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Abstract 

Individuals can make inferences from a single quantified 
premise. For instance, if you know that all of the Virginians 
are students, you might infer that some of the students are 
Virginians. We describe a computational system, mReasoner, 
of the cognitive processes that underlie these so-called 
‘immediate’ inferences. The account is based on the 
assumption that when individuals understand discourse, they 
construct discrete mental simulations, i.e., mental models, of 
the assertions in the discourse. To draw conclusions, 
reasoners describe the relation between the individuals in the 
models and, if they are prudent, they search for alternative 
models to corroborate or refute a conclusion. We describe an 
experiment in which participants’ carried out a series of 
immediate inferences, and present a simulation that predicts 
the accuracy and latency of their responses. 

Keywords: quantifiers, mental models, mReasoner, 
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Introduction 
Reasoners can make immediate, rapid inferences from a 

single quantified assertion such as, None of the Xs are Ys. 
For instance, if they know that none of the lawyers in the 
room are men, they might refrain from asking any of the 
men in the room for legal advice, because they can infer:  

1. None of the lawyers are men. 
2. Therefore, none of the men are lawyers.  

The inference is valid because its conclusion must be true 
given that its premise is true (Jeffrey, 1981, p. 1). It is also 
easy to make in comparison with more complex reasoning 
problems, such as syllogisms based on two quantified 
premises (for a review, see Khemlani & Johnson-Laird, in 
press a). Psychologists have investigated immediate 
inferences for many years (e.g., Begg & Harris, 1982; 
Newstead & Griggs, 1983; Wilkins, 1928), but have yet to 
resolve how logically untrained individuals make them. We 
have accordingly formulated a theory based on mental 
models and implemented it computationally in a unified 
model-based reasoning system called mReasoner.  

In the present paper, we outline the theory and derive 
some novel predictions from it. We then report the results of 
a study that tested these predictions, and we show how the 
theory provides an satisfactory process model of individual 
performance.  

Immediate inferences 
In immediate inferences based on singly-quantified 

assertions, we studied 4 different moods for the premise: 
 

 All the Xs are Ys 
 Some of the Xs are Ys 
 None of the Xs are Ys  
 Some of the Xs are not Ys 
 
and 8 different sorts of conclusion (4 moods by 2 figures, 
i.e., arrangements of terms ‘X’ and ‘Y’). Therefore, there 
are 32 possibly immediate inference problems based on 
these premises. The reasoner’s task was to assess a given 
conclusion’s status with respect to the premise, i.e., whether 
the conclusion must be true or whether it might possibly be 
true. Hence, it must be the case that some of the students are 
Virginians given than All the Virginians are students. And, 
it is possible but not necessary, that some of the students are 
not Virginians. 

A robust theory of immediate inference should specify an 
algorithm that accounts for how individuals represent 
quantified assertions, how they assess whether a conclusion 
is at least possible, and how they decide whether it holds of 
necessity. It should also explain the relative difficulty of the 
various sorts of immediate inference, i.e., both the accuracy 
of participants’ conclusions and the latency of the correct 
conclusions. We developed such a theory as part of a 
general account of quantificational reasoning, and describe 
its assumptions below. 

Mental models and quantifiers 
Quantified assertions such as None of the Xs are Ys are 

can be treated as referring to relations among the set of Xs 
and the set of Ys (see, e.g., Cohen & Nagel, 1934, p. 124-5). 
Psychological theories of how quantifiers are interpreted 
follow suit (but cf. Braine & O’Brien, 1998; Rips, 1994), 
though they differ in the way they treat the relations 
between the sets. For instance, some theorists make use of 
diagrammatic representations to handle relations (Ceraso & 
Provitera, 1971; Erickson, 1974; Ford, 1995; Newell, 1981), 
others rely on formal rules of inference (Geurts, 2003; 
Guyote & Sternberg, 1981; Politzer, van der Henst, Luche, 
& Noveck, 2006; Stenning & Yule, 1997); and yet others 
analyze sets in terms of simulated possibilities, i.e., mental 
models (Bucciarelli & Johnson-Laird, 1999; Johnson-Laird 
& Byrne, 1991; Polk & Newell, 1995). The psychological 
systems can all account for how individuals make valid 
deductions, however few of them can account for the 
differences in relative difficulty between various reasoning 
problems. The present theory relies on mental models to 
explain the processes that give rise to valid and invalid 



responses, as well as the differences in difficulty between 
various sorts of immediate inference.  

The mental model theory proposes that when individuals 
comprehend discourse, they construct simulations of the 
possibilities consistent with the contents of the discourse 
(Johnson-Laird, 2006). The theory depends on three main 
principles: 1) Individuals use a representation of the 
meaning of a premise, an intension, and their knowledge, to 
construct mental models of the various possibilities to which 
the premises refer. 2) The structure of a model corresponds 
to the structure of what it represents (see Peirce, 1931-1958, 
Vol. 4), and so mental models are iconic insofar as possible. 
3) The more models a reasoner has to keep in mind, the 
harder an inference is. On a model-based account, a 
conclusion is necessary if it holds in all the models of the 
premises and possible if it holds in at least one model of the 
premises. 

Inferential processes 
The theory proposes that the reasoning system can carry 

out three processes whenever individuals reason about 
whether a given conclusion follows from premises. First, the 
parser constructs a representation of the meaning of each 
premise (an intensional representation) based on a linguistic 
analysis. Second, the system uses the intension to construct 
a model of the situation to which the assertion refers (an 
extensional representation). Third, the system checks 
whether the given conclusion holds in the model. These 
three processes are carried out in “system 1” (see, e.g., 
Evans, 2003, 2007, 2008; Johnson-Laird, 1983, Ch. 6; 
Kahneman, 2011; Sloman, 1996; Stanovich, 1999; 
Verschueren, Schaeken, & d’Ydewalle, 2005) because they 
yield rapid responses from a single mental model. 

The theory also postulates an advanced set of “system 2” 
processes, which are used to evaluate and, if necessary, to 
correct initial inferences. They search for alternative models 
of the premises in which both the premise and the 
conclusion are true. We explain how these processes work 
in the following section. 

mReasoner: A computational theory of reasoning 
mReasoner v0.9 is a new, unified computational 

implementation of the mental model theory of reasoning. It 
implements three general systems: 

 
a) A linguistic system for parsing premises and building 

up intensional representations. This system’s purpose is 
to map an assertion’s syntax to an underlying semantic 
form (the intension). 

b) An intuitive system (1) for building an initial 
extensional representation, and drawing rapid 
inferences from that representation. 

c) A deliberative system (2) for more powerful recursive 
processes that search for alternative models. This 
system can manipulate and update the representations 
created in System 1, and it can modify conclusions, but 

it too can fall prey to systematic errors (Johnson-Laird 
& Savary, 1999; Khemlani & Johnson-Laird, 2009). 

 
System 1 is faster than system 2, and as a result it is more 
prone to errors. Below, we describe the various processes 
that each system implements. 

The linguistic system 
Parsing statements into intensions. An intensional 
representation is composed from the meanings of words and 
the grammatical relations amongst them.  The first process 
in mReasoner is a shift-and-reduce parser (Hopcroft & 
Ullman, 1979) that uses a context-free grammar and a 
lexicon to compose the intensional representations of a 
sentence. We make no claims about the psychological 
reality of a shift-and-reduce parser or a context-free 
grammar, which we adopt for convenience. The 
grammatical rules and lexical entries consist of a word (such 
as “all”), its part of speech (“determiner”), and a 
specification of its semantics. The parser applies the 
appropriate semantic rule, which matches the syntactic rule 
it has used, to construct an intension of the current 
constituent of the sentence. A key assumption is that the 
semantics of a quantified assertion sets the values of 
parameters that constrain the construction of models.  

The present set of parameters is presented in Table 1 for 
the assertions that occur in the immediate inferences under 
investigation, and for two representative examples of other 
sorts of quantified assertions: Neither A is a B, and Five A 
are B. In sum, intensions are collections of parameters that, 
as a whole, specify the semantics of an assertion. 

 
 

Table 1: A summary of mReasoner’s parameters in the intensions 
of different sorts of singly-quantified assertion. The parameters are 
as follows: i) the cardinality of the overall set of entities and its 
boundary conditions; ii) the cardinality of the set referred to by the 
quantifier (e.g., the As); iii) the boundary on the two sorts of 
cardinality as specified in (i) and (ii); iv) the polarity of the 
determiner; and v) the universality of the quantifier. Where 
relevant, ‘?’ signifies a default value that can be modified provided 
it meets the boundary conditions in (i) and (iii). A sixth parameter 
specifies the set-theoretic relation between the As and the Bs, and 
for all the examples below, the parameter is set to the inclusion 
relation, which specifies that the As are included within the set of 
Bs in the manner described by the other parameters. 
 
 The five parameters in singly-quantified intensions 

Assertion i ii iii iv v 

All As are Bs ?4 ≥ 1 ?4 ||ii|| = ||i|| positive universal 

Some As are Bs ?4 ≥ 1 ?2 0 < ||ii|| ≤ ||i|| positive particular 

No As are Bs ?4 ≥ 1 ?4 ||ii|| = ||i|| negative universal 

Most As are Bs ?4 ≥ 1 ?3  ½||i|| < ||ii|| < ||i|| positive particular 

Neither A is a B 2 2 ||ii|| = ||i|| positive universal 

Five As are Bs 5 5 ||ii|| = ||i|| positive universal 



System 1 
Model building. The system uses the intension of a premise 
to build an initial model, and it updates that initial model if 
additional premises occur. The model is built in accordance 
with the parameters of the intension. The system begins by 
building a model with a small set of individuals. For 
example, the model of All the artists are bohemians is built 
by first constructing a set of artists: 
 
 artist 
 artist 
 artist  
 artist 
 
In the diagram above, each row represents an individual 
with the property of being an artist, and so the model as a 
whole represents a finite number of individuals. Mental 
models are representations of real individuals, not letters or 
words, which we use here for convenience. The inferential 
system in mReasoner is able to treat the model above as 
representing “all artists” and not, say, “exactly four artists” 
because it has access to the intension of the premise, which 
constrains the possible interpretations of models and 
therefore the possible modifications to models.   

The intension of all the artists are bohemians also 
specifies the number of artists that are also bohemians. The 
model is updated accordingly: 

 
 artist bohemian 
 artist bohemian 
 artist bohemian 
 artist bohemian 
 
At this point, the premise has been represented, and so the 
system assesses whether the given conclusion is true in the 
initial model. 
 
Assessing initial conclusions. When reasoners have to assess 
a given conclusion, the system inspects the initial model to 
verify that the given conclusion holds or does not hold. For 
instance, suppose that reasoners are asked to decide whether 
it is possible that some bohemians are not artists given the 
previous premise. From the model above, the system 
initially responds in the negative, i.e., the putative 
conclusion is impossible. The process is simple, and the 
response is rapid. But, as we show in the next section, it is 
also fallible. 

In many experiments and in daily life, reasoners have to 
draw their own conclusions. mReasoner accounts for this 
process too. The model above appears to support any of the 
following conclusions: 

 
All the artists are bohemians 
All bohemians are artists 
Some artists are bohemians 
Some bohemians are artists 
Four artists are bohemians 

But, the theory assumes that reasoners prefer to scan their 
initial model in systematic ways, and the computational 
system implements several heuristics that explain the 
general biases reasoners exhibit when they draw conclusions 
from inspecting a model of two quantified premises. 
Researchers often place heuristics at the forefront of 
theories of reasoning (e.g., Chater & Oaksford, 1999), but 
until now proponents of the model theory have downplayed 
their application. To unify model-based accounts of 
reasoning with heuristic-based systems, heuristics play a 
central role in inferring an initial conclusion (see Khemlani, 
Lostein, & Johnson-Laird, in press b, for an extended 
discussion). 

The system’s ability to assess and generate initial 
conclusions is fallible. For instance, one can indeed show 
that some of the bohemians are not artists is possible, 
though the system infers initially that it is impossible. To 
revise its initial conclusion, the system needs to find an 
alternative model in which both the premise and conclusion 
hold. We turn to the final process in mReasoner to explain 
how such a model is found. 

System 2 
Searching for alternative models. In the preceding section, 
we focused on how mReasoner assesses conclusions based 
on an initial model. However, the conclusions it draws can 
be invalid. System 2 attempts to revise initial conclusions by 
searching for alternative models. To do so, it uses three 
separate operations: adding properties to individuals, 
breaking one individual into two separate individuals, and 
moving properties from individual to another (see Khemlani 
& Johnson-Laird, under review). These operations 
correspond to those that naïve participants spontaneously 
adopt when they reason about syllogisms (as evidenced by 
their manipulations of external models, see Bucciarelli & 
Johnson-Laird, 1999). In the earlier example, the system 
finds an alternative model by adding a new individual to the 
initial model to yield: 
 
 artist bohemian 
 artist bohemian 
 artist bohemian 
 artist bohemian 
  bohemian 
 
The new individual, who is bohemian but not an artist, and 
the resulting model refutes the conclusion, All the 
bohemians are artists. But, the conclusion, Some of the 
bohemians are artists, still holds, and no model refutes it.  
 
Predictions. The theory and its computational 
implementation distinguish between the relative difficulty of 
three sorts of immediate inference:  
 

a) zero-model inferences 
b) one-model inferences 
c) multiple-model inferences 



Zero-model inferences are those in which the conclusion is 
identical to the premise, and so individuals needn’t even 
build a model to be able to solve the problem. For instance, 
consider the following problem: 
 

All the aldermen are barters. 
Is it possible that all the aldermen are barters? 

 
The reasoner should realize that the answer is true 
immediately; however, individuals should nevertheless need 
to build intensions out of the assertions, and they need to 
establish a set of goals in order to infer a conclusion. 

One-model inferences are those in which the conclusion 
holds in the initial model of the premise, and so individuals 
can rapidly determine that an assertion is possible. For 
example: 

 
All the aldermen are barters. 
Is it possible that some of the barters are aldermen? 

 
Reasoners have to construct intensions, use them to build a 
model, and to evaluate the truth of the conclusion in the 
model. 

Finally, multiple-model inferences are those in which the 
conclusion holds in an alternative model of the premise. For 
instance: 

 
All of the aldermen are barters. 
Is it possible that some of the barters are not aldermen? 

 
The theory predicts that zero-model inferences should be 
easier than one-model inferences, and one-model inferences 
should be easier than multiple-model inferences. Likewise, 
the computational model predicts that individuals should 
respond faster to zero-model than one-model than multiple-
model inferences. The predictions are unique to mReasoner 
and the model theory, because the theory proposes that one 
of the most important factors in judging the relative 
difficulty of different inferences is the number of models 
people have to construct. We ran an experiment to test these 
two rank-order predictions. 

Experiment 
A typical trial in the experiment was: 
 
All the artists are bakers. 
Is it possible that all of the bakers are artists? 

 
The experiment examined all 32 possible sorts of problem, 
but we focused our analysis on only the 22 logically valid 
inferences. The inferences comprise 4 zero-model problems, 
12 one-model problems, and 6 multiple-model problems. 

Method 
Participants. 26 participants completed the study for 
monetary compensation on Mechanical Turk, an online 
platform hosted by Amazon.com. None of the participants 

reported having had any training in logic, and they were all 
native speakers of English. 

 
Design and materials. The participants carried out all 32 
problems (4 sorts of premise x 8 sorts of conclusion), and 
they responded “yes” or “no” to a conclusion about a 
possible conclusion to each problem. The contents of the 
problems were based on nouns referring to common 
vocations. We devised a list of 32 pairs of such vocations, 
which we assigned at random to the problems to make two 
separate lists. The problems were presented to each 
participant in a different random order. 
 
Procedure. The study was administered using an interface 
written in PHP, Javascript, and HTML. On each trial, 
participants read the premise, and, when ready, they pressed 
a button marked “Next”, which replaced the premise with a 
question concerning the immediate inference, e.g., “Is it 
possible that all the bakers are artists?”  They responded by 
pressing one of two buttons labeled, “Yes, it’s possible” and 
“No, it’s impossible”. The program recorded whether or not 
their response was correct, and its latency (in s). The 
instructions stated that the task was to respond to questions 
about a series of assertions concerning what was possible 
given the truth of the assertion.  The participants carried out 
three practice trials in order to familiarize themselves with 
the task before they proceeded to the experiment proper. 

Results and discussion 
The results corroborated the theory’s predictions of 

difficulty, and they yielded the following trend: reasoners 
were 98% correct for zero-model problems, 84% correct for 
one-model problems, and 70% correct for multiple-model 
problems (Page’s trend test, L = 340.0, z = 3.88, p < .0001). 
mReasoner predicted the participants’ accuracy well,  R2 = 
.98. 

The mean latencies also corroborated the predicted trend: 
4.30 s for zero-model problems, 5.17 s for one-model 
problems, and 5.41 s for multiple-model problems (Page’s 
trend test, L = 336.0, z = 3.33, p < .0005). mReasoner’s 
predictions of accuracy likewise explained a significant 
portion of the latency variance, R2 = .76.  

We found a good fit between mReasoner’s predictions 
and the data from the 22 individual problems, where any 
significant correlation suggests a good fit. The number of 
models correlated with participants’ accuracy, R2 = .36. And 
the system’s latency predictions adequately fit the latencies 
across the problems, R2 = .24. The fit could be improved 
further, however, and we suggest several ways of 
proceeding in the General Discussion. 

General Discussion 
The computational theory, mReasoner, simulates the 

construction of mental models in order to draw immediate 
inferences from singly-quantified premises. The theory 
uniquely predicts that individuals should be faster and more 
accurate when an inference can be drawn from an identity in 



intensions. They should be next fastest and accurate when 
an inference can be drawn from the initial model 
constructed in system 1.  And they should be slowest and 
least accurate when an inference can be drawn only from the 
discovery of an alternative model constructed in system 2. 
The predictions are a result of assumption of the mental 
model theory of reasoning: the more models you need, the 
more difficult a problem becomes. These rank-order 
predictions were borne out in the data from an experiment 
that tested all 22 valid inferences about possible conclusions 
in the set of 32 inferences. The immediate inferences were 
easy: people answered correctly 83% of the time. Yet they 
also revealed subtle differences in the difficulty between the 
various sorts of problems along the lines predicted by the 
theory. 

The system we describe is limited, however, and it can be 
improved to yield a more fine-grained processing account of 
the data. We suggest two separate ways of proceeding. One 
way to improve the fit of the system is to make the system 
sensitive to the direction in which it scans models. For 
instance, if reasoners read a particular premise, e.g., all 
artists are bohemians, they may be biased to scan the model 
in the opposite directions by considering bohemians before 
artists. This figural bias is widely documented in syllogistic 
reasoning (Khemlani & Johnson-Laird, in press a) and it is 
likely to make a difference when reasoning about immediate 
inferences as well. 

mReasoner could also place differential costs on the 
underlying processes of each of its three systems. The 
linguistic system, system 1, and system 2 are groups of 
interrelated processes, and for simplicity, mReasoner treats 
each of the processes as though it should place the same 
temporal cost on the inference as a whole. The processes are 
likely to place different costs on the system, however, and 
future versions of the theory might investigate the low-level 
mechanisms that give rise to such costs (cf. Khemlani & 
Trafton, under review). 

Immediate inferences have been restricted to the study of 
syllogistic assertions, e.g., those that make use of the 
determiners all, some, and none. However, one major 
advance of the system we describe is that it can be used to 
make predictions if a broader range of inferences. Consider 
the following inference: 

 
Most politicians are wealthy. 
Is it possible that most wealthy people are not politicians? 

 
The answer, like many of the inferences above, is easy: 
given the first premise, it is indeed possible that most 
wealthy people are not politicians. However, the inference 
likely engaged a search for alternative models, and so it 
should take reasoners longer to make it than a problem in 
which the conclusion follows straight from the premise: 
 

Most politicians are wealthy. 
Is it possible that some wealthy people are politicians? 

Indeed, the former inference might have required a little 
thought, whereas the latter one may have felt “obvious.” A 
viable theory of immediate inferences should be able to 
account for any difficulty between the two problems, and at 
present, mReasoner is the only system that can do so. In the 
same vein, the system can be used to make predictions about 
problems that make use of statements such as: 
 
 Neither of the Xs is a Y 
 At most five of the Xs are Ys 
 More than a third of the Xs are Ys  
 Five of the Xs are not Ys 
 
and so it is more general than theories restricted to 
Aristotelian syllogisms. 

In sum, mReasoner is a new, unified computational 
cognitive model of deductive reasoning. It is based on the 
mental model theory of human reasoning, and so its primary 
prediction is that problems that require multiple models are 
difficult and take longer than problems that require only one 
model. 
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