numbers representing cars, and only sometimes 
did they move their eyes elsewhere. However, when they 
moved their eyes along the track from one fixation to the next, 
they did so in a way that was consistent with the move they 
described (Hypothesis 3). 

Is it possible to explain the present results without 
assuming that adults perform kinematic mental simulations? 
One explanation would be that they rely instead on a 
‘propositional’ representation of the railway that has a 
grammatical structure analogous to a well-formed formula in 
a standard logic. The mental process would update a 
propositional representation, such as: 

 ((e)left track (f)right track (d c b a)siding)railway 

to: 
 (( )left track (e f)right track (d c b a)siding)railway 

The three labeled brackets demarcate the three parts of the 
track, and their overall structure is equivalent to a phrase-
structure tree, though the order of the terms within the 
brackets retains an iconic relation to the order of the cars on 
the relevant part of the track. The three sorts of move call for 
transformational rules to pass from one such tree to another 
(cf. Chomsky, 1957). This process may put more of a load on 
working memory than a kinematic simulation, but it is 
consistent with studies showing that the temporal order of 
fixations when events are imagined differs from the order 
when they are actually perceived (Gurtner, Hartmann, & 

Mast, 2021) and with studies showing that when participants 
recall a scene, they usually move their eyes to reflect the 
corresponding locations of objects in that scene (Martarelli & 
Mast, 2013).  Yet, this interpretation fails to explain why eye 
movements are similar to the actual moves of the cars. It is 
harder to imagine the next move when the general algorithm 
for solving the rearrangement is more complex. And 
participants needed more time, and therefore fixated longer 
when they described moves in more complex 
rearrangements.  

There was a clear difference between eye movements when 
participants were asked to imagine moves (Experiment 1) and 
when they described the moves while solving rearrangement 
problems (Experiments 2). Mental models underlie visual 
images, and visual images can even hinder reasoning 
(Knauff, 2009). Likewise, kinematic mental simulations can 
be more abstract than simulated actions. One need not take 
eight hours to imagine flying from New York to Paris and 
imagine the Eiffel tower (see Hesslow, 2012). The same 
process may have occurred in the present studies. Once 
participants knew how the cars moved to some location, they 
did not have to simulate their route in detail. At least they did 
not have to do that for every move. If they inspected the 
contents of their current state of their kinematic simulation, 
they knew when the cars were standing at the moment. It was 
enough to just look at the cars’ locations every now and then 
or slightly move the eyes into the direction of a move.  

Unlike other studies on eye movements, the present study 
did not measure them in short time windows, but recorded a 
whole series of eye movements during trials that could last 
almost 4 minutes. It is quite likely that there was some 
discrepancy between the timing of the verbal descriptions and 
the mental simulation of a move. There is no way to avoid the 
possibility of mismatch between the timing of simulation and 
the timing of naming the move in this type of study. Another 
difficulty in establishing the relations between kinematic 
simulations and eye movements lies in the fact that verbal 
descriptions of moves and eye fixations do not have to be 
strictly coordinated (Griffin & Bock, 2000). On the one hand, 
it is possible that the participants were thinking of a 
subsequent move when describing the current move. This 
ability, if it exists, could have led them to fixate the cars to be 
moved next. On the other hand, it is also possible that when 
people have to describe algorithms in their own words, the 
referents of those words could be a strong source of fixations. 
In general, the time interval between fixation and speech 
onset is not the same in all cases; it can vary between genders 
and depends on experience with the task (Law, Pellegrino, & 
Hunt, 1993). 

The creation of an algorithm is a high-level skill — a way 
of thinking that goes beyond most thinking in daily life. The 
model theory and its computer implementation (see 
Khemlani et al., 2013) offer an explanation that has been 
proven in repeatable experiments. The central assumption is 
that kinematic simulations simulate the steps necessary to 
create informal algorithms. 
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