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Abstract: Systems for qualitative spatial reasoning (QSR) are usually formulated as relation algebras, and
reasoning in such systems is performed by constraint-satisfaction techniques. While this is often
adequate, it is a rather inexpressive framework that cannot model and solve many spatial reasoning
problems; it can also complicate the combination of different spatial formalisms, e.g., the combina-
tion of topological with metric primitives, or absolute orientation with relative orientation. Here
we suggest an alternative approach, whereby spatial information is expressed in a rich quantified
3-valued logic, equipped with a novel semantics for dealing with incomplete information. Decid-
ability is ensured by a systematic compilation into propositional logic and the use of SAT solvers.
To illustrate, we define and implement a new system for two-dimensional positional reasoning that
combines Frank’s cardinal-direction calculus, the flip-flop calculus for reasoning about relative ori-
entation, and various new positional primitives. Unlike previous work, the system uses diagrams
as well as symbolic formulas. In particular, the logic we introduce is heterogeneous, meaning that
it combines symbolic and diagrammatic representation and inference.

1 A Hybrid System For Reasoning
About Orientation

Representing and reasoning about position
and orientation is an active area of QSR, with
applications ranging from robot navigation and
geographic information systems to computational
linguistics. Most of the existing systems are based
either on absolute reference systems or on relative
reference systems. For the latter, a reference axis
is introduced by fixing a given origin and a rela-
tum, and then the position of a given referent is
described with respect to that axis. It is increas-
ingly recognized that realistic scenarios demand
the ability to handle both absolute and relative
orientation.

The system we are about to introduce, CDC
(for C ombined D irection C alculus), integrates:
1. an absolute-reference orientation system im-

plementing Frank’s cardinal-directions calcu-

lus (Frank, 1991); and

2. a relative-reference orientation system in
which the reference axis is specified by an
arbitrary origin and relatum, implementing
Ligozat’s flip-flop calculus (Ligozat, 1993).

We introduce several additional primitives that
are not part of either of these two systems.

In what follows we demonstrate the system on
a number of examples, starting with a problem
from (Isli et al., 2001) that illustrates the need
for combining absolute- and relative-orientation
reasoning:
1. Viewed from Hamburg, Berlin is to the left

of Paris, Paris is to the left of London, and
Berlin is to the left of London.

2. Viewed from London, Berlin is to the left of
Paris.

3. Hamburg is to the north of Paris, and north-
west of Berlin.



4. Paris is to the south of London.
The first two premises are consistent. Indeed,
if we assert the first two premises (i.e., insert
them into the knowledge base) and then issue
the command (find-model), CDC will automat-
ically find and display the following spatial model:

Hamburg Berlin

London Paris

Likewise, the last two premises are mutually
consistent. CDC automatically produces the fol-
lowing model for them:

Hamburg

London Berlin

Paris

Nevertheless, the conjunction of all four
premises is inconsistent,1 and CDC readily dis-
covers this. There are two ways to demonstrate
the inconsistency. One is to ask the system to find
a model for the current knowledge base (which
contains all four premises). If the knowledge base
is inconsistent, as in this example, the system will
report that no such model exists. The other is to
ask whether the sentence false follows from the
knowledge base. In this case CDC confirms that
false indeed follows.

Consider next the Indian-tent problem, a
rather simple problem that nevertheless presents
challenges to several QSR systems (Röhrig, 1997,
p. 229) and used as a benchmark by the SparQ-
Toolbox (Wallgrün et al., 2006): There are four
objects (points, regions, or whatever), A, B, C,
and D, whose spatial arrangement is as follows:

1. Viewed from A, C is to the right of B (equiv-
alently, C is to the right of the line from A to
B).

2. Viewed from C, D is to the right of B.

3. Viewed from A, D is to the left of B.

The goal is to deduce that viewed from C, D is to
the right of A. Geometrically, the configuration
must be isomorphic to the following:

1The only reason the four premises are jointly in-
consistent is because, in calculi of this sort, direc-
tions such as north and northwest are required to be
mutually exclusive. That clearly represents a depar-
ture from ordinary usage, where the two are not only
compatible (e.g., we say that Chicago is both north-
west and north of Baltimore), but in fact one implies
the other. The requirement is nevertheless customar-
ily imposed because in the constraint-based paradigm
that has dominated the field, the base relations of a
QSR calculus must be mutually exclusive.
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When we assert these three premises and ask
CDC to find a model, the system responds with
the following diagram:

A

B D

C

Further, when we query whether it follows logi-
cally that D must be to the right of A from C’s
perspective, CDC quickly responds affirmatively.

For our third and final example, suppose
that we must arrange five objects (e.g., furniture
pieces) A, B, C, D, and E, according to the fol-
lowing constraints:
1. A must not be adjacent to C.

2. Nothing is to the right of E.

3. If D and A are not adjacent, then B should
be in the middle.

4. D is above all others.

5. E and D are adjacent.
When we ask CDC to find a model for these re-
quirements, it promptly2 returns the following di-
agram:

D

A B E

C

The remainder of the paper is structured as
follows. The next section contains a discussion
of our overall approach to QSR in general terms.
In section 3 we apply this methodology to de-
fine CDC rigorously. In section 4 we show how
to carry out the SAT reduction for CDC and in
general. Finally, section 5 concludes.

2 General Methodology

A spatial problem deals with a finite system of
objects s1, . . . , sN . Each object has a number of

2The current implementation of CDC solves all of
the sample problems that appear in the paper in a
fraction of a second (on an 2GHz IBM T2500 with
1GB of RAM). The complete source code along with
a machine-readable test suite of numerous problems,
including these examples, can be obtained by contact-
ing the authors.



attributes, which typically represent spatial prop-
erties. While there may be several attributes in
general, in practice there is often only one at-
tribute of interest. In this case, as in many oth-
ers, this attribute is location, which here consists
of a pair of numeric coordinates that locate each
object on a two-dimensional grid.

A system state is a function σ that maps each
object si to a finite and non-empty set of attribute
values. As a simple example, suppose we have
three objects s1, s2, and s3, to be located on a
2× 2 grid. Then a system state σ might map s1
to (1, 1), s2 to (2, 1), and s3 to (1, 2):

σ(s1) = {(1, 1)};
σ(s2) = {(2, 1)};
σ(s3) = {(1, 2)}.

(1)

We can depict σ diagrammatically as follows:

s1 s3
s2

Such a state is called a world, because it maps
each object to a unique attribute value, in this
case to a unique location.3 Thus a world pro-
vides a maximal amount of information: it gives
the precise attribute values (e.g., the precise loca-
tions) of all objects. Oftentimes, however, we do
not know exact attribute values. For instance, we
might know the precise location of s1 (say, (2, 2)),
but for s2 and s3 we might only know that they
are both on the top row, but without knowing
their exact positions. That would be captured by
the following state:

σ(s1) = {(2, 2)};
σ(s2) = σ(s3) = {(1, 1), (1, 2)}. (2)

In the extreme case, we might have no informa-
tion whatsoever about the locations of any of the
objects:

σ(s1) = σ(s2) = σ(s3) = {(1, 1), (1, 2), (2, 1), (2, 2)}.

So that is why states map objects to finite sets
of attribute values, rather than single attribute
values. Since set membership is disjunctive, this
provides us with a technically convenient device
for dealing with incomplete information. More-
over, the finiteness requirement ensures that we
can encode the content of a state with a finite
disjunction. For instance, state (2) can be repre-
sented by the CNF formula

3Technically, each object is mapped to a singleton,
but it is convenient to treat worlds as if they map
objects directly to values.

loc(s1, (2, 2)) ∧ [loc(s2, (1, 1)) ∨ loc(s2, (1, 2))]
∧ [loc(s3, (1, 1)) ∨ loc(s3, (1, 2))],

where the literal loc(si, l) has the obvious mean-
ing. Any state σ can be straightforwardly en-
coded by a CNF formula Fσ.

Let σ1, σ2 be system states. We say that
σ2 is an extension of σ1, written σ2 v σ1, iff
σ2(si) ⊆ σ1(si) for every i = 1, . . . , N . If σ2 v σ1

and σ1 6v σ2, then σ2 is a proper extension of σ1,
written σ2 @ σ1. Thus, if σ2 v σ1 then Fσ2 sub-
sumes Fσ1 .

Note that oftentimes system states can (and
should) be depicted diagrammatically. This is
possible even in the presence of partial informa-
tion (i.e., when the state is not a world), if we
only introduce appropriate abstraction tricks and
corresponding diagram-parsing conventions. For
instance, if we place a question mark in a location
to indicate that we do not know which object ap-
pears there, while an unoccupied location is sim-
ply left blank, then state (2) can be depicted as
follows:

? ?
s1

The pervasive use of such diagrams is a distin-
guishing aspect of our approach. Indeed, in our
work “system state” and “diagram” are used syn-
onymously.

Let us now describe the syntax of the un-
derlying logic. First, every object si is given
a name ci, and indeed for many purposes the
objects can be identified with their names. A
term is either an object name ci or else a vari-
able v. (To keep these apart, variables and con-
stants start with lower- and upper-case letters,
respectively.) Atomic sentences are of the form
(R t1 · · · tk), where R is a relation symbol of
arity k and t1 · · · tk are terms. There are also
negations (not p), conjunctions and disjunctions
(and/or p1 · · · pk), conditionals and bicondition-
als (if/iff p1 p2), and universal and existential
quantifications (forall/some v1 · · · vk p).

A specific system is largely determined by
the stock of available relation symbols and their
meaning. More precisely, to define a QSR system
by this methodology, one must choose
1. a set of object attributes (as we remarked,

a single attribute location suffices in many
cases); and

2. a finite set of relation symbols R, and their
interpretations.

The interpretation of a symbol R ∈ R is a com-
putable relation R on some attributes (typically



on location). Thus, for instance, supposing that
left is a binary relation symbol, left would be
a binary relation on locations, defined, e.g., as
follows:

left((r1, c1), (r2, c2)) ≡ c1 < c2.

Then an atom such as (left B C) will be true
in a given state σ iff the left relation definitely
holds between all possible locations that σ assigns
to the objects named B and C. (Recall that a
state might map an object to multiple locations.)
Thus, e.g., assuming that A, B, and C are the
names of the objects s1, s2, and s3, respectively,
the atom (left B C) is true in world (1), as s2
is definitely to the left of s3 in that state. Like-
wise, (R t1 · · · tk) will be false in a state σ iff R
fails for all possible attribute values that σ as-
signs to the objects named by t1, . . . , tk. Thus,
e.g., (left A B) is false in state (1). But if R
holds for some of these values and fails for others,
then the truth value of (R t1 · · · tk) is unknown—
the third value of the 3-valued semantics. Thus,
e.g., the truth value of (left B C) is unknown
in state (2), because it is true if s2 assumes the
location (1, 1) and s3 assumes the location (1, 2),
but false if s2 is assigned to (1, 2) and s3 to (1, 1).
Given such interpretations for the relation sym-
bols, any sentence p can be compiled into an
equivalent formula Fp in propositional logic (in
the context of the inference problems described
below).

Let us be more precise. Recall that a term t is
either a constant name c or a variable v. Thus, to
evaluate a term t, i.e., to find out which system
object it denotes, we need two pieces of informa-
tion: a mapping from variables to objects, and a
mapping from constants to objects. The mapping
from constants to objects is usually fixed once and
for all in the beginning of the session with the sys-
tem. For any constant name c, we write c for the
system object denoted by it through this initial
mapping, e.g., A = s1, B = s2, C = s3. A vari-
able mapping is a total function χ from the set
of variables to the set of objects. Given such a
mapping χ, the denotation of a term t is written
as tχ, and is defined as follows: If t is one of the
constants, c, then tχ = c; and if t is a variable
v, then tχ = χ(v). We write χ[v 7→ si] for the
mapping that assigns si to v and agrees with χ
everywhere else.

We first define the truth value of any given
sentence w.r.t. a given world w and a given vari-
able mapping χ, denoted Vw/χ[p], as follows.
Suppose first that p is an atomic sentence. If p is
an identity (= t1 t2), then p is true iff tχ1 = tχ2 .

For non-identities, Vw/χ[(R t1 · · · tk)] is defined
as follows:{

true if R(w(tχ1 ), . . . , w(tχk ));
false otherwise.

For non-atomic p, Vw/χ[p] is defined in accor-
dance with the strong 3-valued Kleene scheme,
e.g., Vw/χ[(and p1 p2)] is true iff both Vw/χ[p1]
and Vw/χ[p2] are true; false if one of them is false;
and unknown otherwise. Universal and existen-
tial quantifications are desugared into conjunc-
tions and disjunctions, respectively.

A knowledge base is a finite set of sentences
β. A context is a pair γ = (β, σ) consisting of a
knowledge base β and a system state (diagram)
σ. The following specifies the key notion of logi-
cal entailment in this framework: A world w sat-
isfies a sentence p w.r.t. a variable mapping χ
iff Vw/χ[p] = true. This is denoted by writing
w |=χ p. Likewise, w satisfies a system state σ,
written w |= σ, iff w v σ. We say that w satis-
fies a context γ = (β, σ) w.r.t. a given χ, written
w |=χ (β, σ), iff w |=χ p for all p ∈ β and w |= σ.
A context γ entails a sentence p, written γ |= p,
iff w |=χ γ implies w |=χ p for every world w and
variable mapping χ. Finally, γ entails a system
state σ, written γ |= σ, iff w |=χ γ implies w |= σ
for all w and χ.

With this background, we can describe the two
types of inference supported in our framework as
follows:
1. Theorem proving: Given a context γ, deter-

mine whether or not
• a sentence p follows from γ; or
• a state σ′ follows from γ.

2. Model finding: Given a context γ, find a model
for it, if one exists, or else report inconsis-
tency. The system should be able to find as
many distinct models for γ as possible.

For theorem proving, we encode the given context
γ as a CNF formula Fγ , and check the satisfia-
bility of Fγ ∧ A ∧ ¬Fp or that of Fγ ∧ A ∧ ¬Fσ′ ,
where A is a canonicity axiom that will be dis-
cussed later. For model-finding, we simply look
for satisfying interpretations for Fγ ∧ A.

We stress that grid-based numeric locations
are not a necessary feature of this methodology.
Locations could be data values of an arbitrary
type, e.g., the thirteen relative regions of the
Double-Cross Calculus (Freksa, 1992) determined
by an arbitrary origin and relatum. Then a sys-
tem state might map an object si to a set of “lo-
cations” such as {left-front , right-back}.



3 Definition Of CDC

To define CDC in accordance with the pre-
ceding schema, we need to (a) specify the object
attribute(s), and (b) specify the relation symbols
and their interpretations. There is only one at-
tribute, location, so for (a) we only need to spec-
ify the type of locations used in CDC . These will
be cells on a two-dimensional grid. In particu-
lar, letting R and C denote the number of rows
and columns of the grid, respectively,4 we iden-
tify a location with an ordered pair (i, j) with
1 ≤ i ≤ R and 1 ≤ j ≤ C. We write L for the
set of all locations, namely, {(1, 1), . . . , (R,C)}.
The top row and leftmost column are row 1 and
column 1, while the bottom row and rightmost
column are row R and column C, respectively.
Thus, a system state here is a function

σ : {s1, . . . , sN}→ [P(L) \ {∅}]

that assigns a non-empty set of locations to every
system object.

For part (b): CDC has 24 relation symbols,
15 of which are binary, 8 are ternary, and one is
unary. The unary relation is middle; (middle t)
holds iff the object denoted by t is located
at the center of the absolute reference system.
The following are the binary relations: north,
south, east, west, north-west, north-east,
south-west, south-east, above, below, left,
right, diag, adjacent, and same-location. In
addition, there is the equality symbol: (= s t)
iff s and t denote the same object. The
ternary relations are those of the flip-flop cal-
culus (ff-right, ff-left, ff-front, ff-back,
ff-inside, ff-start, ff-end), and an extra
ternary relation between.

We now come to the interpretations of these
symbols. For each symbol R, R is a relation
of the same arity on L. Thus, for instance,
above is a binary relation on L. Specifically,
above((r1, c1), (r2, c2)) iff r1 < r2. We illustrate
with the interpretations of a few more of the bi-
nary primitives:

west((r1, c1), (r2, c2)): r1 = r2 and c1 < c2

adjacent((r1, c1), (r2, c2)): [r1 = r2 and
|c1 − c2| = 1] or [c1 = c2 and |r1 − r2| = 1]

The interpretations of the rest should be obvious.
The only somewhat tricky case is diag, which
holds for positions that are located diagonally.

4Both dimensions of the grid (R and C) are ad-
justable parameters in our implementation; they can
take any positive values.

For the base relations of the flip-flop calculus,
we transform locations (r, c) into Cartesian coor-
dinates (x, y), where x = c and y = R − r + 1.
Then, given an origin (r1, c1), a relatum (r2, c2),
and a referent (r3, c3), with Cartesian coordinates
(x1, y1), (x2, y2), and (x3, y3), respectively, we
compute the slope and constant of the line from
the origin to the relatum, and then determine the
relative location of the referent by analytic ge-
ometry. For instance, writing b?→ e1; e2 for the
conditional expression that denotes the value of
e2 (e3) is b is true (false), the following interprets
ff-right :

ff-right((r1, c1), (r2, c2), (r3, c3)) ≡ (c1 = c2)?→
[r2 ≤ r1?→ (c3 > c1); (c3 < c1)];

[(c2 > c1)?→ y3 < y′; y3 > y′]

where y′ = (slope · x) + constant ,

slope = y2 − y1/x2 − x1,

and constant = y1 − (slope · x1).
Finally, note that the semantics do not pre-

clude worlds in which multiple objects are in the
same location. In practice, our implementation
rules out such worlds by adding the following sen-
tence to the global knowledge base:

(forall x y
(if (same-location x y) (= x y)))

4 Translation To SAT

Recall that N , R, and C are the numbers of
objects, rows, and columns, respectively. Our
translation uses two basic types of Boolean vari-
ables, location–i–r–c, asserting that object i is
in location (r, c), and eq–i–i′, asserting that ob-
jects i and i′ are identical. We define two ad-
ditional variables in terms of location, row–i–r
and col–i–c, asserting that object i is in row r
and column c, respectively. There are, therefore,
N · R · C + N2 + N · (R + C) variables. For
greater readability, we write variables of the form
location–i–r–c and eq–i–i′ as location(i, (r, c))
and eq(i, i′), respectively, and likewise for row
and col . The following axiom defines row :

N∧
i=1

[
R∧
r=1

row(i, r)⇔
C∨
c=1

location(i, (r, c))

]
The definition of col is similar.

To weed out unintended models, we must en-
sure that for every i ∈ 1, . . . , N there is some



belowT (si, sj) =
R∧
x=1

[
row(i, x)⇒

R∨
y=x+1

row(j, y)

]

ff-rightT (si, sj , sk) =
∧

(l1, l2)∈L2

location(i, l1) ∧ location(j, l2)⇒
∨

l3∈R(l1,l2)

location(k, l3)


where R(l1, l2) = {l3 ∈ L | ff-right(l1, l2, l3)}

north-westT (si, sj) = aboveT (si, sj) ∧ leftT (si, sj)

Figure 1: SAT translation of sample base relations.

l ∈ L such that location(i, l); i.e., every object
occupies some location:

N∧
i=1

 ∨
l∈L

location(i, l)


Furthermore, location must be univalent, i.e., no
object can occupy more than one location:

N∧
i=1

∧
l∈L

location(i, l)⇒
∧

l′∈L\{l}
¬location(i, l′)


We also postulate the following two axioms for-

malizing the semantics of the identity relation:[
N∧
i=1

eq(i, i)

]
and

N∧
i=1

 ∧
j∈{1,...,N}\{i}

¬eq(i, j)


We write A for the conjunction of all of the above
axioms, including the definitions of row and col .
By an interpretation I we mean a function that
assigns a truth value to every atom of the form
location–i–r–c and eq–i–i′, i, i′ ∈ {1, . . . , N},
r ∈ {1, . . . , R}, c ∈ {1, . . . , C}. We write I |= F ,
where F is a propositional formula over this set
of variables, to mean that I satisfies F , in the
usual sense of propositional-logic semantics. We
say that an interpretation I is canonical iff I |= A.
We are only interested in canonical interpreta-
tions.

A system state (diagram) σ can be encoded as
a propositional formula Fσ as follows:

Fσ =
N∧
i=1

 ∨
l∈σ(si)

location(i, l)



Alternatively—and more efficiently—we can en-
code σ as the conjunction of all unit clauses
that state where an object cannot be. We can
now define the main translation function T that
takes a sentence p and a variable mapping χ and
produces a formula in propositional logic (over
the aforementioned set of variables) that cap-
tures the 3-valued-logic semantics of p in a sense
made rigorous by the theorem below. For atoms,
T ((R t1 · · · tk), χ) = RT (tχ1 , . . . , t

χ
k ), where RT

is defined for some sample R in figure 1. Boolean
combinations are straightforward, e.g.,

T ((and p1 p2), χ) = T (p1, χ) ∧ T (p2, χ),

and universal (existential) quantifications are re-
duced to conjunctions (disjunctions), e.g.,

T ((forall v p), χ)

is defined as the conjunction of all T (p, χ[v 7→ si])
for i = 1, . . . , N .

For a knowledge base β and mapping χ,
T (β, χ) = {T (p, χ) | p ∈ β}. Note that the size of
the clause set for base relations is O(G3), where
G is the size of the grid (i.e., R · C).

Writing Sat[S] and UnSat[S] to mean that
S is satisfiable and unsatisfiable, respectively, we
have:
Theorem 1: Pick an arbitrary χ. Then:

(β, σ) |= p iff UnSat[{A, Fσ,¬T (p, χ)} ∪ T (β, χ)];

(β, σ) |= σ′ iff UnSat[{A, Fσ,¬Fσ′} ∪ T (β, χ)];

(β, σ) has a model iff Sat[{A, Fσ} ∪ T (β, χ)].

(We assume without loss of generality that sen-
tences in the above theorem are closed, i.e., have
no free variables. If one does, we can consider
its universal closure instead, since the semantics
ensure that the two are equivalent.) This result
completes the reduction of CDC to SAT, and en-
ables us to determine whether an arbitrary sen-
tence or diagram follows from the current context.



For a given inference problem, our implementa-
tion carries out this propositional encoding and
then proceeds in three stages. First it translates
the produced formulas into CNF; it then trans-
lates the CNF into DIMACS format; and it fi-
nally invokes a SAT solver on the DIMACS input
(currently RSat).

It should be noted that the reduction to SAT
can be carried out automatically not just for
CDC but for any QSR system adhering to the
approach we have outlined in this paper, given
the interpretations of its relation symbols. We
sketch out the relevant technique below. Sup-
pose for simplicity that there is only one attribute
(this is not an essential restriction), which, in the
context of a specific inference problem, can only
take values from a finite set A. Then we intro-
duce variables of the form att-i-v for i = 1, . . . , N ,
v ∈ A. Now let R be an interpreted relation of
arity k + 1, k ≥ 0. Given values v1, . . . , vk ∈ A,
define the projection R↓ (v1, . . . , vk) as follows:
R↓ (v1, . . . , vk) = {v ∈ A | R(v1, . . . , vk, v)}.

Then we define RT (si1 , . . . , sik) as follows:∧
(v1,...,vk)∈Ak

{att-i1-v1, . . . , att-ik-vk}⇒ ∨
v∈R↓(v1,...,vk)

att-ik+1-v


This is essentially the same general scheme that

was used in the translation of CDC . (Derived
attributes such as row and col are convenient but
inessential abbreviations.)

5 Comparison With Previous
Approaches And Conclusions

Historically, most of the work in QSR has
stemmed from and was heavily influenced by
Allen’s calculus (Allen, 1983). Although some
important early work was couched in first-order
logic (Randell et al., 1992), by and large, follow-
ing Allen it has been widely thought that an ex-
pressive reasoning framework for QSR powered
by a general-purpose inference procedure would
be infeasible. Accordingly, expressivity and rea-
soning completeness have been sacrificed in the
interest of efficiency. With few exceptions, QSR
systems are couched as relation algebras, and rea-
soning in such systems is performed by CSP tech-
niques on networks of objects constrained by bi-
nary (or occasionally ternary) base relations.

In the wake of the remarkable progress that
has been achieved in SAT-solving technology over
the last decade, this approach has become ques-
tionable. The general-purpose reasoning pro-
vided by off-the-shelf SAT-solvers is now pow-
ering systems that solve extremely demanding
problems, not only in hardware and software ver-
ification, but in AI as well (e.g., for planning and
scheduling). That QSR could also stand to ben-
efit from this progress is suggested by the follow-
ing observation: The reasoning required in many
practical QSR applications is model-based, deal-
ing with a finite set of objects (regions, points,
lines, time intervals, or arbitrary objects in a
scene), each having a finite number of possible
spatial-attribute values. Therefore, one can re-
tain first-order logic and still achieve decidability
through propositionalization, by restricting the
universe of discourse to the set of objects in ques-
tion and then deciding entailment through off-
the-shelf SAT solvers.

By comparison to the CSP tradition, the ap-
proach we have suggested in this paper can offer
the following advantages:

1. Increased expressivity: The full expressive
power of first-order logic is available, allow-
ing for much more natural modeling of spa-
tial information. Anything that could be
modeled with relational constraints can be
expressed in first-order logic, but the con-
verse is not true. Many problems that could
not be solved—or even expressed—in pure
constraint-based calculi can be directly for-
mulated and solved in the present setting.
The furniture-arrangement problem from sec-
tion 1, for instance, is beyond the reach of
current QSR systems, but it is readily formu-
lated and solved in CDC .

2. Higher level of abstraction: In the present
approach there is no need to compute tran-
sitivity tables or to devise or modify path-
consistency algorithms. These are labori-
ous processes—often left unfinished for many
systems–that are necessitated largely by the
idiosyncrasies of the underlying reasoning
mechanism. When defining a QSR system in
our approach, one can focus on the purely log-
ical aspects of the primitive relations and rel-
egate the reasoning to the SAT solver. It is
also not necessary to require the primitive re-
lations of the system to be JEPD (jointly ex-
haustive and pairwise disjoint), a requirement
that can have somewhat awkward modeling
consequences (see footnote 1).



3. Built-in mechanisms for dealing with incom-
plete spatial knowledge: The semantics of the
present framework are based on an intuitive
new 3-valued logic that is particularly apt for
modeling incomplete spatial information. We
have shown how to compile these semantics
into propositional logic.

4. Extensibility: New dimensions of spatial rep-
resentation and reasoning can be incorpo-
rated with relatively little effort. The relative-
orientation primitives of the flip-flop calcu-
lus, for instance, were added to the cardinal-
direction primitives of Frank’s calculus in less
than two hours. By contrast, combining these
two systems in a constraint-based algebraic
setting was a major research challenge that
by itself merited publication (Isli et al., 2001).
Similar systems could be implemented for,
e.g., topological inference.

5. Orthogonal efficiency improvements: Progress
in SAT-solving technology is rapid, and
should translate into corresponding efficiency
gains for SAT-based QSR systems.

6. Prominent role for diagrams: Diagrams play
a crucial role in spatial cognition, but so far
they have been largely absent from QSR sys-
tems, which are usually entirely algebraic,
even though QSR is recognized as “especially
suited for applications that involve interac-
tion with humans, as they provide an interface
based on human spatial concepts” (Wallgrün
et al., 2006, p. 39). The system we have pre-
sented can accept diagrammatic input, includ-
ing incompletely specified diagrams, and can
also present output diagrammatically. More-
over, the underlying framework provides a
general formal notion of diagrams.

7. Heterogeneous proofs: In addition to au-
tomating reasoning tasks such as model-
finding and theorem-proving, the present
framework allows for proofs that express spa-
tial reasoning.5 These are given in a het-
erogeneous framework that is specifically de-
signed to combine visual and symbolic reason-
ing. None of the present systems allow for
proofs, let alone heterogeneous proofs. Never-
theless, proofs are not only interesting in their
own right, but they could also play an impor-
tant role in human-machine interaction, since

5We have not had space to cover that aspect of
the system here, but we discuss it in detail elsewhere
(Arkoudas and Bringsjord, 2009).

they can serve as explanations of spatial rea-
soning.
In the near future we plan to integrate addi-

tional spatial primitives (particularly topological
ones); improve the efficiency of the SAT encod-
ing; pursue additional optimizations (e.g., cache
the canonicity clauses after the first translation,
instead of reencoding them on every query); and
evaluate the system’s performance on a wider
range of problems.
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