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Abstract

Deep learning improved attributes recognition signifi-

cantly in recent years. However, many of these networks

remain “black boxes” and providing a meaningful expla-

nation of their decisions is a major challenge. When these

networks misidentify a person, they should be able to ex-

plain this mistake. The ability to generate explanations

compelling enough to serve as useful accounts of the sys-

tem’s operations at a very high human-level is still in its in-

fancy. In this paper, we utilize person re-identification (re-

ID) networks as a platform to generate explanations. We

propose and implement a framework that can be used to ex-

plain person re-ID using soft-biometric attributes. In par-

ticular, the resulting framework embodies a cognitively val-

idated explanatory bias: people prefer and produce expla-

nations that concern inherent properties instead of extrinsic

influences. This bias is pervasive in that it affects the fitness

of explanations across a broad swath of contexts, partic-

ularly those that concern conflicting or anomalous obser-

vations. To explain person re-ID, we developed a multi-

attribute residual network that treats a subset of its features

as either inherent or extrinsic. Using these attributes, the

system generates explanations based on inherent properties

when the similarity of two input images is low, and it gen-

erates explanations based on extrinsic properties when the

similarity is high. We argue that such a framework pro-

vides a blueprint for how to make the decisions of deep net-

works comprehensible to human operators. As an interme-

diate step, we demonstrate state-of-the-art attribute recog-

nition performance on two pedestrian datasets (PETA and

PA100K) and a face-based attribute dataset (CelebA). The

VIPeR dataset is then used to generate explanations for re-

ID with a network trained on PETA attributes.

1. Introduction

Few deep learning systems can generate explanations of

their own computations in a manner that is comprehensible

to human end users. As a result, researchers have begun

to explore techniques for building explainable AI systems,

but, as Miller and his colleagues described [14], the design-

ers of such systems seldom consult results from the behav-

ioral sciences on how humans generate and evaluate expla-

nations. Miller et al. [14] argue that progress on building

explainable AI systems will be limited until they can rec-

ognize and adapt to human-level explanatory biases. Oth-

erwise, these systems will produce descriptions that have

limited explanatory value.

Person re-identification (re-ID) involves identifying a

person from a full body query image and searching through

a gallery of existing images. Re-ID networks have numer-

ous applications: they can help track individuals in real time

(i.e., as they enter and leave a particular video frame), in-

tegrate data from multiple-camera surveillance setups, and

track pedestrians at different angles and viewpoints [11].

Although there is a significant body of research on pedes-

trian re-ID, most do not have any way of explaining their de-

cision making process in a way that would be easily under-

stood by a human collaborator. Most re-ID networks focus

on end-to-end mapping of the input image(s) to the person’s

identity label without reporting any intermediate human un-

derstandable features. Soft biometric attributes describe a

person using both inherent (e.g., age, gender, build) and ex-

trinsic (e.g., clothing, objects carried) properties. In this

respect, soft-biometrics attributes can provide a way of pro-

viding an explanation in terms that are commonly used and

readily understood by these collaborators. The attributes

serve as an intermediate way of accounting for what went

into the decision process of re-identification. Some recent
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re-ID networks use soft biometric attributes to generate de-

scriptions of images in the hope of making the network’s

underlying processes more transparent. However, descrip-

tions of images are difficult for human end-users to inter-

pret: they can be long and uninformative. We argue instead

that re-ID networks can serve as an ideal platform on which

to generate short concise explanations.

As attribute recognition is an important intermediate step

of the explanation generation process, here we describe

briefly the state-of-the-art in attribute recognition. Attribute

recognition has recently attracted a significant amount of

attention, partially due to the the increasing availability of

larger labeled attribute datasets [10][3]. The number of at-

tributes also is growing with the size of these datasets. Early

work in this area used the shallower AlexNet architecture

(8 layers) pre-trained with ImageNet [8] (e.g., ACN [16],

DeepMAR [9], MLCNN [19]), and ANet [13]. More recent

work utilized the deeper GoogleNet network (22 layers to-

tal) pre-trained with ImageNet [18, 15].

In this paper, we describe a proof-of-concept system that

generates its own explanations in a way that implements

a cognitively validated bias in explanatory reasoning - the

inherence bias. In what follows, we present our approach

for generating these explanatory attributes and demonstrate

state-of-the-art performance on three attribute datasets as

intermediate step towards the explanation generation. We

then describe the bias and review its pervasiveness and im-

portance. Finally, we discuss how the bias can be built into

a re-identification network for the purpose of classifying

and assessing whether two images of pedestrians depict the

same individual or a different one. We conclude by dis-

cussing the advantages and limitations of this approach.

2. Human-biases in Explanatory Reasoning

Explanations are core features of human rationality that

serve as a means to communicate our understanding of the

world [7]. When applied to deep learning systems, expla-

nations have the potential to help make a complex system

transparent by highlighting its most pertinent components

and causal dependencies. Hence, explanations are a form of

dimensionality reduction. In this section we briefly review

an experimentally validated explanatory bias, i.e. “inher-

ence bias”. We apply this known biased explanation gen-

eration process to explain re-ID networks in a way that at-

tempts to mimic human explanatory reasoning.

2.1. Biased Explanations in Human Reasoning

A recent psychological proposal argues that the cognitive

process of generating explanations operates heuristically to

yield biased explanations, i.e., explanations that exhibit cer-

tain structural and semantic patterns over others [7]. Hu-

mans exhibit a wide variety of explanatory biases: an expla-

nation’s simplicity, scope, and completeness affect whether

it is considered good or bad [7]. They do not perform an

exhaustive search through the space of all possible explana-

tions. In sum, explanations are systematically constrained,

and AI and robotic systems that produce explanations for

the purpose of helping human end users understand their

underlying operations need to simulate human biases.

2.1.1 The Inherence Bias

Consider the following question: Why do lions roar? A

compelling explanation might be: because they are fero-

cious. It cites an inherent property of lions, i.e., ferocious-

ness. A more accurate explanation is that lions roar as

means of communication: they often roar as a way of locat-

ing one another. The accurate, extrinsic explanation is more

complex but more difficult to comprehend, whereas the in-

herent explanation may be more superficially attractive be-

cause it is easier to understand. Recent research suggests

that human reasoners perform a shallow search through the

contents of their memory to explain a particular observation

or regularity [2]. As a result of their shallow search, hu-

mans tend to construct explanations based on accessible in-

formation about the inherent properties of a particular phe-

nomenon instead of inaccessible information about extrin-

sic factors. The bias is pervasive: it affects how reasoners

generate and evaluate explanations across a broad swath of

contexts [2].

We argue that this pervasive semantic bias, i.e., the bias

to produce inherent explanations in situations of conflict,

can help certain kinds of deep learning systems build bet-

ter explanations. We show how this bias can help a certain

class of convolutional neural networks yield compelling ex-

planations for re-ID. We formulate the explanation gener-

ation using human understandable attribute labels that are

common in the attribute recognition and person re-ID lit-

erature [1]. For instance, in the example network shown in

Fig. 1 there are 35 attributes that describe a pedestrian in the

PETA dataset. Some of these attributes are inherent such as

gender and age and many are extrinsic attributes such as

clothing and accessories carried or worn by the pedestrian.

3. Developing an Inherence-biased Network

This section describes how we developed the attribute

recognition and re-ID network in generating the inher-

ence biased explanations as a way to communicate the net-

work’s operation to a human operator. We present the

general process of the explanation generation followed by

how we assess the techniques for attribute recognition as

well as explanations generation as a way of explaining re-

identification.
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3.1. Inherencebiased Explanations and ReID

Re-ID networks tend to output a similarity metric, a dis-

criminative model, or a description of a particular identi-

fied individual [11]. No existing re-ID network provides

an explanation of its operations, but such networks provide

a feasible platform for which to generate biased explana-

tions that adhere to human expectations, because person re-

identification tasks often require networks to learn features

that correspond to inherent properties (e.g., whether the per-

son is male or female) or else features that correspond to

extrinsic properties (e.g., what the person is carrying). We

qualified these hidden features into attributes that are under-

standable to a human operator. Hence, the process of gener-

ating the explanations is a multi-stage recognition process.

First, we train multi-task deep residual networks for

multi-attribute predictions as an intermediate step of con-

verting the hidden feature vector (which is not understand-

able by humans) into a set of easy-to-understand human

attributes. The network is trained using either pedestrian

or facial attribute datasets to produce the attribute labels.

Some of these labels express inherent features such as gen-

der and age while others could be used to describe extrinsic

features such as carried objects, clothing, and shoes. Hence,

once probabilities were assigned using the attribute recog-

nition intermediate step, we collapse the various attributes

into a few inherent and extrinsic categories that are suitable

for generating the explanations.

Once the attribute recognition models are trained using a

larger attribute recognition and re-ID datasets, we predict on

a smaller re-ID dataset to get the attributes for both images

as shown in Fig. 2. Using the predicted probabilities to the

set of attributes, cosine similarity is computed between the

features of these two images. Based on the similarity score,

inherent explanations are generated if there is conflict, i.e.

the similarity score between the two sets of features is too

based on a set threshold (e.g., < .01). Likewise, if the sim-

ilarity score is above a certain set threshold (e.g., > .99),

extrinsic explanations are generated.

3.2. Assessments and Evaluation Metrics

Assessing the performance of the overall system should

be decomposed into stages similar to the overall techniques

used to train it as described above. For the attribute recog-

nition stage of the system, we built on the evaluation met-

rics proposed in [10], i.e. the mean average accuracy (mA)

and example-based metrics of example (sample) accuracy

(Acc), sample-based recall (Rec), sample-based precision

(Prec), sample-based F1 score (F1), and the area under

the curve (AUC). These metrics are comprehensive and

avoid biased predictions due to intra-class imbalance in the

dataset [1].

The evaluation of the explanation generation stage is

qualitative at this point. As the explanation generation are

A B

Figure 1. An example deep residual network architecture that was

trained using the 35 binary attributes of PETA dataset for person

re-ID.

based on a well known behavioral human explanation bias

[14], a full user study is warranted to assess the comprehen-

sibility of the generated explanations as indicated by prefer-

ence of human operators. We left that as future work. How-

ever, there are qualitative metrics that were used to control

the explanations such as length of the generated explana-

tions. Explanations should be short and not a semi-static

laundry list of the attributes in some form of long descrip-

tion. Another important aspect is the generation of the ex-

planations should not impact on the speed of the attribute

recognition and person re-ID.

4. Implementing the Network

In this section we present the details of the proposed

method including the network architecture, techniques used

for training the network efficiently and accurately, and the

process of constructing the convincing explanations.

4.1. Network Architecture

Here, we present the network architecture used to pre-

dict explanatory attributes. This architecture was selected

in order to maximize our prediction accuracy with a lim-

ited size and biased dataset. We discuss the related pooling

schemes, loss functions, sample weighting and probability

calibration needed to produce state-of-the-art performance

on a wide range of datasets.

Figure 1 shows an instance of the network architec-

ture. We consider residual networks (ResNet) [5] and dense

residual networks (DenseNet) [6] for creating richer fea-

ture sets that could achieve comparable performance to the

state-of-the-art without complicated pooling and branching

strategies [18], and view-based predictions [15]. In addi-

tion to the base feature extractor network, the type of fea-

ture pooling used in combination with specific classifier

layers could have performance and computational implica-

tions for joint multi-attribute recognition. Several methods

of pooling at the feature stage have been proposed. They

range from the simple global pooling at the last stage of

the feature extraction pipeline to complex pyramidal pool-

ing schemes [18]. In practice, for deeper networks such as

ResNet [5], GoogleNet [17] and DenseNet [6], the last fea-

tures are pooled in a global manner. Local pooling strate-
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gies could benefit shallower networks. More complicated

feature pooling schemes are discussed in [18, 15]. We ex-

perimented with both logistic and multi-layer dense classi-

fiers.

4.2. Training Techniques

To train the attribute feature extractor network described

above, we followed the common optimization objective

in CNN-based attribute recognition, i.e. weighted binary

cross-entropy (BCE) loss [19]. Due to the nature of the

presence of multiple attributes in the same example image,

a multi-label BCE loss enables learning not only individual

attributes but also their joint interrelationship. Equation 1

shows BCE loss.

TotalLoss =

M
∑

m=1

γm lm (1)

where lm is the BCE contribution of mth attribute to the

total loss. The γm parameter could be used to control the

learning to be focused towards a particular attribute. This

could be useful if a particular attribute is especially impor-

tant for a particular recognition scenario. For instance, in-

herent attributes such as age and gender could be more im-

portant than clothing attributes for the inherence biased ex-

planation generation process.

The individual attribute losses, lm, are computed using

the sigmoid binary cross-entropy loss for binary classifica-

tion of each attribute as shown in Equation 2.

lm = −

1

N

N
∑

i=1

ωi

m
(yi

m
log(ŷi

m
) + (1− yi

m
)log(1− ŷi

m
))

(2)

where yi
m

is the true and ŷi
m

is the predicted attribute label

for mth attribute and ith example. The predicted probabili-

ties are computed via the sigmoid function and is given by

Equation 3.

ŷi
m

= p(xi

m
) =

1

1 + exp(−xi
m
)

(3)

and wm is a sample weighting factor introduced to account

for the bias that could occur due to inherent class imbalance

within an attribute. Li et al.[9] adopted a more controllable

weighting scheme given by Equation 4. In this paper we

have experimentally tested various weighting schemes and

found that Equation 4 is the best and hence used it for the re-

sults section unless stated otherwise. This weighted multi-

label optimization objective was minimized using stochastic

gradient decent (SGD) with Nestrov momentum.

ωi

m
=

{

exp((1− pm)/σ2) if yi
m

= 1
exp(pm/σ2) else

(4)

where pm is the number of positive examples in the mth

attribute. σ is a control parameter. This parameter can be

used to control the number of true positives and hence con-

trol the recall in effect. However, in this experiment, appro-

priate attributes were pre-selected by a criteria of meeting

a certain threshold of number of positive examples [3], we

set this parameter to 1 for all the attributes. Setting this

parameter lower improves recall at the expense of mean ac-

curacy. Other techniques employed include probability cal-

ibration using set false positive rate (FPR) and calibration

method that balances both precision and recall, it favors a

strong example-based accuracy and F1 score, we called it

F1 calibration. Data augmentation as preprocessing step is

also another crucial strategy to train deeper networks with

limited dataset. In this paper, we employed the most com-

monly used data augmentation techniques in the pedestrian

attribute recognition literature. These include random flip

and crop, random image resizing with and without constant

aspect ratio, mean subtraction, random RGB color jitter and

random rotation. All the data augmentation in this paper

was performed on-line, i.e. each image was randomly aug-

mented by the one or more of the listed methods in each

iteration separately.

4.3. Datasets

We demonstrate state-of-the-art performance on two

pedestrian datasets, i.e. the PEdesTrian Attribute (PETA)

recognition dataset [3] and PA-100K dataset [12], and a

face-based celebrity faces attributes dataset (CelebA) [13].

PETA contains 19,000 images captured by surveillance

cameras in indoor and outdoor scenarios. Originally the

images were labeled with 61 binary attributes, which are

related to age, clothing, carrying items, wearing accessories

etc. There are also 4 multi-class attributes related to color.

Deng et al. [3] suggested to use 35 attributes due to se-

vere class imbalance issues in the remaining. Therefore, we

adopted these 35 attributes PETA images exhibit wide range

of variations in illumination, pose, blurriness, resolution,

background and occlusion. We evaluate with the suggested

[3] random train/validation/test split of 9500/1900/7600 im-

ages for equivalent comparison. The PA-100K contains

100,000 images captured from 598 scenes. Each image is

labeled using 26 binary full body attributes. CelebA con-

tains 202,600 images labeled with 40 face-based attributes.

We used the provided splits for both PA-100K and CelebA

datasets. For the cosine similarity and explanation gener-

ation, we trained the network on PETA and predicted on

VIPeR dataset [4].

4.4. Performance Evaluations

We first present the attribute recognition performance as

it directly affects the content and process of how the expla-

nations are generated, results of our residual network based
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Table 1. Comparison of multi-attribute recognition performance of

proposed model and the state-of-the-art on PETA. The data aug-

mentation employed are mean subtraction, random color jitter, and

random flip.

Networks/Method mA Acc Prec Rec F1
AUC

(micro)

ACN[16] 81.15 73.66 84.06 81.26 82.64 -

DeepMAR [9] 82.89 75.07 83.68 83.14 83.41 -

WPAL-GMP [18] 85.50 76.98 84.07 85.78 84.90 -

VeSPA [15] 83.45 77.73 86.18 84.81 85.49 -

Proposed ResNet50

No data augmentation
84.18 78.03 85.78 85.69 85.73 90.55

Proposed ResNet50

With data augmentation
84.68 78.89 86.38 86.41 86.39 90.96

architecture of 50 layers (ResNet50) is presented in compar-

ison with other state-of-the-art methods. We then present

samples of generated explanations and discuss these expla-

nations in terms of length and inherence bias and conclude

with Generation speed implications.

4.4.1 Attribute Recognition Performance on PETA

Table 1 compares the performance of our proposed ap-

proach against other state-of-the-art attribute recognition

approaches on the PETA dataset. ResNet50 with data aug-

mentation techniques such as random flip and RGB color

jitter outperforms the state-of-the-art in all the metrics pre-

sented with the exception of mean accuracy. However, it

is clear from other metrics such as precision, recall and F1

score that ResNet50 is a well balanced recognition approach

performing well across a larger number of attributes. With-

out any data augmentation, ResNet50 has a performance

that is comparable to or better than other approaches.

4.4.2 Attribute Recognition Performance on PA-100K

Table 2 compares the performance of our proposed ap-

proach against other state-of-the-art attribute recognition

approaches on the PA-100K dataset. Our proposed model

outperforms the state-of-the-art in this dataset by about 3%

Table 2. Comparison of multi-attribute recognition performance of

the proposed model and the state-of-the-art on PA-100K. The data

augmentation employed are mean subtraction, random color jitter,

and random flip.

Networks/Method mA Acc Prec Rec F1 AUC

HydraPlusNet [12] 72.70 70.39 82.24 80.42 81.32 -

DeepMAR [12] 74.21 72.19 82.97 82.09 82.53 -

Proposed ResNet34

F1 calibration
78.77 75.05 85.01 84.56 84.78 89.95

Proposed ResNet50

Sample weighting
78.07 73.51 83.74 83.45 83.59 89.19

Proposed ResNet50

F1 calibration
78.12 74.11 84.42 84.09 84.25 89.54

Table 3. Comparison of multi-attribute recognition performance of

the proposed model and the state-of-the-art on CelebA. The data

augmentation employed are mean subtraction, random color jitter,

and random flip.

Networks/Method mA Acc Prec Rec F1 AUC

LNets+ANet [13] 87 - - - - -

FaceTracker [13] 81 - - - - -

PANDA-l [13] 85 - - - - -

Proposed ResNet34

FPR@10% calibration
86.55 65.18 86.55 72.34 78.81 88.79

Proposed ResNet34

F1 calibration
83.16 65.20 77.80 80.19 78.98 86.42

Proposed ResNet34

FPR@8% calibration
85.72 66.67 82.25 77.79 79.96 87.98

on each metric. From the metrics such as precision, recall

and F1 score we can see that our model is a well balanced

recognition approach performing well across a larger num-

ber of attributes.

4.4.3 Attribute Recognition Performance on CelebA

Table 3 compares the performance of our proposed model to

that of the state-of-the-art attribute recognition approaches

on the CelebA dataset. Our approach performed competi-

tively to the state-of-the-art approaches on the mean accu-

racy metric. The other approaches only reported the mean

accuracy. Hence, it is not clear how balanced their recogni-

tion on the other metrics were. To illustrate this point, we

run the same network with different probability calibration

techniques discussed in the methods section and showed

that it is possible to get a mean accuracy competitive to the

state-of-the-art at the expense of precision (i.e. proposed

system with FPR@10% calibration). However, we would

like to point out that the more balanced recognition perfor-

mance is the F1 score calibration although the mean accu-

racy is lowered.

4.4.4 Assessing the Network’s Explanations

For this task, we determine the similarity between two im-

ages by measuring the similarity of predicted attributes.

However, we note that this scheme is sufficiently generic

to be usable for any approach for person re-identification.

We measure similarity using the approach shown in Fig. 1.

This shows how the network operates: it takes two separate

images as input and uses three residual blocks to learn 35

separate attributes jointly. The attributes pertain to the age

and gender of the person in the input image, as well as what

the person is wearing, what the person is carrying, and other

various descriptors (e.g., whether the person has long hair or

not). Some of the 35 attributes concern inherent properties

(e.g., age, gender, hair) and some concern extrinsic proper-

ties (e.g., whether the person is wearing a hat or carrying a

backpack).
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A B

A B

extrinsicaccessory

inherentgender
inherentage

extrinsichat

0.0

The two images are of the same 
person because they are both 
carrying backpacks.

The two images are of different 
people because one is male and 
the other is female.

extrinsicaccessory

inherentgender
inherentage

extrinsichat

1.0

Figure 2. Explanations are constructed using cosine similarity on

the predicted attribute probabilities. The model builds an explana-

tion relative to its assessment of re-ID.

The network was trained on the PETA dataset and tested

on the VIPeR dataset. After computing the attribute pre-

diction, cosine similarity of the resulting attribute probabil-

ity vectors given two input images from the dataset were

computed. Critically, the overall model reports a judgment

paired with an explanation (see Fig. 2). The explanations

concern inherent properties when the model detects dissimi-

larity and extrinsic properties when it detects similarity. Fig.

3 illustrates the inherence biased explanation with further

examples. Inherent attributes are preferred over extrinsic

attributes in describing difference. We argue that specific

similarity in extrinsic attributes such as the person carrying

similar backpacks in both images is indicative of the same

person. Since the two images in the first example look sim-

ilar enough in the major inherent attributes, similarity in pe-

culiar extrinsic attributes confirms that it is indeed the same

person. In the second and the third examples, the two im-

ages are different in a more fundamental way and inherent

attributes such as gender and age could be used to distin-

guish the two people easily. These observations are consis-

tent with the inherence biased explanation hypothesis.

The generated explanations were designed to be short in

length in contrast with descriptions that contain the list of

Figure 3. Examples of the generated inherence biased explana-

tions. Inherent attributes were used to highlight differences while

extrinsic attributes were employed to explain similarity.

attributes in semi-static sentences. Here we make the use-

ful distinction between short meaningful inherence biased

explanations and long incomprehensible descriptions. We

also note that the generation of the explanations does not

add significant overhead to the overall re-ID process. It is

important that the system performs with little to no over-

head with the addition of the explanation generation.

5. Conclusion

In this paper, we propose an approach to explaining

person re-identification using multiple soft-biometric at-

tributes. Recognition of attributes in the wild can be a very

challenging task while providing a possibility for generating

compelling explanations. Environmental conditions such as

weather, lighting and shadow can impact results. People

also can be partially occluded by other things in the envi-

ronment.

We proposed deep residual networks that learn attributes

as a way of generating compelling explanations with

human-level biases. Our approach demonstrated state-of-

the-art on PETA, PA-100K, and CelebA attribute datasets.

The approach generalizes well, ranging from pedestrian at-

tributes to face-based attribute recognition. Our experi-

ments and the ablation studies (see Appendix), indicate that

simpler networks with various training strategies result in

superior performance than complicated networks.

The attributes were utilized to generate the biased expla-

nations based on preference towards inherence to reflect the

well documented inherence bias in explanations generated

by humans [14, 7]. We argue that deep learning systems ca-

pable of mimicking human explanatory biases can provide

meaningful and interpretable explanations of their own in-

ternal operations. We developed a system as well as an ana-

lytic pipeline that provides a blueprint for how to make the

operations of deep learning techniques comprehensible to

human operators.

The explanation generation and re-ID pipelines are a

work in progress and future versions of this approach would

include an end-to-end attribute recognition, re-ID, and ex-

planation generation model by fusing low-level features

from the attribute recognition and re-ID branches into a re-

current explanation generator. A large scale human-user

study is also underway to assess the pervasiveness and com-

prehensibility of inherence bias in the explanations gener-

ated by the system and to subsequently use the results of the

study to improve explanation generation by the deep model.
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Appendix

Implementation Details

The networks were trained with similar parameters for

fair comparison. The input batch size were 32 for all the

experiments. The images were mean subtracted with PETA

mean pixel values. The cost function defined in Equation

1 was optimized jointly for all the attributes using SGD

optimization with learning rate schedule that starts out at

0.1 and dropped by a factor of 10 when learning flattens.

The layers were highly regularized with an l2 regularizers

of value 0.0001 to combat over-fitting.

Ablation of Effects of Strategies

Here, we summarize the effect of various strategies that

affect the attribute recognition performance. We show com-

parisons of different strategies based on ResNet34 as that

allows fair comparisons with other types of networks such

as inception (GoogleNet with 22 layers) that are used in [18]

and [15].

Architectural Comparisons

We compare three deeper architectures: Inception version

3 (a variant of the 22-layer GoogleNet-based architecture),

DenseNet34 (with 34 layers), DenseNet121 (121 layers),

and ResNet34. Table 4 shows the benefits of residual

blocks. ResNet34 performs slightly better than GoogleNet

(Inception v3) and both outperforms the two variants of

DenseNet (34 and 121 layers). It’s important to note here

that Inception will quickly overfit with deeper architectures,

and with increased data augmentation it trains at least twice

slower than ResNet34. As we go deeper without in these

networks without additional strategies, the networks overfit

too quickly as shown on the performance of DenseNet34 vs.

DenseNet121.

Effects of Pooling and Classifiers Types

In practice, simple global average pooling (GAP) works

well than complicated pooling strategies. As shown on Ta-

ble 5, the simple logistic classifier outperforms the dense

classifier for ResNet34. Generally, for shallower networks

(ResNet34 and below), logistic classifier performs better

Table 4. Architectural comparisons of multi-label attribute recog-

nition on PETA.

Networks/Method mA Acc Rec Prec F1
AUC

(micro)

Inception v3 84.77 72.69 81.36 81.43 81.39 87.69

DenseNet34 81.91 67.76 78.17 78.18 78.17 85.56

DesneNet121 83.19 69.57 79.35 79.40 79.38 86.35

ResNet34 84.54 72.94 81.57 81.73 81.65 87.81

Table 5. Effect of classifier type on ResNet34 recognition perfor-

mance on PETA.

Networks/Method mA Acc Rec Prec F1
AUC

(micro)

GAP + Logistic

classifier
84.59 72.87 81.39 81.54 81.46 87.77

GAP + Dense

classifier
84.35 71.83 80.71 80.79 80.78 87.29

than dense classifiers as the number of features pooled glob-

ally is limited (512 in the case of ResNet34). However, for

deeper networks such as ResNet50 and above, the dense

classifier works well as the number of globally pooled fea-

tures is larger (2048 in the case of ResNet50).

Sample Weights vs. Probability Calibration

From Table 6, it is clear that the naive probability thresh-

old with no sample weighting performed the worst. Next,

the sample weighting together with F1 probability calibra-

tion performs better. The F1 probability calibration with no

sample weighting achieved the best and well balanced per-

formance among these comparisons.

Effects of Image Resizing and Data Augmentation

Other factors such as the way images are resized before be-

ing fed to the networks, data augmentation strategies and

depth of the networks could affect performance. It is a

combination of these factors together with the strategies

discussed above that resulted in the state-of-the-art perfor-

mance on PETA as shown in Table 7 and Table 1. Applying

a random flip and RGB color jitter while preserving the as-

pect ratio were experimented with. Some network inputs

are rigid and do not keep the aspect ratio of the input [9]

and [15], requiring an image with an input size of 256x256

with crop size of 224x224. But, a dramatic performance in-

crease can was obtained by preserving the aspect ratios of

input images with random sampling of the largest dimen-

sion from a set. This results in an increase in example-based

accuracy (almost 6%) and F1 score (about 4%).

Table 6. Effects of sample weighting and probability calibration

strategies on ResNet34 performance on PETA

.

Networks/Method mA Acc Rec Prec F1
AUC

(micro)

DeepMar weights +

F1 calibration
84.59 72.87 81.39 81.54 81.46 87.77

DeepMar weights +

recall @20% FPR
92.24 65.73 93.19 67.59 78.35 86.60

No weighting/

naive proba thresh
83.07 72.25 79.47 82.95 81.17 87.19

No weighting/

F1 calibration
85.33 73.54 82.09 82.22 82.16 88.23
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Table 7. Effects of image resizing (Size and Crop) and data aug-

mentation (DA) on performance.

Networks/Method mA Acc Rec Prec F1
AUC

(micro)

Size: 256x256

Crop: 224x224

DA: flip, crop

84.59 72.87 81.39 81.54 81.46 87.77

Size: 300x300

Crop: 299x299

DA: flip, crop

84.54 72.94 81.57 81.73 81.65 87.81

Size: random

AR: preserved

DA: None

84.18 78.03 85.69 85.78 85.73 90.55

Size: random

AR: preserved

DA: flip, jitter, rot

83.19 77.16 84.96 85.12 85.04 90.03

Size: random

AR: preserved

DA: flip, jitter

84.68 78.89 86.41 86.38 86.39 90.96
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