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Abstract 

Individuals are happy to make estimates of the 
probabilities of unique events.  Such estimates have no 
right or wrong answers, but when they suffice to 
determine the joint probability distribution, they should at 
least be consistent, yielding one that sums to unity.  
Mental model theory predicts two main sources of 
inconsistency: the need to estimate the probabilities that 
events do not happen, and the need to estimate conditional 
probabilities as opposed, say, to conjunctive probabilities.  
Experiments 1 and 2 corroborated the first prediction: 
when the number of estimates of non-events increased for 
a problem, so did the degree of overall inconsistency. 
Experiment 3 corroborated the second prediction: when 
the number of estimates of conditional probabilities 
increased, the degree of overall inconsistency was larger 
as well. 
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Introduction 
What is the chance that a nuclear weapon will be used in a 

terrorist attack in the next decade? Individuals are happy to 
oblige with an estimate, and the mean from our studies was 
44 chances in 100. Such an event is unique in that in 
principle no data can exist about its frequency of 
occurrence. Hence, an estimate of its probability is 
“intensional”, because it cannot be based on the extensional 
method of estimating the frequency of the event in a sample. 
Some scholars argue that the probabilities of unique events 
are accordingly absurd (e.g., Gigerenzer, 1994), and that it 
is hardly surprising that individuals may fail to make 
consistent estimates of them.   And, certainly, a claim such 
as: “The chance that a nuclear weapon will be used in a 
terrorist attack in the next decade is 1 in a hundred”, has no 
obvious truth conditions.  That is, it is not clear what events 
have to happen in order to decide whether it is true or false.  
Nevertheless, naïve individuals can produce such estimates. 
A reasonable question to ask is, not whether their estimates 
are right or wrong – as we have just argued, there is no way 
to ascertain their truth or falsity – but in what way 
individuals make consistent (or inconsistent) estimates.    

To explain the notion of consistency that is pertinent here, 
we need to describe, first, the concept of a joint probability 
distribution (JPD), and then the various ways in which it 
can be fixed. Consider two possible events, such as (A) the 
election of an openly gay person as the President of the 
USA in the next 50 years, and (B) the Supreme Court ruling 
on the constitutionality of gay marriage in the next 5 years. 

The JPD specifies the complete set of probabilities of their 
conjunction, e.g., p(A & B) = .1, p(A & ¬B) = .2, p(¬A & 
B) = .3, p(¬ A & ¬ B) = .4, where “¬” denotes negation. We 
can, of course, represent the JPD in a parsimonious table in 
which each cell represents the probability of the 
corresponding conjunction: 
 

 p(B) p(¬ B) Sum 
p(A) .1 .2 .3 

p(¬A) .3 .4 .7 
Sum .4 .6 1.0 

 
Once the JPD is known, then any probability whatsoever 
concerning the events within it can be computed, e.g., p(A 
or B, or both).  In effect, one knows everything that is to be 
known about the probabilities of a set of events once one 
knows the JPD. So, what is necessary to determine all the 
probabilities in the JPD? 

One way to fix the JPD depends on Bayes’s theorem, 
which is a valid equation in the probability calculus that 
allows one conditional probability to be inferred from the 
values of other probabilities. The simplest version of the 
equation can be expressed in terms of a hypothesis (H) and 
data (D): 
 

p(H | D) = p(D | H) p(H)
p(D)

 

 
Hence, the posterior probability of the hypothesis given the 
data, p(H | D), depends on the prior probability of the data, 
p(D), the prior probability of the hypothesis, p(H), and the 
conditional probability of the data given the truth of the 
hypothesis, p(D | H). One reason that these probabilities fix 
the required conditional probability is that they also fix the 
JPD. Hence, when we refer to the consistency of intensional 
estimates, we have in mind whether individuals who 
estimate the preceding three probabilities tend to provide 
estimates that yield a JPD which sums to unity. 

We now invite the reader to estimate these three 
probabilities: 
 
p(A)  What is the chance that an openly gay person will be 

elected president in the next 50 years?  
p(B)  What is the chance that the Supreme Court rules on the 

constitutionality of gay marriage in the next 5 years?  
p(B|A) What is the chance that the Supreme Court rules on the 

constitutionality of gay marriage in the next 5 years, given 
that an openly gay person will be elected president in the 
next 50 years?  
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Suppose, for example, that the reader makes these three 
estimates, which for convenience, we express as 
probabilities: p(A) = .3, p(B) = .07, p(B | A) = .85.   These 
values yield the following JPD:  
 

p(A & B)  =   0.25  
p(A & ¬B)  =  -0.185 
p(¬A & B)  =   0.045 
p (¬A & ¬B)  =   0.885 
 

They illustrate a gross inconsistency, because a probability, 
such as p(A & ¬B), cannot be a negative number. This sense 
of inconsistency is the topic of our research, and the present 
article assesses, first, to what extent naïve individuals are 
inconsistent in this way, and, second, what factors 
contribute to their inconsistency. 

Tversky and Kahneman (e.g., Tversky & Kahneman, 
1974) isolated many heuristic processes that lead individuals 
to err in the assessment of probabilities when they rely on 
heuristics, such as the availability of information about the 
occurrence of events. Likewise, Tversky and Koehler (1994) 
corroborated a seminal phenomenon concerning the 
unpacking of event, such as death, into its exhaustive and 
exclusive alternatives: death by natural causes and death by 
unnatural causes. Probability estimates of the components 
tend to sum to a greater probability than the probability of 
the single category. Following standard mathematical 
terminology, the tendency to judge the probability of the 
whole to be less than sum of the probabilities of the parts is 
known as “subadditivity”. So, individuals tend to estimate 
the probability of an event, A, to be less than p(A & B) + 
p(A & ¬B). Conversely, the sum of the JPD will be greater 
than 1 unless a probability that is a negative number is 
introduced in the sum.  Subadditivity can occur for several 
reasons. As Tversky and Koehler argued, the unpacking of 
an event may remind individuals of possibilities that they 
would otherwise overlook. Likewise, the mention of a 
possibility may enhance its salience and accordingly the 
support for its occurrence. Another factor may contribute to 
it – the intrinsic difficulty of making certain sorts of 
estimates, and it is this factor that we now try to elucidate. 

Mental models and probabilities 
Studies of extensional probabilities have corroborated the 

theory that individuals rely on mental models of events, i.e., 
representations of real or imagined situations, in making 
such estimates (Johnson-Laird, Legrenzi, Girotto, Legrenzi, 
& Caverni, 1999). They construct mental models of each 
relevant possibility, and a model represents an equiprobable 
alternative unless individuals have beliefs to the contrary, in 
which case some models have higher probabilities than 
others. The probability of an event then depends on the 
proportion of models in which it occurs. This account has 
been corroborated in various ways (see Johnson-Laird et al., 
1999; Girotto & Johnson-Laird, 2004; Girotto & Gonzalez, 
2008). 

The model theory predicts systematic biases in 
probabilistic reasoning because mental models represent 
only what is true, not what is false (the principle of “truth”).  
Hence, models represent what is possible rather than what is 
impossible. Likewise, models of possibilities make explicit 
only those propositions that are true within them. For 
example, an inclusive disjunction, A or B, where A and B 
have propositions as their values, has three mental models 
representing what is true and not what is false, which we 
show here on separate lines: 

 
 A 
  B 
 A B  
 
The principle of truth leads to predictable and systematic 

biases in the estimates of probabilities, as illustrated in the 
following example: 

 
There is a box in which there is at least a red marble, or else 
there is a green marble and there is a blue marble, but not all 
three marbles. Given the preceding assertion, what is the 
probability of the following situation? 
 
In the box there is a red marble and a blue marble. 

 
The premise has two mental models: 

 
 red 
  green blue 
 

neither of which includes the possibility in which there is a 
red marble and a blue marble. The models accordingly 
predict that individuals should respond that the probability 
is zero – an estimate that most experimental participants 
made. However, the fully explicit models of the premises 
take into account that where it is true that there is a red 
marble, there are three distinct ways in which it can be false 
that there is both a green marble and a blue marble: 
 
 red green ¬ blue 

 red ¬ green blue 
 red ¬ green ¬ blue 
 ¬ red  green blue 

 
Granted equiprobability, the unbiased inference based on 
the actual partition is therefore that the probability of a red 
marble and a blue marble is .25.  A corollary of the principle 
of truth is that individuals should tend to focus on the 
probability that events occur, and that it should therefore be 
more difficult for them to estimate the probability of their 
non-occurrence. 

The model theory makes a further prediction based on the 
complexity of mental processes in estimating various sorts 
of probability. An estimate of the probability of a single 
event, A, is straightforward. Likewise, an estimate of a 
conjunction of events is straightforward. But, what should 
lie on the border of naïve competence are estimates of 
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conditional probabilities. Several reasons underlie this 
prediction, but one reason is the need to consider more than 
one model. The conditional probability of A given B 
corresponds to the subset of cases of B in which A also 
holds, and so individuals have to consider two different 
models, A & B, and A & ¬B, to compute the proportion: 

 
p(A&B)

p(A&B) + p(A&¬B)
 

 
This computation is clearly more complex than an estimate 
of the probability of p(A & B). 

In summary, the model theory makes two principal 
predictions about the consistency of intensional estimates of 
probabilities that determine the JPD: 
1) The greater the number of estimates about events that do not 

occur, the more likely they are to result in an inconsistent JPD. 
2) The greater the number of estimates of conditional 

probabilities, the more likely they are to result in an 
inconsistent JPD.  

In order to test these predictions, we carried out a series of 
experiments that examined different sets of estimates that all 
determine the JPD.  They included sets with neither 
probabilities of non-events nor conditional probabilities, 
such as: 
 

p(A), p(B), p(A & B) 
 
sets that included one, two, or three non-events: 
 

p(¬A), p(B), p(A&B) (1 non-event) 
p(¬A), p(¬B), p(A&B) (2 non-events) 
p(¬A), p(¬B), p(¬A&B) (3 non-events) 
 

and sets that included one, two, or three conditional 
probabilities: 
 

p(A), p(B), p(A|B) (1 conditional probability) 
p(A), p(B|A), p(A|B) (2 conditional probabilities) 
p(A|B), p(B|A), p(A|¬B) (3 conditional probabilities) 

 
We carried out three experiments to test these predictions. 

Experiment 1 
On each trial, participants read four questions such as, 

“What is the chance that Apple releases a new product this 
year?” and they responded to each question by choosing a 
probability of the proposition between zero and one 
hundred. Each question referred to a unique pair of events, 
which had never occurred. The problems were designed so 
that participants’ estimates for the first three questions were 
sufficient to fix the JPD for the two events. In other words, 
the first three estimates determined the consistent value of 
the fourth probability, and any deviation from this value was 
evidence of an inconsistency. The form of the fourth 
question was accordingly held constant across all problems, 

and it provided the means for measuring the consistency of 
participants’ intensional estimates. 
 
Table 1: An example problem given to participants in Experiment 
1. Participants responded to Questions 1-4 in the order presented. 
Given their first three estimates, a consistent estimate to Question 
4 could be computed from the probability calculus. 

 Question Probability estimate 

1 
What is the chance that a nuclear 
weapon will be used in a terrorist attack 
in the next decade? 

p(N) 

2 
What is the chance that there will be a 
substantial decrease in terrorist activity 
in the next 10 years? 

p(D) 

3 

What is the chance that a nuclear 
weapon will be used in a terrorist attack 
in the next decade and there will be a 
substantial decrease in terrorist activity 
in the next 10 years? 

p(N & D) 

4 

What is the chance that a nuclear 
weapon will not be used in a terrorist 
attack in the next decade and there will 
not be a substantial decrease in terrorist 
activity in the next 10 years? 

p(¬N & ¬D) 

Note: N = nuclear attack, D = decrease in terrorism 
 

In one problem, for example, participants provided 
intensional estimates in response to the questions in Table 1. 
Suppose a participant estimated that p(N) = .4, p(D) = .6, 
and p(N & D) = .3. To remain consistent, they should 
respond that p(¬N & ¬D) = .3, because: 

p(¬N&¬D) = [1 - p(D)] - [p(N) - p(N&D)]
= (1 - .6) - (.4 - .3)
= .3

 

 
If a participant responded that p(¬N & ¬D) = .1, then the 
estimates are inconsistent, because there is a difference 
between the estimate (.1) and the correct probability fixed 
by the three previous estimates (.3). We refer to this as the 
participants’ error. When errors are positive, participants 
exhibit subadditivity, and when they are negative, they 
exhibit superadditivity (see Tversky & Koehler, 1994). We 
elide this difference by considering the absolute value of the 
error in our studies (i.e., their “absolute error”), because the 
predictions of the model theory concern the magnitude of 
the difference and not its direction.  The experiment varied 
the number of non-events that participants had to estimate in 
order to test prediction 1 (see Table 2 below).  

Method 
Participants. 18 participants completed the study for 
monetary compensation on Amazon Mechanical Turk, an 
online platform hosted on Amazon.com (for a discussion on 
the validity of results from this platform, see Paolacci, 
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Chandler, & Ipeirotis, 2010). All of the participants stated 
that they were native English speakers. 
 
Design and materials. On each problem, participants 
provided four probability estimates of various combinations 
of two unique events (A and B).  The problems differed in 
the number of non-events participants had to evaluate in 
their first three estimates (0, 1, 2, 3, as shown in Table 2). 
The fourth probability estimate was always the conjunctive 
probability of the negation of one event and the negation of 
the other, i.e., p(¬A&¬B). In each case, the first three 
estimates fixed the JPD. Participants completed each sort of 
problem three times but with different contents, and so they 
completed twelve problems in total. The contents of the 
problems were drawn from five different domains (sports, 
science, economics, politics, and entertainment) and they 
are provided in Appendix A. The order of the problems and 
the assignment of contents were randomized, but the order 
of the estimates within each problem was fixed. We 
measured the absolute error between participants’ fourth 
probability estimates and what they should have responded 
based on the probability calculus applied to their previous 
three estimates. 
 
Procedure. The study was administered using an interface 
written in PHP, Javascript, and HTML. Participants 
estimated the probability of a given event by dragging a 
slider bar on the screen between 0 and 100. 

Results and Discussion 
Table 2 presents the means of the participants’ absolute 

errors as a function of the different types of problem in 
Experiment 1. Outliers were capped at three standard 
deviations from the mean. The results corroborated the 
predictions of the model theory: participants were more 
inconsistent for problems in which they estimated non-
events (mean absolute error = .32) than for the problem 
without any non-events (mean absolute error = .16; 
Wilcoxon test, z = 3.11, p = .0001), and 15 out of the 18 
participants showed this pattern (Binomial test, p < .01, 
given an a priori probability of 1/4). Furthermore, the results 
corroborated the model theory’s predicted trend that the 
more non-events in a problem, the larger the absolute error 
(Page’s trend test, L = 487.5, z = 3.06, p = .001). 

 
Table 2: The mean absolute errors for the four different types of 
problem in Experiment 1. 

Initial three probability 
estimates 

Fourth 
probability 

estimate 

# of negations 
in initial three 

estimates 

Absolute 
error 

p(A)   p(B)   p(A&B) p(¬A&¬B) 0 .16 
p(¬A) p(B)   p(A&B) p(¬A&¬B) 1 .29 
p(¬A) p(¬B) p(A&B) p(¬A&¬B) 2 .34 
p(¬A) p(¬B) p(¬A&B) p(¬A&¬B) 3 .34 
 
The results of Experiment 1 suggest that the evaluation of 
non-events compound reasoners’ inconsistency when they 
judge the probability of unique events. The study is limited, 
however, by the fact that the fourth estimate was always of a 

conjunctive probability, p(¬A & ¬B). But, as the results 
revealed, the judgment of two non-events can increase 
participants’ inconsistency. To test whether the results 
generalize, the next experiment presented the same 
problems for the first three estimates, but the fourth estimate 
was always a conditional probability, p(A|B). 

Experiment 2 
The experiment examined the effect of the number of 

estimates of non-events when participants judged a 
conditional probability, and this fourth estimate, which was 
always of the same form of conditional probability, 
provided a measure of the consistency of participants’ 
estimates.  

Method 
Participants. 20 participants completed the study for 
monetary compensation from the same subject pool as in 
Experiment 1, and all of the participants were native English 
speakers. 
 
Design, materials, and procedure. The design and 
materials were the same as those of the previous experiment 
apart for the change of the form of the fourth question. The 
participants carried out each sort of problem three times 
with different contents.  The procedure was the same. 

Results and Discussion 
Table 3 presents the means of the participants’ absolute 

errors for the four sorts of problem. As in the previous 
study, outliers were capped at three standard deviations 
from the mean. The results again corroborated the 
predictions of the model theory: participants were less 
consistent for problems with non-events (mean absolute 
error = .69) than for the problem with no non-events (mean 
absolute error =.49), though the difference was marginal 
(Wilcoxon test, z = 1.42, p = .08) and 13 out of 20 
participants were less consistent on problems with non-
events than problems without them  (Binomial test, p = .07). 
Furthermore, the results corroborated the theory’s predicted 
trend that the more non-events in a problem, the larger the 
absolute error (Page’s trend test, L = 527, z = 2.09, p = .02). 
The data from Experiment 2 replicated the results from 
Experiment 1, but yielded apparently larger absolute errors.  

 

Table 3: The mean absolute errors for the four different types of 
problem in Experiment 2. 

Initial three probability 
estimates 

Fourth 
probability 

estimate 

# of negations 
in initial three 

estimates 

Absolute 
error 

p(A)   p(B)   p(A&B) p(A|B) 0 .49 
p(¬A) p(B)   p(A&B) p(A|B) 1 .55 
p(¬A) p(¬B) p(A&B) p(A|B) 2 .62 
p(¬A) p(¬B) p(¬A&B) p(A|B) 3 .90 

 
This difference is consistent with the prediction that  
estimates of conditional probabilities for the fourth question 
should be harder than estimates of conjunctions, which we 
used in Experiment 1.  
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Experiment 3 
Experiment 3 tested the difficulty of conditional 

probabilities in a direct way. It varied the number of 
conditional probabilities that participants had to estimate 
over four separate sorts of problem (0, 1, 2, or 3 conditional 
probabilities, see Table 4 below). As in the previous studies, 
the problems were designed so that participants’ estimates 
for the first three questions fixed the JPD for the two unique 
events. The fourth question was the same as in Experiment 
1, p(¬A & ¬B), and it was held constant across all problems.  

Method 
Participants. 19 participants completed the study for 
monetary compensation on Mechanical Turk, the online 
platform for experimental tasks used in the previous studies. 
 
Design, materials, and procedure. The design, procedure, 
and materials, were the same as in Experiment 1, except for 
the form of the problems (as shown in Table 4). As before, 
each participant carried out each of the four sorts of problem 
three times with different contents. 

Results and Discussion 
Table 4 presents the means of the participants’ absolute 

errors for the four sorts of problem. Outliers for absolute 
errors were capped at three standard deviations from the 
mean. All of the problems yielded absolute errors that were 
reliably greater than zero, and the results corroborated the 
model theory: participants were less consistent for problems 
in which they estimated conditional probabilities (mean 
absolute error = .43) than for the problem without any 
conditional probabilities (mean absolute error = .24; 
Wilcoxon test, z = 3.38, p = .0007) and 15 out of the 19 
participants exhibited this difference (Binomial test, p < .01, 
given an a priori probability of 1/4). The results also 
 
Table 4: The mean absolute errors for the four different types of 
problem in Experiment 3. 

Initial three 
probability estimates 

Fourth 
probability 

estimate 

# of conditional 
probabilities in 

initial three estimates 

Absolute 
error 

p(A)    p(B)     p(A&B) p(¬A&¬B) 0 .24 
p(A)    p(B)     p(A|B) p(¬A&¬B) 1 .36 
p(A)    p(B|A) p(A|B) p(¬A&¬B) 2 .35 
p(A|B) p(B|A) p(A|¬B) p(¬A&¬B) 3 .59 

 
corroborated the model theory’s predicted trend: the more 
conditional probabilities in a problem, the larger the 
absolute error (Page’s trend test, L = 517, z = 3.34, p = 
.0004). One violation of the trend (at least in the means) was 
that the absolute error for the problem with one conditional 
probability (.36) was higher than that of the problem with 
two conditional probabilities (.35). The difference was not 
reliable, however (Wilcoxon test, z = .60, p = .54). 

The study corroborated the prediction that estimates of 
conditional probabilities increase the amount of 
inconsistency in participants’ subsequent probability 
estimates. One limitation of the study is that it may reflect 

participants’ difficulty in judging the fourth probability 
estimate, p(¬A&¬B). Indeed, we were unable to replicate 
the trend in an similar study in which participants judged the 
conditional probability, p(¬A|¬B).  Conditional probabilities 
may be particularly difficult to judge when their antecedents 
or consequents are non-events. For instance, in Experiment 
3, participants were most inconsistent for problem (4), for 
which they estimated three conditional probabilities (mean 
absolute error = .59). This problem was unlike the other 
three in that participants had to estimate a conditional 
probability based on a non-event, p(A|¬B). Indeed, the non-
event itself may have been the driving factor in participants’ 
difficulty with the problem. Taken together, Experiments 1, 
2, and 3 revealed robust trends of errors driven by 
participants’ evaluations of non-events and conditional 
probabilities. 

General Discussion 
The present studies investigated whether individuals were 

consistent in their intensional estimates of the probabilities 
of unique events. Across three experiments, participants 
made systematically inconsistent estimates. Experiments 1 
and 2 showed that the greater the number of estimates of 
non-events, e.g., p(¬A), in a problem, the greater the 
resulting inconsistency in the joint probability distribution 
(JPD), i.e., its sum departed from unity to a greater extent.  
Experiment 3 yielded a similar effect for estimates of 
conditional probabilities, e.g., p(A|B): the greater the 
number of estimates of conditional probabilities in a 
problem, the greater the resulting inconsistency. These 
results corroborate the theory of mental models.  Its 
principle of truth postulates that individuals tend to 
represent only what is true and not what is false. A corollary 
is that individuals should tend to focus on the probability 
that events occur, and that it should be harder for them to 
estimate the probability that events do not occur. The theory 
also predicts that estimates of conditional probabilities 
should be harder than estimates of the absolute probability 
of events and estimates of the probability of conjunctions of 
events. A conditional probability, p(A | B), calls for two 
separate mental models to be held in mind – one model of A 
& B and one model of ¬A & B – and for the computation of 
the ratio of the probability A & B to the probability of A.   

Our experiments have at least two limitations. First, the 
orders in which the different probabilities were estimated 
were held constant within problems to ensure that 
participants had enough information to fix the JPD. 
However, the particular order may have influenced their 
estimates. Nevertheless, it is not clear how such carry-over 
effects could have produced the trends in our data. Second, 
across the three studies, only two types of probabilities were 
used for the fourth probability estimate, i.e., p(A|B) and 
p(¬A&¬B). These estimates were chosen in order to vary 
the number of non-events in Experiments 1 and 2 and the 
number of conditional probabilities in Experiment 3, but 
future studies should examine alternative probability 
estimates.  
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We conclude by considering the meaning of intensional 
estimates of the probabilities of unique events, such as “The 
probability that a Republican will become President in 2013 
is .4.” Such estimates are commonplace in daily life. But, 
what do they mean? Some theorists posit that they are 
nonsensical and unreliable (e.g., Gigerenzer, 1994). It is 
meaningless, they argue, to assign a probability to an event 
that will occur only once, because no outcome in the world 
can bear on the accuracy of a probability between 0 and 1. 
Other researchers propose that intensional probabilities 
reflect degrees of support for a given belief (Tversky & 
Koehler, 1994) or the odds that individuals should accept in 
a bet (Ramsey, 1926). The data from our studies corroborate 
these latter views, because they show that errors in 
estimating intensional probabilities are systematic and not 
haphazard. They also lend credence to the view that 
individuals construct mental models when reasoning about 
intensional probabilities, because the data corroborate the 
predictions of the model theory that the evaluation of non-
events and conditional probabilities should lead to greater 
inconsistency among probability judgments. 
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Appendix A 
Domain Event A Event B 

Sports The NY Yankees will win another World Series in the next 3 years The union of baseball players will allow team salary caps in the 
next 15 years 

Science In less than 15 years, millions of people will live past 100 Advances in genetics will end the short of replacement organs in 
the next 15 years 

Science Space tourism will achieve widespread popularity in the next 50 
years 

Advances in material science will lead to the development of anti-
gravity materials in the next 50 years 

Economics Apple releases a new product this year Apple will make over $100 million in profits in 2010 

Economics Facebook will collapse in the face of financial pressure in the next 5 
years 

Internet advertising will cease to be a popular revenue stream in the 
next 10 years 

Politics Greece will make a full economic recovery in the next 10 years Greece will be forced to leave the EU 

Politics The Supreme Court rules on the constitutionality of gay marriage in 
the next 5 years A gay person will be elected president in the next 50 years 

Politics Conflicts over environmental protection will lead to warfare in the 
next 20 years 

The US will pass legislation that prioritizes environmental interests 
over economic ones 

Politics Islam will lose its stigma in the United States in the next 10 years Israel will cave under international pressure and permit Palestinians 
to return 

Politics A nuclear weapon will be used in a terrorist attack in the next 
decade 

There will be a substantial decrease in terrorist activity in the next 
10 years 

Entertainment An animated film will win the Academy Award for Best Picture in 
the next 10 years 

The music industry will embrace a new and more relaxed vision of 
copyright law 

Entertainment The world record for the men’s 100 meter dash will be broken at 
the next Summer Olympics 

A medal winning Olympian will be disqualified for drugs at the 
next Summer Olympics 
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