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Abstract

Chase detection involves tracking objects and comparing their
locations over time. What is it about the relative spatial re-
lations of two objects that helps you perceive one as chasing
the other rather than, say, merely moving in the general di-
rection of the other object? A recent model of chase detec-
tion provided an explanation in terms of an attentional strat-
egy. However, it is unclear if this model generalizes or has
predictive power since it was fit to experimental data. Here we
examine whether this model explanation extends to and pre-
dicts a frequently studied chasing cue: chasing subtlety—the
degree to which the chaser deviates from the most direct path
to its target. To test the model, we made preregistered model
predictions from simulations run prior to data collection. We
then conducted two experiments where chasing subtlety var-
ied. Overall, the model did a good job predicting response time
and accuracy patterns across most conditions. Additionally, it
predicted specific videos that had the highest error rates. Thus,
we show that the model explanation extends to chasing sub-
tlety and, more broadly, that the model can be used to generate
a falsifiable theory of chase detection.
Keywords: chase detection; chasing; relations; dynamic
scenes

Introduction
Humans possess an impressive capacity for understanding
complex visual scenes, including identifying the actions of
agents and the intentions behind those actions. One task
developed to study this understanding is chase detection, in
which an individual observes objects moving through a scene
and determines whether one object is chasing another. Chase
detection requires tracking objects and comparing their lo-
cations and motion patterns over time to identify subtle dif-
ferences between, e.g.,“following”, where the intention is
to maintain some distance between agents, and “pursuing”,
where the intention is to close the gap. Many questions re-
main about how people infer the correct intention.

Recent work has investigated possible cues for determining
whether agents are involved in a chase, including distance be-
tween the chaser and its target (Meyerhoff, Schwan, & Huff,
2014a,b), the direction that the chaser faces (Gao, McCarthy,
& Scholl, 2010; Gao, Newman, & Scholl, 2009), the number
of objects in a scene (Gao et al., 2019; Kon et al., 2024; Mey-
erhoff et al., 2013), and chasing subtlety, the degree to which
the chaser can deviate from the most direct path to its target
(Gao et al., 2019; Gao et al., 2009; Meyerhoff et al., 2013).

We recently developed a cognitive model for the chase de-
tection task, to aid in exploring problem-solving strategies
and stimulus factors that may influence performance (Kon,
Khemlani & Lovett, 2024). The core claim of the model was
that chase detection, like other demanding visual tasks, de-

pends on strategically projecting spatial attention onto a vi-
sual scene. To determine whether one object is in pursuit
of another, the model tracks the object, determines its mo-
tion trajectory, and then projects spatial attention along that
trajectory to identify another object that may be a potential
target of pursuit. This process is engaged repeatedly, and if a
prospective pursuer is consistently moving towards the same
prospective target, then it is likely that a chase is occurring.

We evaluated our model on a novel chase detection task,
in which the possible pursuer was always a red circle and
the possible targets were circles of unique colors. This color-
coding simplified detection and tracking in a way that isolated
specific factors that contribute to chase detection. The task
utilized a two-stage design in which participants first pressed
a button to indicate whether a chase was occurring (Stage 1)
and then indicated the circle being chased (Stage 2), allowing
for measures of response time and accuracy. After gathering
human data on the task, we presented the same trial videos to
the model and found an overall close fit to the human data.

Although the modeling results were promising, they suf-
fered from several limitations. 1) The human data was gath-
ered first, and free parameters in the model were selected to
maximize the fit to this data. Additionally, there was only a
small set (20) of stimulus videos. Thus, it remains unclear
how well the model will generalize to other situations. 2) The
study looked at the core chase detection task and varied only
set size, without considering other factors that are believed to
contribute to detection performance.

To overcome these limitations, we present a new pair of
studies with the following changes. 1) Before the study was
given to human participants, the model was run on the study
with specific parameter values, and the resulting model pre-
dictions were preregistered on OSF. 2) A larger set of videos
(180) was used. In these videos, we varied chasing subtlety,
the degree to which the pursuing red circle moves directly to-
wards the target, to explore how this factor affects the model’s
performance and fit to the human data. While there are other
studies that measure the effect of chasing subtlety on speed
and accuracy of chase detection (Gao et al., 2019; Gao et
al., 2009; Meyerhoff et al., 2013), these studies used small
sample sizes, ranging from 12-22. So, we also wanted to see
whether some of these results are replicable with a larger sam-
ple size within this experimental paradigm.

Experiment Design
As in Kon et al. (2024), the present experiment used a two-
stage chase detection task (Figure 1).
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Figure 1: Schematization of an experimental trial in Experiment 1.
After seeing a fixation cross at the initial position of the red cir-
cle, participants saw video of moving circles (motion is represented
in this figure by the white arrows). When participants indicated
whether a chase is present or absent, the video paused and a prompt
to click on a circle appeared. Feedback was provided after each trial.

Each trial began with a fixation cross at the initial location
of the red circle. Next, the red circle appeared with either one
other circle (set size 2, including the red circle) or five other
circles (set size 6). The initial location and initial trajectory of
each circle was randomized with the constraint that no circles
overlapped. All circles traveled at the same fixed speed. The
red circle moved along a straight path toward the center of
the chased circle with its direction updated every 50 ms. The
circles moved until participants responded by pressing a key
to indicate whether a chase was present or absent (Stage 1),
or until the video ended after 22 seconds. Next, if participants
indicated there was a chase present, they clicked on the circle
they believed was being chased (Stage 2).

The trials in which the red circle was engaged in a chase
(chase-present trials) varied in their chasing subtlety, which
is the extent to which the chaser moves directly towards the
target. We followed Gao et al. (2009) and Meyerhoff et al.
(2013) by operationalizing subtlety as the difference in de-
grees between the direction the chaser travels and the direct
path (0◦) to the target. For 0◦ chase-present trials, the red
circle updated its position towards the center of the target,
whereas for 30◦ chase-present trials, it could deviate any-
where from -30◦ to 30◦ from that path.

For the study, four factors were varied: set size (2 or
6), chasing condition (present or absent), chasing subtlety
(0◦, 30◦ or 60◦), and target color (one of five possible col-
ors). We provide an example video for each condition here:
osf.io/8cefh/. Three videos were generated for each combi-
nation of conditions, yielding 180 total videos. Chase-absent
trials were generated exactly the same as chase-present trials,
except that the target was an invisible circle. Thus, the red
circle’s motion patterns did not differ depending on whether
it was chasing a visible circle or not.

The Model and Predictions
We developed a computational model of chase detection (see
Kon et al., 2024, for details) based on the idea that an ob-
server directs spatial attention to task relevant locations (Pos-
ner, 1980; Ullman, 1984). The model evaluates whether a red
circle is chasing another by (1) finding and tracking the red
circle over time to estimate its future trajectory based on past
motion; (2) scanning along that trajectory; and (3) identifying
what, if any, circle lays within a scan window traversing the
trajectory. The more times a particular object is found along
the expected path of the red circle, the more evidence the red
circle is chasing this object.

The model is built within the ARCADIA framework,
which was designed to explore attention’s role in perception,
cognition, and action (Bridewell & Bello, 2016). ARCADIA
models are implemented as a set of components that process
information and generate output; and an attentional strategy
is used to select one piece of output as the focus of atten-
tion, which drives further processing. To these components,
the chase detection model adds a set of stopping rules for de-
termining when sufficient evidence has accumulated before
producing a response on a trial.

Each ARCADIA processing cycle works as follows. On
each cycle, components have access to: the output from all
components on the previous cycle, a single output element
that was selected as the focus of attention on the previous
cycle, and data generated by sensors—typically, this grabs
frames from a video, such as the chase detection stimuli.
Components are essentially functions that process this infor-
mation to generate new output elements that will be available
on the following cycle. Depending on their purpose, different
components will respond to different information.

The chase detection model relies on five key components.
The image segmenter processes the images coming from
the sensor, performing figure-ground segmentation (Palmer
& Rock, 1994) to pick out segments corresponding to the col-
ored circles in the video. These segments are used by the re-
mainder of the model (Figure 2). The color highlighter iden-
tifies each segment’s color and puts it forward as a candidate
for attention. In the current model, the attentional strategy
prioritizes attending to the red circle since it is always the po-
tential pursuer. While attention is focused on the red circle,
its positional information is used to calculate its motion tra-
jectory (Figure 2, cyan line). After this trajectory information
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Figure 2: Example illustrating the function of each model component. Areas not grayed out indicate the focus of attention at a given time.

is available, the trajectory scanner projects a small window
of spatial attention along that trajectory (the scan window,
represented by the magenta box in Figure 2; see Gerstenberg
et al., 2017). If that scan window intersects another circle,
the scan highlighter highlights that circle as a candidate for
attention (Bello et al., 2018). Finally, the object file binder
generates a representation of this object (Treisman & Gelade,
1980), and its intersection count is incremented.

The model’s stopping rules codify different strategies for
determining when to respond on the chase detection task.
The strategies can be varied based on four free parameters
to the model. The stopping rules are as follows. 1) If the in-
tersection count for a circle reaches the intersection counter
threshold, then the model responds that this circle is being
chased by the red circle. 2) If no intersection count reaches
this threshold but maximum time is reached, then the model
responds that it detects no chase. 3) If at initial time check no
intersection count is at least at the value of the initial intersec-
tion threshold, then the model responds that there is no chas-
ing detected. This third stopping rule can generate a quick
response when there is minimal evidence of chasing.

A fifth free parameter is scan window size (diameter of the
scan window). Our prior modeling work suggested that vary-
ing it could explain how differences in set size affect perfor-
mance. In this study, there were either 2 or 6 objects in each
video. We got the best fit to human data when the model
used a small scan window with a large set size (6), and large
scan window with a small set size (2). Intuitively, this makes
sense: when the scene is cluttered with a large number of ob-
jects, one would want to focus in on a small area to avoid be-
ing distracted by irrelevant objects. But when there is only a
single candidate for the target, a large scan window can max-
imize the chances of hitting that circle when scanning.

Model Results and Predictions
We ran several sets of simulations where we varied scan win-
dow size (with widths 71-182% of a circle diameter, in incre-
ments of approximately 12%), intersection counter threshold
(4-11 in integer increments) and maximum time values (7-21
seconds, in increments of 2), while we fixed the initial time
check (6 seconds) and initial intersection threshold (1) across
simulations. The full results of these simulations and detailed
discussion of them are beyond the scope of this paper; how-
ever, they are provided in the preregistration ( osf.io/59gkc/).

Based on the assumption that a human observer should make
fast yet accurate responses, we made predictions about per-
formance on this task based on the results of parameter val-
ues that produce both low response times and low error rates
across all conditions. In other words, rather than fitting the
model to data, we made predictions about performance prior
to collecting data by examining model performance for pa-
rameter values that resulted in both the lowest mean response
times and the highest mean accuracy rate across conditions.

In line with our past findings, such performance with low
response times and high accuracy occurs for set size 2 when
larger scan window sizes are used and for set size 6 with
smaller scan window sizes. We also identified a subset of pa-
rameters that reflected a speed-accuracy tradeoff. It is charac-
terized by larger scan window sizes for set size 2, smaller scan
window sizes for set size 6, an intersection counter threshold
of 5 or 6, and a maximum time from 15-17 seconds.

Figure 3A shows representative model results given these
parameters. The several qualitative predictions about human
performance based on model results are summarized below.

1. On chase-present trials (blue lines in Figure 3), response
times will increase with chasing subtlety.

2. On chase-absent trials (red lines), response times will be
unaffected by chasing subtlety.

3. All response times will increase with set size.
4. On chase-present trials, Stage 1 accuracy will be near ceil-

ing for 0◦ and 30◦ subtlety, but will decrease for 60◦.
5. On chase-present trials at 60◦, performance will be lower

for set size 2 than set size 6. This surprising prediction is
the only case where set size 6 is easier.

The model also identifies particular videos that may result
in lower accuracy and predicts the response times for these
videos and which incorrect target circle will tend to be cho-
sen. These are videos for which the model has a high error
rate even when it uses parameter values that resulted in over-
all low speed and high accuracy. We discuss some of these
videos, which are in our preregistration, in the Error-Prone
Videos section below.

Experiment 1
To test model predictions about human performance on a
larger stimulus set, we conducted an experiment after prereg-
istering the predictions, using the same task and stimulus set
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Figure 3: Model predictions and experimental results, with correlations between model results and data for each experiment. Mean response
times were calculated from correct trials only. Error bars represent one standard deviation of the mean.

used in model simulations. Various chasing subtleties were
used in the stimuli to investigate whether the model strategy
generalizes to this frequently studied cue (Gao et al., 2019;
Gao et al., 2009; Meyerhoff et al., 2013) and whether some
of the key results of past chasing subtlety studies replicate
with a larger sample.

Method

Participants 102 participants (mean age = 42.05 years; 56
females, 44 males, 1 other, 1 prefer not to answer) completed
the study on the Amazon Mechanical Turk online platform
in exchange for US$3.75. We excluded data from 5 par-
ticipants with mean accuracy < 2 standard deviations from
pooled mean accuracy (82%). All but 3 participants reported
normal color vision, with 2 reporting suspected colorblind-
ness and 1 who did not respond; however, each yielded 82%,
81% or 89% accurate responses, so we retained their data.
We analyzed the remaining data from n = 97 participants.

Materials, Procedure and Design The study used custom
JavaScript and HTML code within the nodus-ponens package
(Khemlani, 2022). After navigating to the webpage with the
study, participants saw instructions that described the task,
informed them that the red circle was always the potential
chaser, stated the purpose of the fixation cross, and presented
a few example videos and interactive example trial. Partic-
ipants initiated each trial by pressing a key, which resulted
in a video playing that showed a fixation cross followed by
moving circles. Participants responded with the F- and J-
keys on their keyboard to indicate whether there was a chase
present or not (Stage 1 response), with key assignment coun-
terbalanced across participants. The key press paused the
video, and participants saw a prompt to click one of the cir-
cles (Stage 2 response) using their mouse. Specific feedback
was provided after each trial, i.e., “Correct.”; “Incorrect – red
was chasing”; “Incorrect – no chasing”; “Incorrect circle”,
in addition to a warning if the Stage 1 response was too fast
(< 500 ms) or too slow (> 20 s).

Each participant saw 4 practice trials with chasing subtlety
0◦, which was followed by 32 experimental trials in random-

ized order, yielding a 2 (chase present vs. absent) × 2 (2
circles or 6 circles) × 3 (chasing subtlety 0◦, 30◦ or 60◦)
repeated-measures design with these 12 total conditions re-
peated 3 times. For each trial a video was chosen randomly
from the subset of videos in the pool of 180 videos that had
a specified set of the independent variables of interest, e.g.,
chase-present, set size 6, chasing subtlety 30◦, with a ran-
domized target color and version number.

Results and Discussion
Figure 3B shows the mean response times and Stage 1 and
Stage 2 accuracies for each condition. Analyses for response
times were run on correct trials only. We fit the data to a linear
mixed model using the nlme package (Pinheiro et al., 2021)
in R (version 4.3.1; R Core Team, 2023). We found a signifi-
cant effect of set size (χ2(2) = 401.63, p < .001) and of chas-
ing subtlety (χ2(2) = 117.16, p < .001) on response time, but
the presence of a chase did not reliably impact response times
(χ2(2) = 0.14, p = .707). Pairwise contrasts with Tukey ad-
justment indicated that response time significantly increased
with chasing subtlety (0◦ v. 30◦: b = 440.63, t(2799) = 4.48,
p < .001; 0◦ v. 60◦: b = 1181.27, t(2799) = 11.06, p < .001,
30◦ v. 60◦: b = 741.27, t(2799) = 6.89, p < .001) and with
set size (b = 1764.14, t(2799) = 20.84, p < .001).

The pattern of response time data (Figure 3B, top plot) gen-
erally matches the pattern predicted by the model (Figure 3A,
top plot; r = .72). As predicted, when there is a chase, re-
sponse times for set size 2 are lower than for set size 6, and
response times increase with chasing subtlety. And, as pre-
dicted, response times are relatively flat across chasing sub-
tlety for chase-absent trials. However, the model performs
worse than humans for these trials; people are much faster to
indicate correctly that there is no chase.

How does our data compare to other studies? For chase-
present conditions, only Gao et al. (2019) measured re-
sponses across chasing subtlety conditions, and the results
from Experiment 1 generally matches: lower response times
for smaller set sizes with a large increase in response time at
60◦. No study provides chase-absent trial response times.

Full analyses of Stage 1 and Stage 2 accuracy are available



at osf.io/8cefh; here we compare qualitative results and
model predictions against the results of other studies. For
Stage 1 accuracy (Figure 3B), chase-present performance is
near ceiling except for 60◦, and accuracy is lower for set size
6 than set size 2. Although the pattern for 0◦ and 30◦ resem-
bles that of the model (Figure 3A), the model’s prediction
for 60◦ (performance should be worse for set size 2 than for
6) does not match the data, resulting in a lower correlation
(r = .68). Only Gao et al. (2009) measure Stage 1 accu-
racy (detection accuracy) and for set size 4 chase-present tri-
als only, making it difficult to directly compare our Stage 1
results with existing studies.

Stage 2 accuracy (Figure 3B) strongly resembles (r = .99)
the model’s predictions (Figure 3A), with set size 2 perfor-
mance at ceiling. There is also a drop-off in accuracy for set
size 6 with chasing subtlety of 60◦, although people are more
accurate than the model for this condition. Additionally, the
pattern for set size 6 mirrors the results for accuracy reported
by Gao et al. (2009, 2019) and Meyerhoff et al. (2013).

Experiment 2
Experiment 1 gave feedback on each trial. We were curious
about the role of feedback on performance for two related
reasons. First, the model does not receive feedback. So, we
wanted to ascertain whether a version of the experiment with-
out feedback would better approximate model results, partic-
ularly for the 60◦ subtlety condition. Second, it may be ar-
gued that chases with high chasing subtleties are not really
chases at all. Although they may be defined in the generation
of stimuli as a chase, they might not be considered chases
by participants. Receiving feedback on each trial may cause
participants to learn to classify videos with higher chasing
subtleties as chases, even though outside of the experiment,
these videos would not be regarded as chases. If this is the
case, we would expect accuracy for 60◦ chase-present trials
to be much lower when no feedback is given. To examine the
impact of feedback on performance, we conducted a second
experiment with the same design as Experiment 1 except that
feedback did not follow experimental trials.

Method
Participants 102 naı̈ve participants (mean age = 19.54
years; 65 females, 36 males, 1 other) were recruited from
Purdue University in exchange for course credit. Data from
4 participants with mean accuracy less than 2 standard devia-
tions from the mean (81%) were excluded. Two participants
did not have self-reported normal color vision, and the data
from one of these participants was among the 4 excluded for
having a low accuracy rate. We retained the data from the
other (92% accurate). We also excluded data from: 3 partici-
pants who chose not to report their age, 1 who reported being
younger than 18, and 7 due to technical issues. We analyzed
the remaining data from n = 87 participants.

Materials, Procedure and Design This experiment was
identical to Experiment 1 except for the following. Par-

ticipants received no feedback after each experimental trial.
Since we had more time with this subject pool, each partic-
ipant saw more experimental trials: we repeated the 12 total
conditions (2 (chase present vs. absent) × 2 (2 circles or 6 cir-
cles) × 3 (chasing subtlety 0◦, 30◦ or 60◦)) 5 times resulting in
60 randomly interleaved experimental trials per participant.

Results and Discussion
Experiment 2 yielded results similar to those of Experiment
1 (see Figure 3C) with a significant effect of set size (χ2(2)
= 472.72, p < .001) and chasing subtlety (χ2(2) = 120.16,
p < .001) on response time, but, unlike Experiment 1, the
impact on response time of whether a chase is present was
also significant (χ2(2) = 29.70, p < .001). Pairwise contrasts
with Tukey adjustment indicated that response time signifi-
cantly increased with chasing subtlety (0◦ v. 30◦: b = 387,
t(4157) = 4.64, p < .001; 0◦ v. 60◦: b = 1008, t(4157) =
11.03, p < .001, 30◦ v. 60◦: b = 741.27, t(4157) = 6.89,
p < .001), set size (b = 621, t(4157) = 22.36, p < .001),
and when a chase was present rather than absent (b = 399,
t(4157) = 5.46, p < .001).

Thus, we have replicated the results from Experiment 1
from a different population, providing stronger support for
the conclusions drawn from Experiment 1. Additionally, it
seems that feedback does not have much impact on accuracy.

Error-Prone Videos
The model makes specific predictions about which videos are
likely to receive incorrect responses. We focus on the three
videos with 0◦ chasing subtlety for which the model, with pa-
rameters values that led to good overall performance, had a
100% error rate. Our preregistration provides details about
these parameter values and how we made these predictions.
Each of these videos can be found at osf.io/8cefh. Be-
cause the results from Experiments 1 and 2 were similar,
we pooled the responses from these experiments to identify
videos with high error rates.

Figure 4 compares model performance with empirical re-
sults for each of these videos. Video 1 is a chase-absent video
with a red circle and a green circle, with the red moving to-
wards the green circle at times during the first half of the
video. The model predicted that people would tend to in-
correctly respond that the red circle is chasing the green cir-
cle, with a response time in the range of 7.42-9.70 seconds.
The gray bar of Figure 4A, left plot, shows the percent of
incorrect Stage 2 responses expected for each color. So, the
model predicts that 100% of the incorrect responses will in-
dicate that the green circle was being chased. In line with the
model’s prediction, the same video was the most difficult at
Stage 1 for humans across all 0◦ subtlety videos. Humans had
a Stage 1 error rate of 34% on this video (shown in the title
of Figure 4A, right plot). Additionally, all participants who
responded incorrectly indicated that the green circle was be-
ing chased, with a mean response time of 7.92 seconds (Fig-
ure 4A, right plot).

osf.io/8cefh
osf.io/8cefh
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Figure 4: Left column: Model predictions for three videos with the
highest simulated error rates, which show the response time associ-
ated with an incorrect response and what color will be chosen. Right
column: Data for incorrect responses for these videos, indicating
how frequently a particular color was chosen and the mean Stage 1
response time for that color. ‘XX% incorrect’ in the titles indicates
the percent of video views with an incorrect response. Each plot
shows information for incorrect responses for a particular video, i.e.,
what circle was thought to be chased (each bar indicates the percent
of incorrect responses (x-axis) where a particular circle (y-axis) was
selected) and the mean response time for the Stage 1 response on
these trials (indicated by the number on/beside a bar).

Video 2 is a chase-absent video with set size 6. At differ-
ent points in the video, the red circle moves towards a subset
of the circles for a short time. The model predicts that peo-
ple should tend to respond incorrectly that the yellow circle
is being chased, with a response time in the range of 4.86-
5.65 seconds (Figure 4B, left plot). For humans, however,
this video did not rank among the top error-prone 0◦ chasing
subtlety videos, with only 18% of participants responding in-
correctly. Further, those that did respond incorrectly were
not unanimous in indicating that the yellow circle was being
chased (Figure 4B, right plot), yet their mean response time
(5.73 sec) falls near the range predicted by the model.

Video 3 is a set size 6 chase-present trial where the orange
circle is chased. However, the yellow circle seems to fol-
low the orange circle for a short time at the beginning of the
video. The model predicts the people will tend to provide a
correct Stage 1 Response and, thus, respond that there is a
chase around 5.42-6.07 seconds. However, that model also
predicts that people will tend to make a Stage 2 error, indicat-
ing that yellow, rather than orange, is the circle being chased
(Figure 4C, left plot). In line with the prediction, this video

had the highest Stage 2 error rate (42%) among those with a
0◦ chasing subtlety, with the vast majority indicating that the
yellow circle was being chased at around 6.11 seconds.

Overall, the model predicted the 0◦ chasing subtlety video
with the highest Stage 1 error rate (Video 1), and the video
with the highest Stage 2 error rate (Video 3). Additionally, in
these cases, the model made accurate predictions about when
people who made these errors tended to respond and what
circle they tended to select. However, the model was not a
good predictor regarding Video 2. Most people seemed to
wait long enough to correctly identify there was no chase.

General Discussion

Previous research has identified a number of factors that influ-
ence chase detection in humans. The present work builds on
that body of research while focusing on one key factor, chas-
ing subtlety. Compared to prior studies, the present study
uses larger sample sizes and provides an explanation, via a
computational model, for why performance degrades when a
pursuing object does not move directly towards its target.

More broadly, the present work explains chase detection
by combining a) a model, based on the claim that participants
direct spatial attention towards potential chase targets to per-
form the task, and b) a strategy for assigning values to the
model’s free parameters before human data has been gath-
ered, based on finding a balance between low response times
and high accuracy across conditions. We found the model
parameter values that best achieved this balance result in a
model that focuses attention on a narrow area when the scene
is more crowded and a larger area when there are few ob-
jects. This provides support for and an explanation of our
claim that the size of the focus of attention differs depending
on the number of distractors in a scene (Kon et al., 2024): a
narrow focus (wider focus) when there are many (few) ob-
jects tends to lead to lower response times but also higher
accuracy. The result is a model capable of both predicting
overall human performance and identifying videos that will
be especially difficult for humans.

While the pattern of model results generally matches em-
pirical results, humans outperform the model when there is no
chase, responding faster across all set sizes and chasing sub-
tlety conditions. This implies that the model stopping rules
do not reflect those used by humans on this task. Future work
should systematically survey plausible alternative cognitive
stopping rules. For example, an earlier initial check may be
afforded by having a dynamic scan window that gets larger as
it moves away from the potential chaser.

We have demonstrated that this computational model can
be used to make empirically testable predictions about human
performance on chase detection tasks prior to data collection.
This shows that the model allows us to develop a falsifiable
theory of chase detection, one that we intend to expand and
refine through future model development and empirical tests.
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