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Tardast (Shakeri 2003; Shakeri & Funk, in press) is a new and intriguing paradigm to investigate 
human multitasking behavior, complex system management, and supervisory control. We present a 
replication and extension of the original Tardast study that assesses operators’ learning curve and 
explains gains in performance in terms of increased sensitivity to task parameters and a superior 
ability of better operators to prioritize tasks. We then compare human performance profiles to various 
artificial software agents that provide benchmarks of optimal and baseline performance and illustrate 
the outcomes of simple heuristic strategies. Whereas it is not surprising that human operators fail to 
achieve an ideal criterion of performance, we demonstrate that humans also fall short of a principally 
achievable standard. Despite significant improvements with practice, Tardast operators exhibit stable 
sub-optimal performance in their time-to-task allocations. 

Human multitasking performance, whether in general terms of 
multitasking between tasks in different domains or in more 
specific terms of multitasking between several tasks within a 
single domain, is poorly understood and addressed by a 
disparate set of literatures and labels (e.g., supervisory control, 
Moray, 1986; attention allocation in dual-task situations, 
Wickens, 1992; task switching and interruptions, Rogers & 
Monsell, 1995; McFarlane & Latorella, 2002). Any 
multitasking situation essentially poses a resource-allocation 
problem: limited resources (of time, attention, or action) have 
to be distributed across multiple tasks in order to meet some 
criterion of performance. 

Human rational behavior is generally constrained by the 
structure of task environments and the cognitive and 
perceptual-motor capabilities of human agents (Simon, 1990). 
To capture the functional relationships of complex tasks while 
abstracting away from domain specific details, we advocate 
the use of synthetic task environments (Gray, 2002). 

In this paper, we report how the synthetic task 
environment of Tardast (Shakeri, 2003, Shakeri & Funk, in 
press) can be used to explore human multitasking behavior 
and exemplify a methodological framework to relate operator 
performance to the functional characteristics of complex task 
environments. Whenever the properties of complex 
environments and human agents are interdependent and 
subject to dynamic changes, any principled assessment of the 
scope and limits of human rationality requires a non-trivial 
amalgam of theoretical and empirical analyses. Our 
methodological approach is inspired by Anderson’s (1990) 
notion of rational analysis, but promotes an in-depth analysis 
of functional task environments (Gray, Neth, & Schoelles, in 
press) rather than the evolutionary context to which cognition 
adapted. 

We will first introduce the Tardast system and briefly 
summarize and critique prior findings. We then present an 
experiment that replicates and extends the study of Shakeri 

and Funk (in press). To distinguish environmental limitations 
from those imposed by human cognitive or perceptual-motor 
constraints, the performance of human operators will be 
compared to various software agents. Despite significant 
learning effects, human performance is shown to be sub-
optimal both with respect to a normative ideal and an 
attainable heuristic strategy. 

The Tardast Task Environment 

Tardast was introduced by Shakib Shakeri (2003) and captures 
the essential core of many multitasking situations—but also 
aspects of supervisory control, monitoring, and complex 
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Figure 1:  Our version of the Tardast interface. Each bar 
represents a task and the height of the black bar indicates its 
satisfaction level (SL). Selecting the buttons at the bottom 
increases the SL of the corresponding task. The numbers on 
the buttons indicate the tasks’ weights (W). 
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system management—in a tractable task environment. 
‘Tardast’ is Persian for ‘juggler’ and was inspired by the 
metaphor that a juggler’s feat of spinning plates on vertical 
poles can represent the concurrent management of multiple 
tasks that co-exist without pre-defined completion criteria. 

The Tardast interface consists of multiple progress bars 
that represent independent tasks competing for an operator’s 
attention (see Figure 1). The status of any particular task (its 
satisfaction level, SL) is visually represented by a vertical 
progress bar. At any time, the operator can act on a single task 
by pressing the button underneath a task’s status indicator, 
which improves the task’s SL by increasing the corresponding 
progress bar. 

The behavior of each task is governed by three parameters: 
its rate of decrease when not acted upon (deviation rate, DR), 
its rate of increase when acted upon (correction rate, CR), and 
its value (weight, W). Whereas W values are displayed 
explicitly for each task, task DRs and CRs have to be inferred 
by observing the rate at which their SLs change over time. 
While the DRs of all tasks are visible simultaneously, only the 
CR of the currently engaged task can be observed. 

A Tardast scenario is defined by a number of tasks and a 
parameter triple for each task. Shakeri (2003) constructed five 
scenarios that each contain six tasks, but vary in terms of their 
overall complexity (Figure 2). Whereas all tasks of Scenario 1 
have identical parameter settings, the next three scenarios each 
vary along one parameter dimension (DR, CR, and W, for 
Scenarios 2, 3 and 4, respectively), and the tasks of a Scenario 
5 vary along all three parameter dimensions. Parameter values 
were chosen so that scenarios were comparable with respect to 
optimal strategies and possible scores. 

An operator’s goal is to maximize the total weighted 
average score (TWAS), which is calculated as the average task 
SLs over time, weighted by their respective W-values (see 
Shakeri & Funk, in press, for details). As it is impossible to 
keep all six tasks at a maximum level, achieving a high 
performance score necessitates trade-offs that are informed by 
the particular task parameters of a given scenario. 

We also adopted the conventions that tasks are initialized 
at intermediate SLs of 50%, SLs of 0% are penalized by being 
scored at –20%, and scenarios are updated every deci-second 
and last for 300 seconds. Both the current score (TWAS) and 
the time remaining are shown at the top of the task interface. 

Critique of Previous Research 

Previous research has established that operators performed 
sub-optimally in comparison to the near-optimal solution of a 
machine-learning solution (Tabu search, see Shakeri, 2003; 
Shakeri & Funk, in press, for details).  Although our use of the 
Tardast paradigm reflects our appreciation of the authors’ 
general approach and we agree with most of their conclusions, 
we feel that their argument is currently lacking some details. 

First, although practice is believed to be a key factor in the 
acquisition of task-specific skills, the authors only report the 
scores of skilled performers after practice. Without practice 
data, it remains unclear which point of the learning curve 
operators had reached after limited task exposure. The 
diagnosis of stable sub-optimality would only be warranted if 
the gain of performance through practice had already reached 
asymptote. Yet a main effect of scenario number suggests that 
operators were still learning during the assessment phase. 

A second criticism concerns the appropriate standards of 
comparison for human performance. Unless there is reason to 
believe that humans have the capability to perform optimally, 
a diagnosis of sub-optimality with respect to a normative ideal 
is no more surprising than that humans cannot calculate as 
well as computers or outrun cheetahs. Shakeri and Funk 
address this issue by skewing the comparison in favor of 
humans. But their efforts to allow a fairer comparison by 
deliberately impairing the tabu search solution (by limiting it 
to one task-switch per second) and simultaneously ‘repairing’ 
human data (by compensating for unused task switching time) 
blurs the distinction between actual and optimal performance. 
In our view, the expressed hope that “there is a chance for a 
skilled participant to beat the tabu score with additional 
practice and experience” misconstrues the role of normative 
benchmarks in the assessment of human operator 
performance. Whereas it is to be expected that humans with a 
limited amount of experience fail to solve a NP-hard problem 
(see Shakeri, 2003, for a proof sketch) it would be highly 
informative to compare human operators with additional 
benchmarks like baseline performance levels or the outcomes 
of specific strategies. 

Other criticisms include a lack of experimental control 
(e.g., due to a mix of training and test trials and a confound of 
task parameters with spatial positions), a failure to account for 
scenario effects (by refraining from comparisons between 
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Figure 2:  Parameter values for the five scenarios used by Shakeri (2003) and in our experiment. All tasks of Scenario 1 have the same 
parameter values; Scenarios 2–4 vary parameter values on one dimension; Scenario 5 varies parameter values on all three dimensions. 
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scenarios), and a tendency to rely on anecdotal evidence (or 
individual cases) to draw somewhat speculative conclusions. 

In summary, human performance at a particular level of 
expertise has been found to be lacking relative to an optimal 
criterion of performance. However, without data about 
practice trials, a more systematic exploration of the task 
environment, and a comprehensive account of what is learned 
in the process, it seems premature to conclude that Tardast 
operators persistently perform sub-optimally. More 
fundamentally, it remains impossible to judge precisely which 
aspects of operator behavior changed over time and to what 
extent performance reflected inherent properties of the specific 
task environment, as opposed to genuine adaptations to it, lack 
of practice, or basic human cognitive or perceptual-motor 
constraints. 

We address these concerns on two distinct levels.  
Empirically, we replicate Shakeri and Funk’s study with 
additional experimental controls, and collect learning data that 
shows the acquisition of task specific expertise over time. 

Theoretically, we extend the role of artificial software 
agents to further explore properties of the Tardast task 
environment. In addition to comparing human performance to 
near-optimal solutions, we use random agents that explore 
baseline performance levels and heuristic agents that assess 
the consequences of simple strategies. Beyond bracketing the 
possible range of human performance, this approach will 
demonstrate that differences in performance between 
scenarios largely reflect environmental differences and that 
humans initially barely perform better than baseline. 
Contrasting human performance with the pure strategies of 
simple heuristic agents will reveal an even more dramatic 
failure to act optimally than the previous comparison with a 
normative performance benchmark. 

EXPERIMENT 

The primary purpose of this experiment was to replicate and 
extend the findings of Shakeri and Funk (in press) with 
additional experimental controls, and assess the performance 
profiles of operators over repeated task exposures. 

Method 

Apparatus.  Our interface of Tardast matched all functional 
characteristics of the original software (see Figure 1). The 
software was implemented in LispWorks 4, ran on a 
Macintosh G4 computer, and was displayed on a flat-panel 
display at a 1024-by-768 resolution. (We also collected eye 
data, but these results will not be reported in this paper.) 

The five scenarios that were used featured the parameter 
settings illustrated above (Figure 2). 

Participants. Twelve undergraduate students of RPI 
participated for course-credit. 

Design.  This study employed two within-subjects factors of 
block (3) and scenario (5).  Order of scenarios within blocks 
and positions of tasks within scenarios were randomized. 

Procedure. Participants were instructed as in the original study 
(Shakeri, 2003), tested individually, and completed three 
blocks of five scenarios in approximately 100 minutes. 

Results 

Performance. Operator performance varied both as a function 
of practice and scenario. Figure 3 illustrates the significant 
performance increase over blocks, F(1.2, 40.7) = 19.1, MSE = 
8475.4, p < .001, Huynh-Feldt correction due to sphericity 
violation. As error bars denote 95%-confidence intervals, the 
graph shows that subjects significantly improved their 
performance from Block 1 to 2, but non-significantly from 
Block 2 to 3. Also displayed is the mean score reported by 
Shakeri (2003)’s participants after practice, which does not 
significantly differ from our scores after Block 1. 

In addition to the improvement with practice, mean 
performance scores also vary as a function of the task 
scenario, F(4, 44) = 40.9, MSE = 7839.9, p < .001. As 
illustrated by the confidence interval boundaries of Figure 4, 
Scenarios 1 and 3 yield lower scores than Scenarios 2, 4 and 5. 
This basic pattern is consistent throughout all three blocks and 
the scores for the individual scenarios in Blocks 2 and 3 are 
within the confidence interval of Shakeri and Funk’s results. 

These results imply relatively rapid learning and support 
Shakeri and Funk’s conclusions insofar as they suggest that 
the reported sub-optimality was not merely due to a lack of 
experience. But the differences between scenarios also raise 
the question why operators were more successful in some 
scenarios than others. Did operators learn more about those 
scenarios (i.e., acquire scenario-specific knowledge), or do 
these gradients in scores merely reflect environmental 
differences (i.e., different baselines)? 

We address the nature of operators’ learning by analyzing 
the behavioral changes over blocks, as well as by contrasting 
the behavior of two subgroups (by a median split into ‘better’ 
and ‘worse’ operators). 

Process.  As neither the total amount of actions nor the total 
time-on-task differed across blocks or between subgroups (all 
p > .1), two typical measures of overall activity fail to account 
for the observed differences in performance. 

An inspection of performance profiles revealed that subtle 
differences in time-to-task allocations resulted in large 
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Figure 3: Mean performance of humans and artificial agents by
block. (Each block contains 5 scenarios; agents do not learn.) 
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differences in scores. Two principle ways in which operators 
can boost their performance are a) making qualitatively better 
task choices (by becoming more attuned to important 
parameter gradients) and b) being quantitatively more 
selective (by reducing the total number of tasks acted upon). 

Both of these (not mutually exclusive) strategies can be 
shown to be present in our data. To quantify changes in 
operators’ task usage patterns we first computed the relative 
importance of tasks with varying parameters as their 
normalized parameter value (to assign an importance of 0 to 
the ‘worst’ and 1 to the ‘best’ task). Weighting these task 
importance values by the proportion of time allocated to each 
task and summing the results over all tasks for each scenario 
yields the proportion of time allocated to important tasks (and 
can range from 0%, if all time was spent on the least important 
task, and 100%, if all time was spent on the most important 
task). To assess whether operators learn to allocate more time 
to more important tasks and whether this explains the 
differences between better and worse operators we conducted 
three ANOVAs with a within-subjects factor of block (3) and 
a between-subjects factor of overall success (2 subgroups). 
Significant main effects of block for the scenarios with 
differences in W and DR show that more experienced 
operators got better at using gradients in those parameters, but 
there were no significant effects for scenarios with CR 
differences. Also, the absence of subgroup effects or 
interactions indicates that the increased ability to spend more 
time on more important tasks fails to distinguish between 
better and worse performers. 

As a higher degree of prioritization is identical to 
exhibiting less entropy, the selectivity in time-to-task 
allocations over a scenario can be quantified by calculating the 
entropy H of the proportion of time t(i) spent on each task i: 

H = – t(i) ⋅ log2 t(i)
i=1

n

∑  

A mixed ANOVA to assess the effects of experience and 
overall success on time-allocation entropy yielded a 
significant interaction of subgroup × block, in addition to 
significant main effects of subgroup and block. While all 
operators became more selective with experience, better 
operators prioritized even more than worse operators. 

Our results so far suggest that operators improved their 
scores by acquiring task specific knowledge and being 
increasingly selective, and that the best operators were the 
most selective ones. However, these analyses do not yet rule 
out the possibility that differences in task environments may 
have modulated the results. 

ARTIFICIAL AGENTS 

Any principled assessment of the scope and limits of human 
behavior must be based on a precise analysis of its 
environment. Shakeri and Funk (in press) have addressed the 
issue of normative performance by determining optimal 
scenario scores through the machine-learning algorithm of 
tabu search. Although we agree that a normative analysis 
provides valuable and often indispensable benchmarks (see 
Gray et al., in press, and Neth et al., 2004, for examples), a 
critical evaluation of multitasking performance in Tardast 
requires a more thorough exploration of the task environment. 

In addition to determining the optimal performance for 
specific scenarios in Tardast, we aimed for an assessment of 
baseline and various intermediate levels of performance by 
constructing artificial software agents that perform the same 
tasks as human operators but can be controlled to implement 
‘pure’ strategies. This allows us to further explore the task 
environment by measuring the impact of strategies 
unencumbered by the slips and vagaries of human cognition 
and to systematically explore the effects of variables that may 
co-determine human performance (like time delays and 
perceptual-motor constraints). 

A Family of Agents. Our artificial agents are characterized on 
three dimensions: the types of knowledge used to evaluate a 
given situation (e.g., perceptual access to scenario parameters, 
memory), their goals (e.g., maintaining particular SLs), and 
various boundary conditions (like decision cycle times and 
task-switching parameters) that constrain their performance. 
We developed three distinct families of agents:  

Random agents performed Tardast scenarios by randomly 
selecting tasks in the absence of any task knowledge. This 
established performance baselines and their dependency on 
boundary conditions. Trivially, decision cycle times (or task 
switching frequency) had an impact on agent performance: 
choosing a task at every time step would yield a different 
score than choosing a task only once per trial. As either of 
these two extremes seems unrealistic, we set the random agent 
switching frequency to once every ten seconds. 

Holistic agents were equipped with super-human abilities 
and attempted to meet pre-defined performance goals. For 
instance, the agent in Figures 3 and 4 had perceptual access to 
all parameters, a rapid decision cycle of .1 sec, and tried to 
achieve SLs of 99% on prioritized tasks. While not 
epistemologically plausible, they provide normative (or near-
optimal) benchmarks of performance and thus serve the same 
function as Shakeri and Funk’s more sophisticated tabu 
algorithm. Together, random and holistic agents bracket the 
possible range of human performance. 

Heuristic agents assess the effects of specific strategies. Of 
particular interest are levels of performance of 
epistemologically plausible agents that implement strategies 
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that could, in principle, be used by humans. For instance, the 
heuristic agent shown in Figures 3 and 4 would first ‘observe’ 
the rank orders of perceptually salient parameters (DR and W) 
and then try to raise prioritized tasks to a 90%-SL. Given its 
moderate decision cycle time of three seconds, human 
operators could easily have adopted this simple strategy. 

Results. Comparisons between humans and random agents 
reveal that human operators initially perform at baseline 
(Figure 3). Although their performance across scenarios 
improves on Blocks 2 and 3, they are not generally better than 
baseline for Scenarios 1, 2 and 3 (Figure 4). 

The parallel pattern of human and random agent data 
suggests that scenarios are not all created equally. 
Specifically, high performance scores in Scenario 2 seem to be 
due to environmental effects rather than operator actions. 

Not surprisingly, human operators fail to reach the 
normative ideal of the holistic agent and tabu scores. More 
dramatically, humans also fail to reach the level of the simple 
heuristic agent in all but the second scenario (and this pattern 
does not change when only considering the human data of 
Block 3). This failure to match the result of a perfectly 
achievable heuristic strategy reveals human performance as 
sub-optimal in an even stronger sense. 

CONCLUSIONS 

Our explorations of the Tardast task environment support most 
of Shakeri and Funk’s (in press) conclusions, but put them on 
a firmer empirical and theoretical basis.  Operators learn 
quickly, improve their performance within only two exposures 
to a scenario, but then tend to asymptote at a sub-optimal 
level. A contributing factor to this is operators’ inability to 
capitalize on gradients of perceptually non-salient parameters 
and to focus on only a few prioritized tasks. 

Our current conclusions are mixed: on one hand, Tardast 
has been shown to be an ingenious synthetic task environment 
that combines many aspects of multitasking behavior, 
complex system management, and supervisory control in a 
novel way. As we have only scratched the surface of the 
paradigm’s possibilities, it is a valuable tool for further 
empirical research. 

On the other hand, the complexity of Tardast necessitated 
a more thorough exploration than previously provided. Only 
the parallel consideration of human learning data, scenario 
baselines, and the scores of optimal and heuristic strategies 
allowed an evaluation of human performance profiles. 

Our comparisons with various artificial agents paint human 
performance results in a more sobering light than the 
optimistic interpretation provided by Shakeri and Funk (in 
press). For many scenarios, humans barely performed above 
baseline and were demonstrably sub-optimal, not only with 
respect to a normative ideal, but also with respect to a 
heuristic strategy that operators could easily have 
implemented. 

This leaves us with a puzzle: Why did human operators fail 
to discover this simple heuristic strategy? We recommend that 
future studies should focus on operators’ unwillingness to 
sacrifice tasks due to fear of penalization, as well as the role 
and format of the performance feedback provided to operators. 
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